In the production of the sucker rod well, the dynamic liquid level is important for the production efficiency and safety in the lifting process. It is influenced by multi-source data which need to be combined for the ...In the production of the sucker rod well, the dynamic liquid level is important for the production efficiency and safety in the lifting process. It is influenced by multi-source data which need to be combined for the dynamic liquid level real-time calculation. In this paper, the multi-source data are regarded as the different views including the load of the sucker rod and liquid in the wellbore, the image of the dynamometer card and production dynamics parameters. These views can be fused by the multi-branch neural network with special fusion layer. With this method, the features of different views can be extracted by considering the difference of the modality and physical meaning between them. Then, the extraction results which are selected by multinomial sampling can be the input of the fusion layer.During the fusion process, the availability under different views determines whether the views are fused in the fusion layer or not. In this way, not only the correlation between the views can be considered, but also the missing data can be processed automatically. The results have shown that the load and production features fusion(the method proposed in this paper) performs best with the lowest mean absolute error(MAE) 39.63 m, followed by the features concatenation with MAE 42.47 m. They both performed better than only a single view and the lower MAE of the features fusion indicates that its generalization ability is stronger. In contrast, the image feature as a single view contributes little to the accuracy improvement after fused with other views with the highest MAE. When there is data missing in some view, compared with the features concatenation, the multi-view features fusion will not result in the unavailability of a large number of samples. When the missing rate is 10%, 30%, 50% and 80%, the method proposed in this paper can reduce MAE by 5.8, 7, 9.3 and 20.3 m respectively. In general, the multi-view features fusion method proposed in this paper can improve the accuracy obviously and process the missing data effectively, which helps provide technical support for real-time monitoring of the dynamic liquid level in oil fields.展开更多
Understanding the sensitivity of tidal flats to environmental changes is challenging.Currently,most studies rely on process-based models to systematically explain the morphodynamic evolution of tidal flats.In this stu...Understanding the sensitivity of tidal flats to environmental changes is challenging.Currently,most studies rely on process-based models to systematically explain the morphodynamic evolution of tidal flats.In this study,we proposed an alternative empirical approach to explore tidal flat dynamics using statistical indices based on long-term time series of daily surface elevation development.Surface elevation dynamic(SED)indices focus on the magnitude and period of surface elevation changes,while morphodynamic signature(MDS)indices relate sediment dynamics to environmental drivers.The statistical analyses were applied to an intervention site in the Netherlands to determine the effect of recently constructed groynes on the tidal flat.Using these analyses,we were able to(1)detect a reduction in the daily SED and(2)determine that the changes in the daily SED were predominantly caused by the reduction in wave impact between the groynes rather than the reduction in tidal currents.Overall,the presented results showed that the combination of novel statistical indices provides new insights into the trajectories of tidal flats,ecosystem functioning,and sensitivity to physical drivers(wind and tides).Finally,we suggested how the SED and MDS indices may help to explore the future trajectories and climate resilience of intertidal habitats.展开更多
Anthropogenic climate forcing will cause the global mean sea level to rise over the 21st century.However,regional sea level is expected to vary across ocean basins,superimposed by the influence of natural internal cli...Anthropogenic climate forcing will cause the global mean sea level to rise over the 21st century.However,regional sea level is expected to vary across ocean basins,superimposed by the influence of natural internal climate variability.Here,we address the detection of dynamic sea level(DSL)changes by combining the perspectives of a single and a multimodel ensemble approach(the 50-member CanESM5 and a 27-model ensemble,respectively,all retrieved from the CMIP6 archive),under three CMIP6 projected scenarios:SSP1-2.6,SSP3-7.0 and SSP5-8.5.The ensemble analysis takes into account four key metrics:signal(S),noise(N),S/N ratio,and time of emergence(ToE).The results from both sets of ensembles agree in the fact that regions with higher S/N(associated with smaller uncertainties)also reflect earlier ToEs.The DSL signal is projected to emerge in the Southern Ocean,Southeast Pacific,Northwest Atlantic,and the Arctic.Results common for both sets of ensemble simulations show that while S progressively increases with increased projected emissions,N,in turn,does not vary substantially among the SSPs,suggesting that uncertainty arising from internal climate variability has little dependence on changes in the magnitude of external forcing.Projected changes are greater and quite similar for the scenarios SSP3-7.0 and SSP5-8.5 and considerably smaller for the SSP1-2.6,highlighting the importance of public policies towards lower emission scenarios and of keeping emissions below a certain threshold.展开更多
