Background Disturbed circadian rhythm is a potential cause of delirium and is linked to disorganisation of the circadian rhythmicity. Dynamic light (DL) could reset the circadian rhythm by activation of the suprachi...Background Disturbed circadian rhythm is a potential cause of delirium and is linked to disorganisation of the circadian rhythmicity. Dynamic light (DL) could reset the circadian rhythm by activation of the suprachiasmatic nucleus to prevent delirium. Evidence regarding the effects of light therapy is predominantly focused on psychiatric disorders and circadian rhythm sleep disorders. In this study, we investi- gated the effect of DL on the total hospital length of stay (LOS) and occurrence of delirium in patients admitted to the Coronary Care Unit (CCU). Methods This was a retrospective cohort study. Patients older than 18 years, who were hospitalized longer than 12 h at the CCU and had a total hospital LOS for at least 24 h, were included. Patients were assigned to a room with DL (n = 369) or regular lighting condi- tions (n = 379). DL was administered at the CCU by two ceiling-mounted light panels delivering light with a colour temperature between 2700 and 6500 degrees Kelvin. Reported outcome data were: total hospital LOS, delirium incidence, consultation of a geriatrician and the amount of prescripted antipsychotics. Results Between May 2015 and May 2016, data from 748 patients were collected. Baseline charac- teristics, including risk factors provoking delirium, were equal in both groups. Median total hospital LOS in the DL group was 100.5 (70.8-186.0) and 101.0 (73.0-176.4) h in the control group (P = 0.935). The incidence of delirium in the DL and control group was 5.4% (20/369) and 5.0% (19/379), respectively (P = 0.802). No significant differences between the DL and control group were observed in secon- dary endpoints. Subgroup analysis based on age and CCU LOS also showed no differences. Conclusion Our study suggests exposure to DL as an early single approach does not result in a reduction of total hospital LOS or reduced incidence of delirium. When delirium was diagnosed, it was associated with poor hospital outcome.展开更多
A novel method combining visualization particle tracking with image-based dynamic light scattering was developed to achieve the in situ and real-time size measurement of nanobubbles(NBs).First,the in situ size distrib...A novel method combining visualization particle tracking with image-based dynamic light scattering was developed to achieve the in situ and real-time size measurement of nanobubbles(NBs).First,the in situ size distribution of NBs was visualized by dark-field microscopy.Then,real-time size during the preparation was measured using image-based dynamic light scattering,and the longitudinal size distribution of NBs in the sample cell was obtained in a steady state.Results show that this strategy can provide a detailed and accurate size of bubbles in the whole sample compared with the commercial ZetaSizer Nano equipment.Therefore,the developed method is a real-time and simple technology with excellent accuracy,providing new insights into the accurate measurement of the size distribution of NBs or nanoparticles in solution.展开更多
Dynamic behaviors on polyacrylic acid (PAA) gels and mass (small molecules) transports in the gels have been studied mainly by dynamic light scattering (DLS). The cross-linking degree (fc), monomer concentration (Cm)...Dynamic behaviors on polyacrylic acid (PAA) gels and mass (small molecules) transports in the gels have been studied mainly by dynamic light scattering (DLS). The cross-linking degree (fc), monomer concentration (Cm) and temperature of the gels have significant influences on its dynamic behavior and mass transport in the gels. The increase of fc leads to decrease of the mesh sizes of the gels, thus the obstacle of the gels for mass transport is increased. As a result, small molecular diffusion Dk in the gels is decreased. So even if for small molecules, the Dk also is influenced.展开更多
We analytically and numerically investigate a signal light storing mechanism based on the controllable electromagnetically induced transparency(EIT)effect.We demonstrate that the isolation between the waveguide and th...We analytically and numerically investigate a signal light storing mechanism based on the controllable electromagnetically induced transparency(EIT)effect.We demonstrate that the isolation between the waveguide and the cavities cannot be achieved instantly as soon as the two cavities are tuned into resonance,no matter the index tuning rate is ultrafast or slow.We also investigate the temporal evolution features of the intracavity energy when the pulse during time is prolonged.We find many periodical oscillations of the trapped energy in both cavities,and they are entirely complementary.Our analysis shows that the adiabatic wavelength conversion in both cavities and a phase difference π between them play critical roles in this phenomenon.展开更多
The technique of dynamic light scattering has been used to investigate the translation diffusion behavior of 8-arm star polystyrene (SPS)in a good solvent, tetrahydrofuran (THF) or benzene (BZ) and a theta solvent, cy...The technique of dynamic light scattering has been used to investigate the translation diffusion behavior of 8-arm star polystyrene (SPS)in a good solvent, tetrahydrofuran (THF) or benzene (BZ) and a theta solvent, cyclohexane (CH), by homodyne photon correlation spectroscopy .The intensityintensity autocorrelation function was analyzed by the method of cumulant. The translation diffusion coefficients have been obtained as a function of temperature and concentration. Under theta condition ,the non-concentration dependence of diffusion coefficient showed the unperturbed Gaussian state o the SPS molecular chain. The different hydrodynamic radii estimated from Stokes- Einstein equation reflected the stretch extent of the arm chain for regular star polymer. The data of diffusion activation energy of SPS in THF, BZ and CH were also obtained respectively.展开更多
