Computer-generated holography technology has been widely applied,and as research in this field deepens,the demand for memory and computational power in small AR and VR devices continues to increase.This paper presents...Computer-generated holography technology has been widely applied,and as research in this field deepens,the demand for memory and computational power in small AR and VR devices continues to increase.This paper presents a hologram generation method,i.e.,a symmetrically high-compressed look-up table method,which can reduce memory usage by50%.In offline computing,half of the basic horizontal and vertical modulation factors are stored,halving the memory requirements without affecting inline speed.Currently,its potential extends to various holographic applications,including the production of optical diffraction elements.展开更多
As groundwater table declination is an important factor resulting in degradation of eco-environment in the Minqin Basin, China, it is significant to investigate and understand the groundwater table dynamics in this ar...As groundwater table declination is an important factor resulting in degradation of eco-environment in the Minqin Basin, China, it is significant to investigate and understand the groundwater table dynamics in this area. According to the physical and geographical conditions of the Minqin Basin, a hydrogeological conceptual model and a mathematical model were established, and the mathematical model was figured out by using Finite Element subsurface Flow system (Feflow). Accurate hydrogeological parameters were acquired, and the spatio-temporal distribution dynamics of groundwater table for 1983-2001 were also simulated. The model performed well with a correlation coefficient of 0.977 and a mean error of 0.9768 m. The inflow and outflow of the groundwater system were predicted by time series analysis, and the groundwater table dynamics for 2011 were further acquired. Gen- erally the groundwater table in the Minqin Basin would continue to decline. The groundwater table would decline during spring and summer irrigation, while it would rise during autumn-winter irrigation. The groundwater depression cones would expand with the increase of center depths. Therefore, regulatory measures should be taken to prevent the declination of groundwater table and improve the eco-environment of this area.展开更多
A series of scaled-model shaking table tests and its simulation analyses using dynamic finite element method were performed to clarify the dynamic behaviors and the seismic stability of embedded corrugated steel culve...A series of scaled-model shaking table tests and its simulation analyses using dynamic finite element method were performed to clarify the dynamic behaviors and the seismic stability of embedded corrugated steel culverts due to strong earth-quakes like the 1995 Hyogoken-nanbu earthquake. The dynamic strains of the embedded culvert models and the seismic soil pressure acting on the models due to sinusoidal and random strong motions were investigated. This study verified that the cor-rugated culvert model was subjected to dynamic horizontal forces (lateral seismic soil pressure) from the surrounding ground, which caused the large bending strains on the structure; and that the structures do not exceed the allowable plastic deformation and do not collapse completely during strong earthquake like Hyogoken-nanbu earthquake. The results obtained are useful for design and construction of embedded long span corrugated steel culverts in seismic regions.展开更多
This paper presents the results from shaking table tests of a one-tenth-scale reinforced concrete (RC) building model.The test model is a protype of a building that was seriously damaged during the 1985 Mexico earthqu...This paper presents the results from shaking table tests of a one-tenth-scale reinforced concrete (RC) building model.The test model is a protype of a building that was seriously damaged during the 1985 Mexico earthquake.The input ground excitation used during the test was from the records obtained near the site of the prototype building during the 1985 and 1995 Mexico earthquakes.The tests showed that the damage pattern of the test model agreed well with that of the prototype building.Analytical prediction of earthquake response has been conducted for the prototype building using a sophisticated 3-D frame model.The input motion used for the dynamic analysis was the shaking table test measurements with similarity transformation.The comparison of the analytical results and the shaking table test results indicates that the response of the RC building to minor and the moderate earthquakes can be predicated well.However,there is difference between the predication and the actual response to the major earthquake.展开更多
With the fast development of bridge construction in mountainous and seismic areas,it is necessary to conduct related research. Based on the design of a shaking table model test,here are the following test results: the...With the fast development of bridge construction in mountainous and seismic areas,it is necessary to conduct related research. Based on the design of a shaking table model test,here are the following test results: the filtering effect exists in soil and is affected by the dynamic constraint conditions,the amplitude is strengthened around the natural frequency and weakened in other frequency bands in the Fourier spectrum. Since the acceleration scaling effect occurred on a sloped surface,the acceleration response decreases from the outside to the inside in soil. The dynamic response is relatively strong near the slip surface in bedrock due to the reflection of seismic waves. The failure mode of landslide is decided by the slope angle and slipping mass distribution, and the test shows the front row stabilizing piles should keep a proper distance from bridge foundation so that seismic resistance can be guaranteed for the bridge foundation.展开更多