Calcitonin gene-related peptide(CGRP) has been implicated in multiple functions across many bioprocesses; however, whether CGRP is associated with severe traumatic brain injury(TBI) remains poorly understood. In t...Calcitonin gene-related peptide(CGRP) has been implicated in multiple functions across many bioprocesses; however, whether CGRP is associated with severe traumatic brain injury(TBI) remains poorly understood. In this study, 96 adult patients with TBI(enrolled from September 2015 to December 2016) were divided into a mild/moderate TBI group(36 males and 25 females, aged 38 ± 13 years) and severe TBI group(22 males and 13 females, aged 38 ± 11 years) according to Glasgow Coma Scale scores. In addition, 25 healthy individuals were selected as controls(15 males and 10 females, aged 39 ± 13 years). Radioimmunoassay was used to detect serum levels of CGRP and endothelin-1 at admission and at 12, 24, 48, 72 hours, and 7 days after admission. CGRP levels were remarkably lower, but endothelin-1 levels were obviously higher in the severe TBI group compared with mild/moderate TBI and control groups. Levels of CGRP were remarkably lower, but endothelin-1 levels were obviously higher in deceased patients compared with patients who survived. Survival analysis and logistic regression showed that both CGRP and endothelin-1 levels were associated with patient mortality, with each serving as an independent risk factor for 6-month mortality of severe TBI patients. Moreover, TBI patients with lower serum CGRP levels had a higher risk of death. Thus, our retrospective analysis demonstrates the potential utility of CGRP as a new biomarker, monitoring method, and therapeutic target for TBI.展开更多
Future potential sea level change in the South China Sea (SCS) is estimated by using 24 CMIP5 models under different representative concentration pathway (RCP) scenarios. By the end of the 21st century (2081–210...Future potential sea level change in the South China Sea (SCS) is estimated by using 24 CMIP5 models under different representative concentration pathway (RCP) scenarios. By the end of the 21st century (2081–2100 relative to 1986–2005), the multimodel ensemble mean dynamic sea level (DSL) is projected to rise 0.9, 1.6, and 1.1 cm under RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively, resulting in a total sea level rise (SLR) of 40.9, 48.6, and 64.1 cm in the SCS. It indicates that the SCS will experience a substantial SLR over the 21st century, and the rise is only marginal larger than the global mean SLR. During the same period, the steric sea level (SSL) rise is estimated to be 6.7, 10.0, and 15.3 cm under the three scenarios, respectively, which accounts only for 16%, 21% and 24% of the total SLR in this region. The changes of the SSL in the SCS are almost out of phase with those of the DSL for the three scenarios. The central deep basin has a slightly weak DSL rise, but a strong SSL rise during the 21st century, compared with the north and southwest shelves.展开更多
The second version of the Chinese Academy of Sciences Earth System Model(CAS-ESM2.0)is participating in the Flux-Anomaly-Forced Model Intercomparison Project(FAFMIP)experiments in phase 6 of the Coupled Model Intercom...The second version of the Chinese Academy of Sciences Earth System Model(CAS-ESM2.0)is participating in the Flux-Anomaly-Forced Model Intercomparison Project(FAFMIP)experiments in phase 6 of the Coupled Model Intercomparison Project(CMIP6).The purpose of FAFMIP is to understand and reduce the uncertainty of ocean climate changes in response to increased CO2 forcing in atmosphere-ocean general circulation models(AOGCMs),including the simulations of ocean heat content(OHC)change,ocean circulation change,and sea level rise due to thermal expansion.FAFMIP experiments(including faf-heat,faf-stress,faf-water,faf-all,faf-passiveheat,faf-heat-NA50pct and faf-heat-NA0pct)have been conducted.All of the experiments were integrated over a 70-year period and the corresponding data have been uploaded to the Earth System Grid Federation data server for CMIP6 users to download.This paper describes the experimental design and model datasets and evaluates the preliminary results of CAS-ESM2.0 simulations of ocean climate changes in the FAFMIP experiments.The simulations of the changes in global ocean temperature,Atlantic Meridional Overturning Circulation(AMOC),OHC,and dynamic sea level(DSL),are all reasonably reproduced.展开更多
The Flux-Anomaly-Forced Model Intercomparison Project(FAFMIP)is an endorsed Model Intercomparison Project in phase 6 of the Coupled Model Intercomparison Project(CMIP6).The goal of FAFMIP is to investigate the spread ...The Flux-Anomaly-Forced Model Intercomparison Project(FAFMIP)is an endorsed Model Intercomparison Project in phase 6 of the Coupled Model Intercomparison Project(CMIP6).The goal of FAFMIP is to investigate the spread in the atmosphere–ocean general circulation model projections of ocean climate change forced by increased CO2,including the uncertainties in the simulations of ocean heat uptake,global mean sea level rise due to ocean thermal expansion and dynamic sea level change due to ocean circulation and density changes.The FAFMIP experiments have already been conducted with the Flexible Global Ocean–Atmosphere–Land System Model,gridpoint version 3.0(FGOALS-g3).The model datasets have been submitted to the Earth System Grid Federation(ESGF)node.Here,the details of the experiments,the output variables and some baseline results are presented.Compared with the preliminary results of other models,the evolutions of global mean variables can be reproduced well by FGOALS-g3.The simulations of spatial patterns are also consistent with those of other models in most regions except the North Atlantic and the Southern Ocean,indicating large uncertainties in the regional sea level projections of these two regions.展开更多