Dynamic light scattering(DLS)is a promising technique for early cataract detection and for studying cataractogenesis.A novel probabilistic analysis tool,the sparse Bayesian learning(SBL)algorithm,is described for reco...Dynamic light scattering(DLS)is a promising technique for early cataract detection and for studying cataractogenesis.A novel probabilistic analysis tool,the sparse Bayesian learning(SBL)algorithm,is described for reconstructing the most-probable size distribution ofα-crystallin and their aggregates in an ocular lens from the DLS data.The performance of the algorithm is evaluated by analyzing simulated correlation data from known distributions and DLS data from the ocular lenses of a fetal calf,a Rhesus monkey,and a man,so as to establish the required efficiency of the SBL algorithm for clinical studies.展开更多
The performance of nanoparticles is often affected by particle size and morphology.Currently,electron microscopy or atomic force microscopy is typically utilized to determine the size and morphology of nanoparticles.H...The performance of nanoparticles is often affected by particle size and morphology.Currently,electron microscopy or atomic force microscopy is typically utilized to determine the size and morphology of nanoparticles.However,there are issues such as difficult sample preparation,long processing times,and challenges in quantitative characterization.Therefore,it is of great significance to develop a fast,accu-rate,and statistical method to measure the size and morphology of nanoparticles.In this study,a new method,called polarized imaging dynamic light scattering(PIDLS),is proposed.The nanoparticles are irradiated with a vertical linearly polarized laser beam,and a polarization camera collected the dynamic light scattering images of particles at four different polarization directions(0°,45°,90°,and 135°)at a scattering angle of 90°.The average particle size and distribution are obtained using the imaging dy-namic light scattering method at 0°polarization direction,and the morphology of the particles is ob-tained based on the depolarization patterns of the scattered light.The optical sphericityΦis defined based on the degree of linear polarization(DoLP).It is also implemented for the quantitative evaluation of the sphericity of the nanoparticles,including spherical,octahedral,nanoplate,nanorod,and linear ones.Together with the Poincarésphere parameterψ,the morphology of the nanoparticles can be roughly identified.In addition,PIDLS enables the measurement of particle size and morphology distributions simultaneously for evaluating the uniformity of particles.The effectiveness of PIDLS is verified by the measurement of five kinds of industrial titanium dioxide as well.展开更多
Understanding the dynamic assembly process of DNA nanostructures is important for developing novel strategy to design and construct functional devices.In this work,temperature-controlled dynamic light scattering(DLS)s...Understanding the dynamic assembly process of DNA nanostructures is important for developing novel strategy to design and construct functional devices.In this work,temperature-controlled dynamic light scattering(DLS)strategy has been applied to study the global assembly process of DNA origami and DNA bricks.Through the temperature dependent size and intensity profiles,the self-assembly process of various DNA nanostructures with different morphologies have been well-studied and the temperature transition ranges could be observed.Taking advantage of the DLS information,rapid preparation of the DNA origami and the brick assembly has been realized through a constant temperature annealing.Our results demonstrate that the DLS-based strategy provides a convenient and robust tool to study the dynamic process of forming hieratical DNA structures,which will benefit understanding the mechanism of self-assembly of DNA nanostructures.展开更多
Dynamic light scattering(DLS)is a nondestructive,well-established technique for the size characterization of proteins,nanoparticles,polymers,and colloidal dispersions.However,current DLS techniques are only applied to...Dynamic light scattering(DLS)is a nondestructive,well-established technique for the size characterization of proteins,nanoparticles,polymers,and colloidal dispersions.However,current DLS techniques are only applied to particle groups of single composition due to the limitation of their inversion algorithm.In this study,we propose a particle size distribution inversion algorithm based on the Tikhnonov regularization method that can be applied to the dual-substance particle mixture.The algorithm retrieves the particle size distributions of two substances,respectively,by taking advantage of their refractive index differences.The simulation results reveal that the algorithm has excellent accuracy and stability when the scattering angle is 30°.Instead of the original identity matrix,the first-order difference matrix and second-order difference matrix are used as the regular matrix when utilizing the Tikhnonov algorithm,which obviously improves the anti-interference,accuracy,and stability of the algorithm.Furthermore,the inversion of particle size distribution is carried out at a 0.01%–1%noise level,which shows that the algorithm has an available antinoise ability.Finally,experimental particle size measurements for a mixture of polystyrene beads and toner particles demonstrate that the proposed algorithm is superior to the traditional Tikhnonov algorithm in applicability and accuracy.展开更多