The natural loess that covers the ground surface has good stability due to its low water content.However,when violent earthquakes occur,the strong dynamic stress generated in the slope may induce landslide disasters w...The natural loess that covers the ground surface has good stability due to its low water content.However,when violent earthquakes occur,the strong dynamic stress generated in the slope may induce landslide disasters with different sizes.In this paper,a large-scale shaking table model test is used to reveal the dynamic response and instability failure process of the loess slope.The test results show that different parts of the slope have different vibration characteristics and the first natural frequency in the model increases with the increase of the slope height.The response acceleration of different parts may change due to the coupling relationship between the spectral characteristics of input wave and the natural frequencies of different parts of slope,suggesting the characteristics of regional differential dynamic response.Under the condition of different dynamic response,stress state and boundary conditions of different parts of slope,a rapid microstructural damage,cumulative residual deformation evolution,and tension-shear coupling instability failure process may appear at the top of the slope with the strong dynamic response associated with the increase of dynamic loading intensity.The Sd values presented in this paper may reflect soil damage and slope instability and failure.展开更多
To improve the machining precision of a surface grinding machine, a micropositioning workpiece table with high performance was used as auxiliary infeed mechanism to implement nanometer level positioning and dynamic co...To improve the machining precision of a surface grinding machine, a micropositioning workpiece table with high performance was used as auxiliary infeed mechanism to implement nanometer level positioning and dynamic compensation. To better understand the characteristics of the grinding machine modulated with micropositioning workpiece table, the dynamic model of the grinding system was established with modal synthesis and Lagrange's equation methods. The grinding system was divided into five subsystems. For each subsystem, the generalized kinematic and potential energies were obtained. Accordingly the dynamic model of the grinding system was given in the modal domain. The waviness of the grinding process was achieved based on the wheel and workpiece vibration. A nonlinear proportional integral derivative (PID) controller with differential trackers was developed to realize dynamic control. The simulation results show that the machining accuracy of the workpiece can be effectively improved by utilizing the micropositioning workpiece table to implement dynamic compensation. An experimental test was carried out to verify the proposed method, and the waviness of the workpiece can be reduced from 0.46 μm to 0.10 μm.展开更多
The current exact Rayleigh scattering calculation of ocean color remote sensing uses the look-up table (LUT), which is usually created for a special remote sensor and cannot be applied to other sensors. For practica...The current exact Rayleigh scattering calculation of ocean color remote sensing uses the look-up table (LUT), which is usually created for a special remote sensor and cannot be applied to other sensors. For practical application, a general purpose Rayleigh scattering LUT which can be applied to all ocean color remote sensors is generated. An adding-doubling method to solve the vector radiative transfer equation in the plane-parallel atmosphere is deduced in detail. Compared with the exact Rayleigh scattering radiance derived from the MODIS exact Rayleigh scattering LUT, it is proved that the relative error of Rayleigh scattering calculation with the adding-doubling method is less than 0.25%, which meets the required accuracy of the atmospheric correction of ocean color remote sensing. Therefore, the adding-doubling method can be used to generate the exact Rayleigh scattering LUT for the ocean color remote sensors. Finally, the general purpose exact Rayleigh scattering LUT is generated using the adding-doubling method. On the basis of the general purpose LUT, the calculated Rayleigh scattering radiance is tested by comparing with the LUTs ofMODIS, SeaWiFS and the other ocean color sensors, showing that the relative errors are all less than 0.5%, and this general purpose LUT can be applied to all ocean color remote sensors.展开更多