Based on dynamic triaxial test results of saturated soft clay, similarities of variations between accumulated pore water pressure and accumulated deformation were analyzed. The Parr's equation on accumulated deformat...Based on dynamic triaxial test results of saturated soft clay, similarities of variations between accumulated pore water pressure and accumulated deformation were analyzed. The Parr's equation on accumulated deformation was modified to create an attenuation-type curve model on accumulated pore water pressure in saturated normal consolidation clay. In this model, dynamic strength was introduced and a new parameter called equivalent dynamic stress level was added. Besides, based on comparative analysis on variations between failure-type and attenuatiun-type curves, a failure-type curve model was created on accumulated pore water pressure in saturated normal consolidation clay. Two models can take cycle number, coupling of static and dynamic deviator stress, and consolidation way into consideration. The models are verified by test results. The correlation coefficients are more than 0.98 for optimization of test results based on the two models, and there is good agreement between the optimized and test curves, which shows that the two models are suitable to predict variations of accumulated pore water pressure under different loading cases and consolidation ways. In order to improve prediction accuracy, it is suggested that loading cases and consolidation ways should be consistent with in-situ conditions when dynamic triaxial tests are used to determine the constants in the models.展开更多
Vehicle height and leveling control of electronically controlled air suspension(ECAS) still poses theoretical challenges for researchers that have not been adequately addressed in prior research. This paper investigat...Vehicle height and leveling control of electronically controlled air suspension(ECAS) still poses theoretical challenges for researchers that have not been adequately addressed in prior research. This paper investigates the design and verification of a new controller to adjust the vehicle height and to regulate the roll and pitch angles of the vehicle body(leveling control) during the height adjustment procedures. A nonlinear mechanism model of the vehicle height adjustment system is formulated to describe the dynamic behaviors of the system. By using mixed logical dynamical(MLD) approach, a novel control strategy is proposed to adjust the vehicle height by controlling the on-off statuses of the solenoid valves directly. On this basis, a correction algorithm is also designed to regulate the durations of the on-off statuses of the solenoid valves based on pulse width modulated(PWM) technology, thus the effective leveling control of the vehicle body can be guaranteed. Finally, simulations and vehicle tests results are presented to demonstrate the effectiveness and applicability of the proposed control methodology.展开更多
By analyzing the relationship between ground water behavior and strong seismic activity during the past more than 20 years in North China, we have found similar water level descending variation of a part of wells in ...By analyzing the relationship between ground water behavior and strong seismic activity during the past more than 20 years in North China, we have found similar water level descending variation of a part of wells in the short-term stage before several strong earthquakes. The characteristics of anomaly are: at the beginning, water level dropped abruptly or accelerated to drop; then it turned to slow rising with a smaller amplitude than that of descending; earthquakes occurred during the slow-rising process of water level, and at that time or before earthquake occurrence, water level rose with a large amplitude. Among more than 100 wells in North China, the descending anomalies were not recorded for many times, but similar variation processes of water level were noted at different wells before several strong earthquakes, which proves that seismic precursory anomalies of ground water are of certain recurrence features, occurring repeatedly before different strong earthquakes. Therefore, it is necessary to study the genesis of this type of anomaly and its relationship with strong seismic activity.展开更多
Diyarbaklr basalt aquifer is volcanic-rock aquifers which contain high quality water. It was main resources for Diyarbaklr city center drinking supply up to 2005. Somewhere, basalt aquifer groundwater is still used fo...Diyarbaklr basalt aquifer is volcanic-rock aquifers which contain high quality water. It was main resources for Diyarbaklr city center drinking supply up to 2005. Somewhere, basalt aquifer groundwater is still used for irrigation in rural areas of Diyarbaklr city. In the study, Diyarbaklr city center's (which is located on the Tigris river basin) basalt aquifer groundwater potentials and hydrogeological features are examined and modeled by using GIS programmer. Firstly, general geological data, meteorological data and general information about natural water sources are collected together, afterwards, logs of well drilled by public institutions and private individuals within the Diyarbaklr city center are analyzed. Static water level, dynamic water level and well pumps yields are classified in these logs. Then, thematic maps produced with the help of Arc Info Professional GIS programmer with geostatistical analyst tool. Groundwater source potential of Diyarbaktr is examined by means of these thematic maps. In hydrogeological research, productivity by aquifer features, water retention capacity and groundwater level data evaluated with geological structure of area are taken into consideration.展开更多