In this paper, an image dynamic light scattering method for nanoparticle sizing is introduced. The spatial distribution of the scattered lights from nanoparticles undergoing Brownian motion was captured at a high fram...In this paper, an image dynamic light scattering method for nanoparticle sizing is introduced. The spatial distribution of the scattered lights from nanoparticles undergoing Brownian motion was captured at a high frame rate by a digital camera within one second, which is considerably faster than the conven- tional photon correlation spectroscopy method. The captured series of photographs were meshed into thousands of small units for calculating the intensity autocorrelation functions in parallel. Experimental results from the measurements of three reference nanoparticle samples (27, 80, and 352 nm in diameters) demonstrated the feasibility of this method.展开更多
Pterodontic acid(PA)has been isolated from Laggera pterodonta,a Chinese herbal medicine,and shown to possess antibacterial activity in vitro.To facilitate its preclinical development,the interaction between PA and bov...Pterodontic acid(PA)has been isolated from Laggera pterodonta,a Chinese herbal medicine,and shown to possess antibacterial activity in vitro.To facilitate its preclinical development,the interaction between PA and bovine serum albumin(BSA)was studied using a fluorescence quenching technique,ultraviolet–visible spectrophotometry and dynamic light scattering(DLS).At temperatures of 297 K and 310 K and an excitation wavelength of 282 nm,the fluorescence intensity of BSA decreased significantly with increasing concentration of PA attributed to the formation of a PA–BSA complex.The apparent binding constant,number of binding sites and corresponding thermodynamic parameters were calculated and the main intermolecular attraction shown to result from hydrogen bonding and van der Waals forces.Synchronous fluorescence spectrometry revealed that the binding site in the complex approached the microenvironment of Trp and three-dimensional fluorescence spectroscopy showed the binding induced conformational changes in BSA.Using DLS,increasing PA concentration was shown to cause a gradual increase in hydrodynamic diameter and significant aggregation of the complex.展开更多
With the development of nanosciences, both localized surface plasmon resonance light scattering (LSPR-LS) and dynamic light scattering (DLS) techniques have been widely used for quantitative purposes with high sen...With the development of nanosciences, both localized surface plasmon resonance light scattering (LSPR-LS) and dynamic light scattering (DLS) techniques have been widely used for quantitative purposes with high sensitivity. In this contribution, we make a comparison of the two light scattering techniques by employing gold nanoparticles (AuNPs) aggregation induced by mercuric ions. It was found that citrate-stabilized AuNPs got aggregated in aqueous medium in the presence of mercuric ions through a chelation process, resulting in greatly enhanced LSPR-LS signals and increased hydrodynamic diameter. The enhanced LSPR-LS intensity (A/) is proportional to the concentration of mercuric ions in the range of 0.4-2.5 laM following the linear regression equation of A/= -84.7+516.4c, with the correlation coefficient of 0.983 (n = 6) and the limit of determi- nation (3o-) about 0.10 gM. On the other hand, the increased hydrodynamic diameter can be identified by the DLS signals only with a concentration of Hg2+ in the range of 1.0-2.5 gM, and a linear relationship between the average hydrodynamic diame- ters of the resulted aggregates and the concentration of Hg2+ can be expressed as d = -6.16 + 45.9c with the correlation coeffi- cient of 0.994. In such case, LSPR-LS signals were further applied to the selective determination of mercuric ions in lake water samples with high sensitivity and simple operation.展开更多
Glucose is directly related to brain activity and to diabetes. Therefore, developing a rapid and sensitive method for glucose de- tection is essential. Here, label-free glucose detection at attomole levels was realize...Glucose is directly related to brain activity and to diabetes. Therefore, developing a rapid and sensitive method for glucose de- tection is essential. Here, label-free glucose detection at attomole levels was realized by detecting the average diameter change of gold nanoparticles (AuNPs) utilizing dynamic light scattering (DLS). Single-strand DNA (ssDNA) adsorbed into the AuNPs' surfaces and prevented them from aggregating in solution that contained NaC1. However, ssDNA cleaved onto ssDNA fragments upon addition of glucose, and these fragments could not adsorb onto the AuNPs' surfaces. Therefore, in high-salt solution, AuNPs would aggregate and their average diameter would increase. Based on monitoring the average diameter of AuNPs with DLS, glucose could be detected in the range from 15 pmol/L to 2.0 nmol/L, with a detection limit of 8.3 pmol/L. Satisfactory results were also obtained when the proposed method was applied in human serum glucose detection.展开更多
The effects of temperature,ionic strength,and enzymatic hydrolysis on the average hydrodynamic radius(Rh)of casein micelles in phosphate buffer were studied by using dynamic light scattering.The results showed that th...The effects of temperature,ionic strength,and enzymatic hydrolysis on the average hydrodynamic radius(Rh)of casein micelles in phosphate buffer were studied by using dynamic light scattering.The results showed that the average Rh value of casein micelles decreased irreversibly during the heating,decreased with the increase of ionic strength in lower ionic strength solution(less than 0.05 mol/L),but opposite in higher ionic strength solution(above 0.1 mol/L).The Rh value of casein increased rapidly during the process of enzymatic hydrolysis,and the structural model of casein micelles in the enzymatic hydrolysis process was also proposed,i.e.the casein micelle changed from compact sphere into unfolded and regularly flocky peptides.展开更多