The BeiDou software receiver uses the fast Fourier transform(FFT)to perform the acquisition.The Doppler shift estimation accuracy should be less than 500 Hz to ensure satellite signals to enter a locked state in the t...The BeiDou software receiver uses the fast Fourier transform(FFT)to perform the acquisition.The Doppler shift estimation accuracy should be less than 500 Hz to ensure satellite signals to enter a locked state in the tracking loop.Since the frequency step is usually 500 Hz or larger,the Doppler shift estimation accuracy cannot guarantee that satellite signals are brought into a stable tracking state.The straightforward solutions consist in increasing the sampling time and using zero-padding to improve the frequency resolution of the FFT.However,these solutions intensify the complexity and amount of computation.The contradiction between the acquisition accuracy and the computational load leads us to research for a more simple and effective algorithm,which achieves fine acquisition by a look-up table.After coarse acquisition using the parallel frequency acquisition(PFA)algorithm,the proposed algorithm optimizes the Doppler shift estimation through the look-up table method based on the FFT results to improve the acquisition accuracy of the Doppler shift with a minimal additional computing load.When the Doppler shift is within the queryable range of the table,the proposed algorithm can improve the Doppler shift estimation accuracy to 50 Hz for the BeiDou B1I signal.展开更多
Global look-up table strategy proposed recently has been proven to be an efficient method to accelerate the interpolation, which is the most time-consuming part in the iterative sub-pixel digital image correlation (...Global look-up table strategy proposed recently has been proven to be an efficient method to accelerate the interpolation, which is the most time-consuming part in the iterative sub-pixel digital image correlation (DIC) algorithms. In this paper, a global look-up table strategy with cubic B-spline interpolation is developed for the DIC method based on the inverse compositional Gauss-Newton (IC-GN) algorithm. The performance of this strategy, including accuracy, precision, and computation efficiency, is evaluated through a theoretical and experimental study, using the one with widely employed bicubic interpolation as a benchmark. The global look-up table strategy with cubic B-spline interpolation improves significantly the accuracy of the IC-GN algorithm-based DIC method compared with the one using the bicubic interpolation, at a trivial price of computation efficiency.展开更多
Obtaining the vertical distribution profile of trace gas is of great significance for studying the diffusion procedure of air pollution.In this article,a look-up table method based on multi-axis differential optical a...Obtaining the vertical distribution profile of trace gas is of great significance for studying the diffusion procedure of air pollution.In this article,a look-up table method based on multi-axis differential optical absorption spectroscopy(MAX-DOAS)technology is established for retrieving the tropospheric NO_(2) vertical distribution profiles.This method retrieves the aerosol extinction profiles with minimum cost function.Then,the aerosol extinction profiles and the atmospheric radiation transfer model(RTM)are employed to establish the look-up table for retrieving the NO_(2) vertical column densities(VCDs)and profiles.The measured NO_(2) differential slant column densities(DSCDs)are compared with the NO_(2) DSCDs simulated by the atmospheric RTM,and the NO_(2) VCDs,the weight factor of NO_(2) in the boundary layer,and the boundary layer height are obtained by the minimization process.The look-up table is established to retrieve NO_(2) VCDs based on MAX-DOAS measurements in Huaibei area,and the results are compared with the data from Copernicus Atmospheric Monitoring Service(CAMS)model.It is found that there are nearly consistent and the correlation coefficient R2 is more than 0.86.The results show that this technology provides a more convenient and accurate retrieval method for the stereoscopic monitoring of atmospheric environment.展开更多
To solve the hardware deployment problem caused by the vast demanding computational complexity of convolutional layers and limited hardware resources for the hardware network inference,a look-up table(LUT)-based convo...To solve the hardware deployment problem caused by the vast demanding computational complexity of convolutional layers and limited hardware resources for the hardware network inference,a look-up table(LUT)-based convolution architecture built on a field-programmable gate array using integer multipliers and addition trees is used.With the help of the Winograd algorithm,the optimization of convolution and multiplication is realized to reduce the computational complexity.The LUT-based operator is further optimized to construct a processing unit(PE).Simultaneously optimized storage streams improve memory access efficiency and solve bandwidth constraints.The data toggle rate is reduced to optimize power consumption.The experimental results show that the use of the Winograd algorithm to build basic processing units can significantly reduce the number of multipliers and achieve hardware deployment acceleration,while the time-division multiplexing of processing units improves resource utilization.Under this experimental condition,compared with the traditional convolution method,the architecture optimizes computing resources by 2.25 times and improves the peak throughput by 19.3 times.The LUT-based Winograd accelerator can effectively solve the deployment problem caused by limited hardware resources.展开更多