Huainan area is an important coal base of the east of China. In the early part of the 1980s, the study of the underground waters dynamic state in the area was gradually paid close attention to. This paper introduces t...Huainan area is an important coal base of the east of China. In the early part of the 1980s, the study of the underground waters dynamic state in the area was gradually paid close attention to. This paper introduces the observation system of the groundwater dynamic state in the multilayered pitching aquifer, and expounds the hydrogeologic feature and the waterpower relations among aquifers. Furthermore, based on the analysis of the relations of the groundwater dynamic state to surface water, meteoric water and mining shaft outflow rate, this paper establishes main water filled aquifers of mining shaft (C 3-1 ,C 3-2 ,C 3-3 and O 2).In the light of the actual situation of the greatly changing aquifer occurrence and steep dip angle, the “two layer space curved surface seepage model" and the calculating step are all suggested. Since 1991,the groundwater dynamic state of the next year has been predicted (numerical simulation) every year. Contracting with the measured data, we gain a relatively ideal effect.展开更多
The authors assessed if wetlands can contribute to flood damage reduction in the Red River Basin, Minnesota, by providing reliable flood water storage. Hydrology and biodiversity in 28 natural and restored wetlands su...The authors assessed if wetlands can contribute to flood damage reduction in the Red River Basin, Minnesota, by providing reliable flood water storage. Hydrology and biodiversity in 28 natural and restored wetlands suggested uncontrolled natural wetlands provided the highest mean annual flood storage at 15 cm of runoff while single and 2-stage outlet controlled wetlands provided 3.0 and 8.1 cm of runoff control. Natural controlled wetlands, followed by 2-stage and single stage outlet controlled restorations provided 10.2, 6.6, and 2.2 cm of storage for early summer storm events. Two years of recorded water levels and a 20-year continuous meteorological record were used to model "temporary water level increases" in each wetland. Species diversity, hydrology, and watershed land use variables are inversely related where high quality and diverse wetlands had the lowest amplitude and frequency of water level increases, while low quality wetlands had the highest. Uncontrolled natural wetlands had the highest biological diversity and the lowest frequency and magnitude of temporary water levels increased. A significant biodiversity declines were measured where water level increases were greater than 2.7 meters. Strong multi-linear relationships between watershed land uses and watershed/wetland ratio explained wetland hydraulic performance and biodiversity relations (r2 ranging from 0.6-0.8). Non-native wetland plant diversity increased with greater water level dynamics.展开更多
Flood control forecast operation mode is one of the main ways for determining the upper bound of dynamic control of flood limited water level during flood season. The floodwater utilization rate can be effectively inc...Flood control forecast operation mode is one of the main ways for determining the upper bound of dynamic control of flood limited water level during flood season. The floodwater utilization rate can be effectively increased by using flood forecast information and flood control forecast operation mode. In this paper, Dahuofang Reservoir is selected as a case study. At first, the distribution pattern and the bound of forecast error which is a key source of risk are analyzed. Then, based on the definition of flood risk, the risk of dynamic control of reservoir flood limited water level within different flood forecast error bounds is studied. The results show that, the dynamic control of reservoir flood limited water level with flood forecast information can increase the floodwater utilization rate without increasing flood control risk effectively and it is feasible in practice.展开更多
With the increasing scale of information technology(IT)service system,traditional thresholdbased static service level management(SLM)solution appears to be inadequate to meet current increasingly management requiremen...With the increasing scale of information technology(IT)service system,traditional thresholdbased static service level management(SLM)solution appears to be inadequate to meet current increasingly management requirement of SLM.Due to the stochastic service request rate,the random inherent failure and load surge of IT devices during service operating stage of large scaled IT system,service level objective(SLO)maintenance issue has become a realistic and important issue in dynamic SLM.This paper proposes a closed-loop feedback control mechanism to adaptively maintain SLO that service provider(SP)guaranteed at service operation stage.The mechanism can automatically tune the capacity of IT infrastructure according to service performance dispersion and reduce SLO violations.Considering that the tuning operations also affect service performance,fuzzy control is applied to alleviate the negative effect caused by tuning operations.In the dynamic SLM system that is applied with this mechanism compared with the traditional threshold-based solution,it is proved that the amount of SLO violations obviously decreases,the reliability of the service system increases relatively,and the resource utilization of IT infrastructure is optimized.展开更多