In Brazil and various regions globally, the initiation of landslides is frequently associated with rainfall;yet the spatial arrangement of geological structures and stratification considerably influences landslide occ...In Brazil and various regions globally, the initiation of landslides is frequently associated with rainfall;yet the spatial arrangement of geological structures and stratification considerably influences landslide occurrences. The multifaceted nature of these influences makes the surveillance of mass movements a highly intricate task, requiring an understanding of numerous interdependent variables. Recent years have seen an emergence in scholarly research aimed at integrating geophysical and geotechnical methodologies. The conjoint examination of geophysical and geotechnical data offers an enhanced perspective into subsurface structures. Within this work, a methodology is proposed for the synchronous analysis of electrical resistivity geophysical data and geotechnical data, specifically those extracted from the Light Dynamic Penetrometer (DPL) and Standard Penetration Test (SPT). This study involved a linear fitting process to correlate resistivity with N10/SPT N-values from DPL/SPT soundings, culminating in a 2D profile of N10/SPT N-values predicated on electrical profiles. The findings of this research furnish invaluable insights into slope stability by allowing for a two-dimensional representation of penetration resistance properties. Through the synthesis of geophysical and geotechnical data, this project aims to augment the comprehension of subsurface conditions, with potential implications for refining landslide risk evaluations. This endeavor offers insight into the formulation of more effective and precise slope management protocols and disaster prevention strategies.展开更多
Static strength finite element analysis was conducted to decrease the weight of a skeleton vehicle's frame. Results indicated that the maximum stress occurs on the front beam 's variable section area. Dynamic sensit...Static strength finite element analysis was conducted to decrease the weight of a skeleton vehicle's frame. Results indicated that the maximum stress occurs on the front beam 's variable section area. Dynamic sensitivity analysis elucidated the relationship between the maximum stress and the thickness of a particular beam,e. g.,top,middle,and bottom beam. Displacement was analyzed by the key part that influenced the maximum stress. Finally,the new plan using BS960 super-high-strength beam steel and the preferred beam thickness was compared with the original plan. New combinations of beam thickness were introduced on the basis of different purposes; the maximum responding light w eight ratio was 21%.展开更多
This paper presents the study of the effect of multiple ultrasonic impacts on submicron asphaltene aggregates in a toluene/heptane solution,conducted with dynamic light scattering technique.The objects of the study we...This paper presents the study of the effect of multiple ultrasonic impacts on submicron asphaltene aggregates in a toluene/heptane solution,conducted with dynamic light scattering technique.The objects of the study were four samples of asphaltenes obtained from four different oils.For all samples,the change in the average size of the asphaltene submicron aggregates with time was measured after the addition of a precipitant(heptane)to a solution of asphaltenes in toluene at an amount above the threshold concentration.Asphaltene aggregates formed in solution after the addition of the precipitant and were subjected to ultrasonic treatment,which led to the destruction of the asphaltene aggregates.Aggregation of destroyed asphaltenes was observed.The kinetics of this aggregation were similar to the kinetics of aggregation of asphaltenes after the addition of a precipitant.Multiple iterations of asphaltene aggregate destruction in the sample led to a significant change in the kinetics of aggregation:the growth of aggregates slowed and stabilized at a size of approximately 200 nm and 30 nm for the different studied samples.展开更多
The nanometer cobalt blue pigments were prepared by microemulsion method. Using dynamic light scattering(DLS) test method, the influences of water content on the size of liquid drop of microemulsion and the liquid dro...The nanometer cobalt blue pigments were prepared by microemulsion method. Using dynamic light scattering(DLS) test method, the influences of water content on the size of liquid drop of microemulsion and the liquid drop of microemulsion on the final diameter of nanometer particle were studied in the course of preparation. Accordingly, the method to control the diameter of nanometer particle by changing water content was established. The nanometer cobalt blue particles were confirmed by XRD and TEM. Color parameters of pigments were determined. The quantum size effect of the pigments was discussed.展开更多
A modified seeded growth process of silica particles with a continuous addition of tetraethyl orthosilicate (TEOS) was presented to control the diameter of silica particles. The diameter of particles was monitored b...A modified seeded growth process of silica particles with a continuous addition of tetraethyl orthosilicate (TEOS) was presented to control the diameter of silica particles. The diameter of particles was monitored by dynamic light scattering to control the addition of TEOS. The increase in the diameter of the silica particles with time and the addition of TEOS was investigated. The diameter of silica seeds increased from 193 nm to 446 nm in 4 h. The final diameter of silica particles was tailored within the range of ±5 nm to the target diameter. Silica particles with diameter of 446 nm were synthesized and assembled into photonic crystals with a pseudo band gap centered at just 1000 nm. The feasibility and practicability of this modified seeded growth process was verified.展开更多