基金supported by the National Natural Science Foundation of China under Grant 52325402, 52274057, 52074340 and 51874335the National Key R&D Program of China under Grant 2023YFB4104200+1 种基金the Major Scientific and Technological Projects of CNOOC under Grant CCL2022RCPS0397RSN111 Project under Grant B08028。
文摘In the production of the sucker rod well, the dynamic liquid level is important for the production efficiency and safety in the lifting process. It is influenced by multi-source data which need to be combined for the dynamic liquid level real-time calculation. In this paper, the multi-source data are regarded as the different views including the load of the sucker rod and liquid in the wellbore, the image of the dynamometer card and production dynamics parameters. These views can be fused by the multi-branch neural network with special fusion layer. With this method, the features of different views can be extracted by considering the difference of the modality and physical meaning between them. Then, the extraction results which are selected by multinomial sampling can be the input of the fusion layer.During the fusion process, the availability under different views determines whether the views are fused in the fusion layer or not. In this way, not only the correlation between the views can be considered, but also the missing data can be processed automatically. The results have shown that the load and production features fusion(the method proposed in this paper) performs best with the lowest mean absolute error(MAE) 39.63 m, followed by the features concatenation with MAE 42.47 m. They both performed better than only a single view and the lower MAE of the features fusion indicates that its generalization ability is stronger. In contrast, the image feature as a single view contributes little to the accuracy improvement after fused with other views with the highest MAE. When there is data missing in some view, compared with the features concatenation, the multi-view features fusion will not result in the unavailability of a large number of samples. When the missing rate is 10%, 30%, 50% and 80%, the method proposed in this paper can reduce MAE by 5.8, 7, 9.3 and 20.3 m respectively. In general, the multi-view features fusion method proposed in this paper can improve the accuracy obviously and process the missing data effectively, which helps provide technical support for real-time monitoring of the dynamic liquid level in oil fields.
基金supported by the Royal Netherlands Academy of Arts and Sciences(KNAW)(Grant No.PSA-SA-E-02)the Province of Zeeland,the Netherlands(Grant No.CoE-Buitendijks)。
文摘Understanding the sensitivity of tidal flats to environmental changes is challenging.Currently,most studies rely on process-based models to systematically explain the morphodynamic evolution of tidal flats.In this study,we proposed an alternative empirical approach to explore tidal flat dynamics using statistical indices based on long-term time series of daily surface elevation development.Surface elevation dynamic(SED)indices focus on the magnitude and period of surface elevation changes,while morphodynamic signature(MDS)indices relate sediment dynamics to environmental drivers.The statistical analyses were applied to an intervention site in the Netherlands to determine the effect of recently constructed groynes on the tidal flat.Using these analyses,we were able to(1)detect a reduction in the daily SED and(2)determine that the changes in the daily SED were predominantly caused by the reduction in wave impact between the groynes rather than the reduction in tidal currents.Overall,the presented results showed that the combination of novel statistical indices provides new insights into the trajectories of tidal flats,ecosystem functioning,and sensitivity to physical drivers(wind and tides).Finally,we suggested how the SED and MDS indices may help to explore the future trajectories and climate resilience of intertidal habitats.
基金the multiple funding agencies that support CMIP6 and ESGF.Grants CNPq-MCTINCT-594 CRIOSFERA 573720/2008-8 and Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior-Brasil(CAPES)-Finance Code 001FAPESP 2015/50686-1+1 种基金2017/16511-52018/14789-9。
文摘Anthropogenic climate forcing will cause the global mean sea level to rise over the 21st century.However,regional sea level is expected to vary across ocean basins,superimposed by the influence of natural internal climate variability.Here,we address the detection of dynamic sea level(DSL)changes by combining the perspectives of a single and a multimodel ensemble approach(the 50-member CanESM5 and a 27-model ensemble,respectively,all retrieved from the CMIP6 archive),under three CMIP6 projected scenarios:SSP1-2.6,SSP3-7.0 and SSP5-8.5.The ensemble analysis takes into account four key metrics:signal(S),noise(N),S/N ratio,and time of emergence(ToE).The results from both sets of ensembles agree in the fact that regions with higher S/N(associated with smaller uncertainties)also reflect earlier ToEs.The DSL signal is projected to emerge in the Southern Ocean,Southeast Pacific,Northwest Atlantic,and the Arctic.Results common for both sets of ensemble simulations show that while S progressively increases with increased projected emissions,N,in turn,does not vary substantially among the SSPs,suggesting that uncertainty arising from internal climate variability has little dependence on changes in the magnitude of external forcing.Projected changes are greater and quite similar for the scenarios SSP3-7.0 and SSP5-8.5 and considerably smaller for the SSP1-2.6,highlighting the importance of public policies towards lower emission scenarios and of keeping emissions below a certain threshold.
文摘Calcitonin gene-related peptide(CGRP) has been implicated in multiple functions across many bioprocesses; however, whether CGRP is associated with severe traumatic brain injury(TBI) remains poorly understood. In this study, 96 adult patients with TBI(enrolled from September 2015 to December 2016) were divided into a mild/moderate TBI group(36 males and 25 females, aged 38 ± 13 years) and severe TBI group(22 males and 13 females, aged 38 ± 11 years) according to Glasgow Coma Scale scores. In addition, 25 healthy individuals were selected as controls(15 males and 10 females, aged 39 ± 13 years). Radioimmunoassay was used to detect serum levels of CGRP and endothelin-1 at admission and at 12, 24, 48, 72 hours, and 7 days after admission. CGRP levels were remarkably lower, but endothelin-1 levels were obviously higher in the severe TBI group compared with mild/moderate TBI and control groups. Levels of CGRP were remarkably lower, but endothelin-1 levels were obviously higher in deceased patients compared with patients who survived. Survival analysis and logistic regression showed that both CGRP and endothelin-1 levels were associated with patient mortality, with each serving as an independent risk factor for 6-month mortality of severe TBI patients. Moreover, TBI patients with lower serum CGRP levels had a higher risk of death. Thus, our retrospective analysis demonstrates the potential utility of CGRP as a new biomarker, monitoring method, and therapeutic target for TBI.
基金The National Basic Research Program(973 Program)of China under contract No.2010CB950501the National Natural Science Foundation of China under contract No.41276035the National Natural Science Foundation of China–Shandong Province Joint Fund of Marine Science Research Centers under contract No.U1406404
文摘Future potential sea level change in the South China Sea (SCS) is estimated by using 24 CMIP5 models under different representative concentration pathway (RCP) scenarios. By the end of the 21st century (2081–2100 relative to 1986–2005), the multimodel ensemble mean dynamic sea level (DSL) is projected to rise 0.9, 1.6, and 1.1 cm under RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively, resulting in a total sea level rise (SLR) of 40.9, 48.6, and 64.1 cm in the SCS. It indicates that the SCS will experience a substantial SLR over the 21st century, and the rise is only marginal larger than the global mean SLR. During the same period, the steric sea level (SSL) rise is estimated to be 6.7, 10.0, and 15.3 cm under the three scenarios, respectively, which accounts only for 16%, 21% and 24% of the total SLR in this region. The changes of the SSL in the SCS are almost out of phase with those of the DSL for the three scenarios. The central deep basin has a slightly weak DSL rise, but a strong SSL rise during the 21st century, compared with the north and southwest shelves.
基金supported by the National Major Research High Performance Computing Program of China(Grant No.2016YFB0200804)the National Natural Science Foundation of China(Grant Nos.41706036,41706028,41975129 and 41630530)+2 种基金the open fund of State Key Laboratory of Satellite Ocean Environment Dynamics,Second Institute of Oceanography(Grant No.QNHX2017)the National Key Scientific and Technological Infrastructure project entitled“Earth System Science Numerical Simulator Facility”(Earth Lab)key operation construction projects of Chongqing Meteorological Bureau"Construction of chongqing short-term climate numerical predic tion platform"。
文摘The second version of the Chinese Academy of Sciences Earth System Model(CAS-ESM2.0)is participating in the Flux-Anomaly-Forced Model Intercomparison Project(FAFMIP)experiments in phase 6 of the Coupled Model Intercomparison Project(CMIP6).The purpose of FAFMIP is to understand and reduce the uncertainty of ocean climate changes in response to increased CO2 forcing in atmosphere-ocean general circulation models(AOGCMs),including the simulations of ocean heat content(OHC)change,ocean circulation change,and sea level rise due to thermal expansion.FAFMIP experiments(including faf-heat,faf-stress,faf-water,faf-all,faf-passiveheat,faf-heat-NA50pct and faf-heat-NA0pct)have been conducted.All of the experiments were integrated over a 70-year period and the corresponding data have been uploaded to the Earth System Grid Federation data server for CMIP6 users to download.This paper describes the experimental design and model datasets and evaluates the preliminary results of CAS-ESM2.0 simulations of ocean climate changes in the FAFMIP experiments.The simulations of the changes in global ocean temperature,Atlantic Meridional Overturning Circulation(AMOC),OHC,and dynamic sea level(DSL),are all reasonably reproduced.