Spontaneous vesicles from the mixed aqueous solution of poly-tailed cationic surfactant PTA and anionic surfactant AOT are firstly obtained. Vesicle formation and characterizations are demonstrated by negative-staini...Spontaneous vesicles from the mixed aqueous solution of poly-tailed cationic surfactant PTA and anionic surfactant AOT are firstly obtained. Vesicle formation and characterizations are demonstrated by negative-staining TEM and dynamic light scattering. A monodisperse vesicle system is obtained with a polydispersity of 0.082. Ultrasonication can promote the vesicle formation. Mechanism of vesicle formation is discussed from the viewpoint of molecular interaction.展开更多
文摘Background Disturbed circadian rhythm is a potential cause of delirium and is linked to disorganisation of the circadian rhythmicity. Dynamic light (DL) could reset the circadian rhythm by activation of the suprachiasmatic nucleus to prevent delirium. Evidence regarding the effects of light therapy is predominantly focused on psychiatric disorders and circadian rhythm sleep disorders. In this study, we investi- gated the effect of DL on the total hospital length of stay (LOS) and occurrence of delirium in patients admitted to the Coronary Care Unit (CCU). Methods This was a retrospective cohort study. Patients older than 18 years, who were hospitalized longer than 12 h at the CCU and had a total hospital LOS for at least 24 h, were included. Patients were assigned to a room with DL (n = 369) or regular lighting condi- tions (n = 379). DL was administered at the CCU by two ceiling-mounted light panels delivering light with a colour temperature between 2700 and 6500 degrees Kelvin. Reported outcome data were: total hospital LOS, delirium incidence, consultation of a geriatrician and the amount of prescripted antipsychotics. Results Between May 2015 and May 2016, data from 748 patients were collected. Baseline charac- teristics, including risk factors provoking delirium, were equal in both groups. Median total hospital LOS in the DL group was 100.5 (70.8-186.0) and 101.0 (73.0-176.4) h in the control group (P = 0.935). The incidence of delirium in the DL and control group was 5.4% (20/369) and 5.0% (19/379), respectively (P = 0.802). No significant differences between the DL and control group were observed in secon- dary endpoints. Subgroup analysis based on age and CCU LOS also showed no differences. Conclusion Our study suggests exposure to DL as an early single approach does not result in a reduction of total hospital LOS or reduced incidence of delirium. When delirium was diagnosed, it was associated with poor hospital outcome.
基金The National Key Research and Development Program of China(No.2017YFA0104302)the National Natural Science Foundation of China(No.51832001,61821002,81971750).
文摘A novel method combining visualization particle tracking with image-based dynamic light scattering was developed to achieve the in situ and real-time size measurement of nanobubbles(NBs).First,the in situ size distribution of NBs was visualized by dark-field microscopy.Then,real-time size during the preparation was measured using image-based dynamic light scattering,and the longitudinal size distribution of NBs in the sample cell was obtained in a steady state.Results show that this strategy can provide a detailed and accurate size of bubbles in the whole sample compared with the commercial ZetaSizer Nano equipment.Therefore,the developed method is a real-time and simple technology with excellent accuracy,providing new insights into the accurate measurement of the size distribution of NBs or nanoparticles in solution.
基金Project 29774011 was supported by the National Natural Science Foundation of China.
文摘Dynamic behaviors on polyacrylic acid (PAA) gels and mass (small molecules) transports in the gels have been studied mainly by dynamic light scattering (DLS). The cross-linking degree (fc), monomer concentration (Cm) and temperature of the gels have significant influences on its dynamic behavior and mass transport in the gels. The increase of fc leads to decrease of the mesh sizes of the gels, thus the obstacle of the gels for mass transport is increased. As a result, small molecular diffusion Dk in the gels is decreased. So even if for small molecules, the Dk also is influenced.
基金Project supported by the National Natural Science Foundation of China(Grant No.11774098)the Guangdong Natural Science Foundation(Grant Nos.2022A1515011950 and 2023A1515010781)the Science and Technology Program of Guangzhou(Grant No.202002030500)。
文摘We analytically and numerically investigate a signal light storing mechanism based on the controllable electromagnetically induced transparency(EIT)effect.We demonstrate that the isolation between the waveguide and the cavities cannot be achieved instantly as soon as the two cavities are tuned into resonance,no matter the index tuning rate is ultrafast or slow.We also investigate the temporal evolution features of the intracavity energy when the pulse during time is prolonged.We find many periodical oscillations of the trapped energy in both cavities,and they are entirely complementary.Our analysis shows that the adiabatic wavelength conversion in both cavities and a phase difference π between them play critical roles in this phenomenon.