基金This study was supported by National Key R&D Program for Developing Basic Sciences(2018YFA0605703)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB42010404)the National Natural Science Foundation of China(Grants 41976026,41776030 and 41931183,41931182)。
文摘The Flux-Anomaly-Forced Model Intercomparison Project(FAFMIP)is an endorsed Model Intercomparison Project in phase 6 of the Coupled Model Intercomparison Project(CMIP6).The goal of FAFMIP is to investigate the spread in the atmosphere–ocean general circulation model projections of ocean climate change forced by increased CO2,including the uncertainties in the simulations of ocean heat uptake,global mean sea level rise due to ocean thermal expansion and dynamic sea level change due to ocean circulation and density changes.The FAFMIP experiments have already been conducted with the Flexible Global Ocean–Atmosphere–Land System Model,gridpoint version 3.0(FGOALS-g3).The model datasets have been submitted to the Earth System Grid Federation(ESGF)node.Here,the details of the experiments,the output variables and some baseline results are presented.Compared with the preliminary results of other models,the evolutions of global mean variables can be reproduced well by FGOALS-g3.The simulations of spatial patterns are also consistent with those of other models in most regions except the North Atlantic and the Southern Ocean,indicating large uncertainties in the regional sea level projections of these two regions.
基金Project(2009AA11Z101) supported by National High Technology Research and Development Program of ChinaProject supported by Postdoctoral Science Foundation of Central South University,China+1 种基金Project(2012QNZT045) supported by Fundamental Research Funds for Central Universities of ChinaProject(2011CB710601) supported by the National Basic Research Program of China
文摘Based on dynamic triaxial test results of saturated soft clay, similarities of variations between accumulated pore water pressure and accumulated deformation were analyzed. The Parr's equation on accumulated deformation was modified to create an attenuation-type curve model on accumulated pore water pressure in saturated normal consolidation clay. In this model, dynamic strength was introduced and a new parameter called equivalent dynamic stress level was added. Besides, based on comparative analysis on variations between failure-type and attenuatiun-type curves, a failure-type curve model was created on accumulated pore water pressure in saturated normal consolidation clay. Two models can take cycle number, coupling of static and dynamic deviator stress, and consolidation way into consideration. The models are verified by test results. The correlation coefficients are more than 0.98 for optimization of test results based on the two models, and there is good agreement between the optimized and test curves, which shows that the two models are suitable to predict variations of accumulated pore water pressure under different loading cases and consolidation ways. In order to improve prediction accuracy, it is suggested that loading cases and consolidation ways should be consistent with in-situ conditions when dynamic triaxial tests are used to determine the constants in the models.
基金supported by the National Natural Science Foundation of China(Grant Nos.51375212,61403172&51305167)Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)Key Research and Development Program of Jiangsu Province(Grant No.BE2016149)
文摘Vehicle height and leveling control of electronically controlled air suspension(ECAS) still poses theoretical challenges for researchers that have not been adequately addressed in prior research. This paper investigates the design and verification of a new controller to adjust the vehicle height and to regulate the roll and pitch angles of the vehicle body(leveling control) during the height adjustment procedures. A nonlinear mechanism model of the vehicle height adjustment system is formulated to describe the dynamic behaviors of the system. By using mixed logical dynamical(MLD) approach, a novel control strategy is proposed to adjust the vehicle height by controlling the on-off statuses of the solenoid valves directly. On this basis, a correction algorithm is also designed to regulate the durations of the on-off statuses of the solenoid valves based on pulse width modulated(PWM) technology, thus the effective leveling control of the vehicle body can be guaranteed. Finally, simulations and vehicle tests results are presented to demonstrate the effectiveness and applicability of the proposed control methodology.
基金Key project of Ministry of Science and Technology during the Tenth Five-year Plan(2001BA601B 01-01-01).
文摘By analyzing the relationship between ground water behavior and strong seismic activity during the past more than 20 years in North China, we have found similar water level descending variation of a part of wells in the short-term stage before several strong earthquakes. The characteristics of anomaly are: at the beginning, water level dropped abruptly or accelerated to drop; then it turned to slow rising with a smaller amplitude than that of descending; earthquakes occurred during the slow-rising process of water level, and at that time or before earthquake occurrence, water level rose with a large amplitude. Among more than 100 wells in North China, the descending anomalies were not recorded for many times, but similar variation processes of water level were noted at different wells before several strong earthquakes, which proves that seismic precursory anomalies of ground water are of certain recurrence features, occurring repeatedly before different strong earthquakes. Therefore, it is necessary to study the genesis of this type of anomaly and its relationship with strong seismic activity.