文摘The technique of dynamic light scattering has been used to investigate the translation diffusion behavior of 8-arm star polystyrene (SPS)in a good solvent, tetrahydrofuran (THF) or benzene (BZ) and a theta solvent, cyclohexane (CH), by homodyne photon correlation spectroscopy .The intensityintensity autocorrelation function was analyzed by the method of cumulant. The translation diffusion coefficients have been obtained as a function of temperature and concentration. Under theta condition ,the non-concentration dependence of diffusion coefficient showed the unperturbed Gaussian state o the SPS molecular chain. The different hydrodynamic radii estimated from Stokes- Einstein equation reflected the stretch extent of the arm chain for regular star polymer. The data of diffusion activation energy of SPS in THF, BZ and CH were also obtained respectively.
基金the National Science Council of the Republic of China under the Contract No.NSC-97-2112-M-006-006.
文摘Dynamic light scattering(DLS)is a promising technique for early cataract detection and for studying cataractogenesis.A novel probabilistic analysis tool,the sparse Bayesian learning(SBL)algorithm,is described for reconstructing the most-probable size distribution ofα-crystallin and their aggregates in an ocular lens from the DLS data.The performance of the algorithm is evaluated by analyzing simulated correlation data from known distributions and DLS data from the ocular lenses of a fetal calf,a Rhesus monkey,and a man,so as to establish the required efficiency of the SBL algorithm for clinical studies.
基金supported by Shanghai Sailing Program(grant No.22YF1429600).
文摘The performance of nanoparticles is often affected by particle size and morphology.Currently,electron microscopy or atomic force microscopy is typically utilized to determine the size and morphology of nanoparticles.However,there are issues such as difficult sample preparation,long processing times,and challenges in quantitative characterization.Therefore,it is of great significance to develop a fast,accu-rate,and statistical method to measure the size and morphology of nanoparticles.In this study,a new method,called polarized imaging dynamic light scattering(PIDLS),is proposed.The nanoparticles are irradiated with a vertical linearly polarized laser beam,and a polarization camera collected the dynamic light scattering images of particles at four different polarization directions(0°,45°,90°,and 135°)at a scattering angle of 90°.The average particle size and distribution are obtained using the imaging dy-namic light scattering method at 0°polarization direction,and the morphology of the particles is ob-tained based on the depolarization patterns of the scattered light.The optical sphericityΦis defined based on the degree of linear polarization(DoLP).It is also implemented for the quantitative evaluation of the sphericity of the nanoparticles,including spherical,octahedral,nanoplate,nanorod,and linear ones.Together with the Poincarésphere parameterψ,the morphology of the nanoparticles can be roughly identified.In addition,PIDLS enables the measurement of particle size and morphology distributions simultaneously for evaluating the uniformity of particles.The effectiveness of PIDLS is verified by the measurement of five kinds of industrial titanium dioxide as well.
基金supported by the National Natural Science Foundation of China(No.21971248)。
文摘Understanding the dynamic assembly process of DNA nanostructures is important for developing novel strategy to design and construct functional devices.In this work,temperature-controlled dynamic light scattering(DLS)strategy has been applied to study the global assembly process of DNA origami and DNA bricks.Through the temperature dependent size and intensity profiles,the self-assembly process of various DNA nanostructures with different morphologies have been well-studied and the temperature transition ranges could be observed.Taking advantage of the DLS information,rapid preparation of the DNA origami and the brick assembly has been realized through a constant temperature annealing.Our results demonstrate that the DLS-based strategy provides a convenient and robust tool to study the dynamic process of forming hieratical DNA structures,which will benefit understanding the mechanism of self-assembly of DNA nanostructures.
基金supported by the National Natural Science Foundation of China(grant No.61775065)。
文摘Dynamic light scattering(DLS)is a nondestructive,well-established technique for the size characterization of proteins,nanoparticles,polymers,and colloidal dispersions.However,current DLS techniques are only applied to particle groups of single composition due to the limitation of their inversion algorithm.In this study,we propose a particle size distribution inversion algorithm based on the Tikhnonov regularization method that can be applied to the dual-substance particle mixture.The algorithm retrieves the particle size distributions of two substances,respectively,by taking advantage of their refractive index differences.The simulation results reveal that the algorithm has excellent accuracy and stability when the scattering angle is 30°.Instead of the original identity matrix,the first-order difference matrix and second-order difference matrix are used as the regular matrix when utilizing the Tikhnonov algorithm,which obviously improves the anti-interference,accuracy,and stability of the algorithm.Furthermore,the inversion of particle size distribution is carried out at a 0.01%–1%noise level,which shows that the algorithm has an available antinoise ability.Finally,experimental particle size measurements for a mixture of polystyrene beads and toner particles demonstrate that the proposed algorithm is superior to the traditional Tikhnonov algorithm in applicability and accuracy.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (20113120130001)the Nanotech Initiative Project of Shanghai Science and Technology Commission(11 nm0507100)the Innovation Fund Project For Graduate Student of Shanghai (JWCXSL1401)
文摘In this paper, an image dynamic light scattering method for nanoparticle sizing is introduced. The spatial distribution of the scattered lights from nanoparticles undergoing Brownian motion was captured at a high frame rate by a digital camera within one second, which is considerably faster than the conven- tional photon correlation spectroscopy method. The captured series of photographs were meshed into thousands of small units for calculating the intensity autocorrelation functions in parallel. Experimental results from the measurements of three reference nanoparticle samples (27, 80, and 352 nm in diameters) demonstrated the feasibility of this method.