文摘Diyarbaklr basalt aquifer is volcanic-rock aquifers which contain high quality water. It was main resources for Diyarbaklr city center drinking supply up to 2005. Somewhere, basalt aquifer groundwater is still used for irrigation in rural areas of Diyarbaklr city. In the study, Diyarbaklr city center's (which is located on the Tigris river basin) basalt aquifer groundwater potentials and hydrogeological features are examined and modeled by using GIS programmer. Firstly, general geological data, meteorological data and general information about natural water sources are collected together, afterwards, logs of well drilled by public institutions and private individuals within the Diyarbaklr city center are analyzed. Static water level, dynamic water level and well pumps yields are classified in these logs. Then, thematic maps produced with the help of Arc Info Professional GIS programmer with geostatistical analyst tool. Groundwater source potential of Diyarbaktr is examined by means of these thematic maps. In hydrogeological research, productivity by aquifer features, water retention capacity and groundwater level data evaluated with geological structure of area are taken into consideration.
文摘Huainan area is an important coal base of the east of China. In the early part of the 1980s, the study of the underground waters dynamic state in the area was gradually paid close attention to. This paper introduces the observation system of the groundwater dynamic state in the multilayered pitching aquifer, and expounds the hydrogeologic feature and the waterpower relations among aquifers. Furthermore, based on the analysis of the relations of the groundwater dynamic state to surface water, meteoric water and mining shaft outflow rate, this paper establishes main water filled aquifers of mining shaft (C 3-1 ,C 3-2 ,C 3-3 and O 2).In the light of the actual situation of the greatly changing aquifer occurrence and steep dip angle, the “two layer space curved surface seepage model" and the calculating step are all suggested. Since 1991,the groundwater dynamic state of the next year has been predicted (numerical simulation) every year. Contracting with the measured data, we gain a relatively ideal effect.
文摘The authors assessed if wetlands can contribute to flood damage reduction in the Red River Basin, Minnesota, by providing reliable flood water storage. Hydrology and biodiversity in 28 natural and restored wetlands suggested uncontrolled natural wetlands provided the highest mean annual flood storage at 15 cm of runoff while single and 2-stage outlet controlled wetlands provided 3.0 and 8.1 cm of runoff control. Natural controlled wetlands, followed by 2-stage and single stage outlet controlled restorations provided 10.2, 6.6, and 2.2 cm of storage for early summer storm events. Two years of recorded water levels and a 20-year continuous meteorological record were used to model "temporary water level increases" in each wetland. Species diversity, hydrology, and watershed land use variables are inversely related where high quality and diverse wetlands had the lowest amplitude and frequency of water level increases, while low quality wetlands had the highest. Uncontrolled natural wetlands had the highest biological diversity and the lowest frequency and magnitude of temporary water levels increased. A significant biodiversity declines were measured where water level increases were greater than 2.7 meters. Strong multi-linear relationships between watershed land uses and watershed/wetland ratio explained wetland hydraulic performance and biodiversity relations (r2 ranging from 0.6-0.8). Non-native wetland plant diversity increased with greater water level dynamics.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51079015, 50979011)
文摘Flood control forecast operation mode is one of the main ways for determining the upper bound of dynamic control of flood limited water level during flood season. The floodwater utilization rate can be effectively increased by using flood forecast information and flood control forecast operation mode. In this paper, Dahuofang Reservoir is selected as a case study. At first, the distribution pattern and the bound of forecast error which is a key source of risk are analyzed. Then, based on the definition of flood risk, the risk of dynamic control of reservoir flood limited water level within different flood forecast error bounds is studied. The results show that, the dynamic control of reservoir flood limited water level with flood forecast information can increase the floodwater utilization rate without increasing flood control risk effectively and it is feasible in practice.
基金Acknowledgements This work was partly supported by the State Key Development Program for Basic Research of China(No.2007CB310703)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(Grant No.60821001)the National High Technology Research and Development Program of China(No.2008AA01Z201).
文摘With the increasing scale of information technology(IT)service system,traditional thresholdbased static service level management(SLM)solution appears to be inadequate to meet current increasingly management requirement of SLM.Due to the stochastic service request rate,the random inherent failure and load surge of IT devices during service operating stage of large scaled IT system,service level objective(SLO)maintenance issue has become a realistic and important issue in dynamic SLM.This paper proposes a closed-loop feedback control mechanism to adaptively maintain SLO that service provider(SP)guaranteed at service operation stage.The mechanism can automatically tune the capacity of IT infrastructure according to service performance dispersion and reduce SLO violations.Considering that the tuning operations also affect service performance,fuzzy control is applied to alleviate the negative effect caused by tuning operations.In the dynamic SLM system that is applied with this mechanism compared with the traditional threshold-based solution,it is proved that the amount of SLO violations obviously decreases,the reliability of the service system increases relatively,and the resource utilization of IT infrastructure is optimized.