基金supported by the Special Fund for Basic Scientific Research of Central Colleges,South-Central University for Nationalities(No.CZQ11013)by the Wuhan Science and Technology Bureau(No.201051730558).
文摘Pterodontic acid(PA)has been isolated from Laggera pterodonta,a Chinese herbal medicine,and shown to possess antibacterial activity in vitro.To facilitate its preclinical development,the interaction between PA and bovine serum albumin(BSA)was studied using a fluorescence quenching technique,ultraviolet–visible spectrophotometry and dynamic light scattering(DLS).At temperatures of 297 K and 310 K and an excitation wavelength of 282 nm,the fluorescence intensity of BSA decreased significantly with increasing concentration of PA attributed to the formation of a PA–BSA complex.The apparent binding constant,number of binding sites and corresponding thermodynamic parameters were calculated and the main intermolecular attraction shown to result from hydrogen bonding and van der Waals forces.Synchronous fluorescence spectrometry revealed that the binding site in the complex approached the microenvironment of Trp and three-dimensional fluorescence spectroscopy showed the binding induced conformational changes in BSA.Using DLS,increasing PA concentration was shown to cause a gradual increase in hydrodynamic diameter and significant aggregation of the complex.
基金supported by the National Natural Science Foundation of China (21035005)
文摘With the development of nanosciences, both localized surface plasmon resonance light scattering (LSPR-LS) and dynamic light scattering (DLS) techniques have been widely used for quantitative purposes with high sensitivity. In this contribution, we make a comparison of the two light scattering techniques by employing gold nanoparticles (AuNPs) aggregation induced by mercuric ions. It was found that citrate-stabilized AuNPs got aggregated in aqueous medium in the presence of mercuric ions through a chelation process, resulting in greatly enhanced LSPR-LS signals and increased hydrodynamic diameter. The enhanced LSPR-LS intensity (A/) is proportional to the concentration of mercuric ions in the range of 0.4-2.5 laM following the linear regression equation of A/= -84.7+516.4c, with the correlation coefficient of 0.983 (n = 6) and the limit of determi- nation (3o-) about 0.10 gM. On the other hand, the increased hydrodynamic diameter can be identified by the DLS signals only with a concentration of Hg2+ in the range of 1.0-2.5 gM, and a linear relationship between the average hydrodynamic diame- ters of the resulted aggregates and the concentration of Hg2+ can be expressed as d = -6.16 + 45.9c with the correlation coeffi- cient of 0.994. In such case, LSPR-LS signals were further applied to the selective determination of mercuric ions in lake water samples with high sensitivity and simple operation.
基金supported by the National Natural Science Foundation of China(21305053)the Natural Science Fund for Colleges and Universities in Jiangsu Province(13KJB150015)+2 种基金the Natural Science Fund in Jiangsu Province(BK20130227)the Scientific Research Support Project for Teachers with Doctor’s Degrees(Jiangsu Normal University,China,12XLR022)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Glucose is directly related to brain activity and to diabetes. Therefore, developing a rapid and sensitive method for glucose de- tection is essential. Here, label-free glucose detection at attomole levels was realized by detecting the average diameter change of gold nanoparticles (AuNPs) utilizing dynamic light scattering (DLS). Single-strand DNA (ssDNA) adsorbed into the AuNPs' surfaces and prevented them from aggregating in solution that contained NaC1. However, ssDNA cleaved onto ssDNA fragments upon addition of glucose, and these fragments could not adsorb onto the AuNPs' surfaces. Therefore, in high-salt solution, AuNPs would aggregate and their average diameter would increase. Based on monitoring the average diameter of AuNPs with DLS, glucose could be detected in the range from 15 pmol/L to 2.0 nmol/L, with a detection limit of 8.3 pmol/L. Satisfactory results were also obtained when the proposed method was applied in human serum glucose detection.
基金supported by the National Natural Science Foundation of China(Grant No.20306023)the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20050056061).
文摘The effects of temperature,ionic strength,and enzymatic hydrolysis on the average hydrodynamic radius(Rh)of casein micelles in phosphate buffer were studied by using dynamic light scattering.The results showed that the average Rh value of casein micelles decreased irreversibly during the heating,decreased with the increase of ionic strength in lower ionic strength solution(less than 0.05 mol/L),but opposite in higher ionic strength solution(above 0.1 mol/L).The Rh value of casein increased rapidly during the process of enzymatic hydrolysis,and the structural model of casein micelles in the enzymatic hydrolysis process was also proposed,i.e.the casein micelle changed from compact sphere into unfolded and regularly flocky peptides.
文摘In Brazil and various regions globally, the initiation of landslides is frequently associated with rainfall;yet the spatial arrangement of geological structures and stratification considerably influences landslide occurrences. The multifaceted nature of these influences makes the surveillance of mass movements a highly intricate task, requiring an understanding of numerous interdependent variables. Recent years have seen an emergence in scholarly research aimed at integrating geophysical and geotechnical methodologies. The conjoint examination of geophysical and geotechnical data offers an enhanced perspective into subsurface structures. Within this work, a methodology is proposed for the synchronous analysis of electrical resistivity geophysical data and geotechnical data, specifically those extracted from the Light Dynamic Penetrometer (DPL) and Standard Penetration Test (SPT). This study involved a linear fitting process to correlate resistivity with N10/SPT N-values from DPL/SPT soundings, culminating in a 2D profile of N10/SPT N-values predicated on electrical profiles. The findings of this research furnish invaluable insights into slope stability by allowing for a two-dimensional representation of penetration resistance properties. Through the synthesis of geophysical and geotechnical data, this project aims to augment the comprehension of subsurface conditions, with potential implications for refining landslide risk evaluations. This endeavor offers insight into the formulation of more effective and precise slope management protocols and disaster prevention strategies.
文摘Static strength finite element analysis was conducted to decrease the weight of a skeleton vehicle's frame. Results indicated that the maximum stress occurs on the front beam 's variable section area. Dynamic sensitivity analysis elucidated the relationship between the maximum stress and the thickness of a particular beam,e. g.,top,middle,and bottom beam. Displacement was analyzed by the key part that influenced the maximum stress. Finally,the new plan using BS960 super-high-strength beam steel and the preferred beam thickness was compared with the original plan. New combinations of beam thickness were introduced on the basis of different purposes; the maximum responding light w eight ratio was 21%.
基金The author of the article would like to thank Alexey D.Yapryntsev(Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences)for studying the samples by scanning electron microscopy.The author thanks the staff of the A.E.Arbuzov Institute of Organic and Physical Chemistry,“Kazan Scientific Center of Russian Academy of Sciences”,laboratory of Chemistry and Geochemistry of Petroleum and organizers of International Conference on Petroleum Phase Behavior&Fouling“PetroPhase2017”for providing samples of asphaltenes and resins.This work was performed within the framework of the state task(by Ministry of Science and Higher Education of the Russian Federation)of the Oil and Gas Research Institute of Russian Academy of Sciences(Project No.122022800364-6).
文摘This paper presents the study of the effect of multiple ultrasonic impacts on submicron asphaltene aggregates in a toluene/heptane solution,conducted with dynamic light scattering technique.The objects of the study were four samples of asphaltenes obtained from four different oils.For all samples,the change in the average size of the asphaltene submicron aggregates with time was measured after the addition of a precipitant(heptane)to a solution of asphaltenes in toluene at an amount above the threshold concentration.Asphaltene aggregates formed in solution after the addition of the precipitant and were subjected to ultrasonic treatment,which led to the destruction of the asphaltene aggregates.Aggregation of destroyed asphaltenes was observed.The kinetics of this aggregation were similar to the kinetics of aggregation of asphaltenes after the addition of a precipitant.Multiple iterations of asphaltene aggregate destruction in the sample led to a significant change in the kinetics of aggregation:the growth of aggregates slowed and stabilized at a size of approximately 200 nm and 30 nm for the different studied samples.
文摘The nanometer cobalt blue pigments were prepared by microemulsion method. Using dynamic light scattering(DLS) test method, the influences of water content on the size of liquid drop of microemulsion and the liquid drop of microemulsion on the final diameter of nanometer particle were studied in the course of preparation. Accordingly, the method to control the diameter of nanometer particle by changing water content was established. The nanometer cobalt blue particles were confirmed by XRD and TEM. Color parameters of pigments were determined. The quantum size effect of the pigments was discussed.
文摘A modified seeded growth process of silica particles with a continuous addition of tetraethyl orthosilicate (TEOS) was presented to control the diameter of silica particles. The diameter of particles was monitored by dynamic light scattering to control the addition of TEOS. The increase in the diameter of the silica particles with time and the addition of TEOS was investigated. The diameter of silica seeds increased from 193 nm to 446 nm in 4 h. The final diameter of silica particles was tailored within the range of ±5 nm to the target diameter. Silica particles with diameter of 446 nm were synthesized and assembled into photonic crystals with a pseudo band gap centered at just 1000 nm. The feasibility and practicability of this modified seeded growth process was verified.
基金The work was supported by the Natural Science Foundation of China (No. 29903006 29973023).
文摘Spontaneous vesicles from the mixed aqueous solution of poly-tailed cationic surfactant PTA and anionic surfactant AOT are firstly obtained. Vesicle formation and characterizations are demonstrated by negative-staining TEM and dynamic light scattering. A monodisperse vesicle system is obtained with a polydispersity of 0.082. Ultrasonication can promote the vesicle formation. Mechanism of vesicle formation is discussed from the viewpoint of molecular interaction.