Seismic load has a significant effect on the response of a free spanning submarine pipeline when the pipeline is constructed in a seismically active region. The model experiment is performed on an underwater shaking t...Seismic load has a significant effect on the response of a free spanning submarine pipeline when the pipeline is constructed in a seismically active region. The model experiment is performed on an underwater shaking table to simulate the response of submarine pipelines under dynamic input. In consideration of the effects of the terrestrial and submarine pipeline, water depth, support condition, distance from seabed, empty and full pipeline, and span on dynamic response, 120 groups of experiments are conducted. Affecting factors are analyzed and conclusions are drawn for reference. For the control of dynamic response, the span of a submarine pipeline is by far more important than the other factors. Meanwhile, the rosponse difference between a submarine pipeline under sine excitation and that under random excitation exists in experiments.展开更多
In light of the special need of nano-engineering, an ultra-large scale and high-performance molecular dynamics(MD) simulation program was implemented. In many nano-engineering processes, the free boundary condition ...In light of the special need of nano-engineering, an ultra-large scale and high-performance molecular dynamics(MD) simulation program was implemented. In many nano-engineering processes, the free boundary condition should be adopted. To meet this particular requirement, a pointer link and dynamic array data structures were employed so that both reliability and accuracy of simulation could be ensured. Using this method, one could realize the MD simulation of the nano-engineering system consisting of several million atoms per single CPU.展开更多
Despite the continuous advancements of engineering construction in high-intensity areas,many engineering landslides are still manufactured with huge thrust force,and double-row piles are effective to control such larg...Despite the continuous advancements of engineering construction in high-intensity areas,many engineering landslides are still manufactured with huge thrust force,and double-row piles are effective to control such large landslides.In this study,large shaking table test were performed to test and obtain multi-attribute seismic data such as feature image,acceleration,and dynamic soil pressure.Through the feature image processing analysis,the deformation characteristics for the slope reinforced by double-row piles were revealed.By analyzing the acceleration and the dynamic soil pressure time domain,the spatial dynamic response characteristics were revealed.Using Fast Fourier Transform and half-power bandwidth,the damping ratio of acceleration and dynamic soil pressure was obtained.Following that,the Seism Signal was used to calculate the spectral displacement of the accelerations to obtain the regional differences of spectral displacement.The results showed that the overall deformation mechanism of the slope originates from tension failure in the soil mass.The platform at the back of the slope was caused by seismic subsidence,and the peak acceleration ratio was positively correlated with the relative pile heights.The dynamic soil pressure of the front row piles showed an inverted"K"-shaped distribution,but that of the back row piles showed an"S"-shaped distribution.The predominant frequency of acceleration was 2.16 Hz,and the main frequency band was 0.7-6.87 Hz;for dynamic soil pressure,the two parameters became 1.15 Hz and 0.5-6.59 Hz,respectively.In conclusion,dynamic soil pressure was more sensitive to dampening effects than acceleration.Besides,compared to acceleration,dynamic soil pressure exhibited larger loss factors and lower resonance peaks.Finally,back row pile heads were highly sensitive to spectral displacement compared to front row pile heads.These findings may be of reference value for future seismic designs of double-row piles.展开更多
Shake table testing was performed to investigate the dynamic stability of a mid-dip bedding rock slope under frequent earthquakes. Then, numerical modelling was established to further study the slope dynamic stability...Shake table testing was performed to investigate the dynamic stability of a mid-dip bedding rock slope under frequent earthquakes. Then, numerical modelling was established to further study the slope dynamic stability under purely microseisms and the influence of five factors, including seismic amplitude, slope height, slope angle, strata inclination and strata thickness, were considered. The experimental results show that the natural frequency of the slope decreases and damping ratio increases as the earthquake loading times increase. The dynamic strength reduction method is adopted for the stability evaluation of the bedding rock slope in numerical simulation, and the slope stability decreases with the increase of seismic amplitude, increase of slope height, reduction of strata thickness and increase of slope angle. The failure mode of a mid-dip bedding rock slope in the shaking table test is integral slipping along the bedding surface with dipping tensile cracks at the slope rear edge going through the bedding surfaces. In the numerical simulation, the long-term stability of a mid-dip bedding slope is worst under frequent microseisms and the slope is at risk of integral sliding instability, whereas the slope rock mass is more broken than shown in the shaking table test. The research results are of practical significance to better understand the formation mechanism of reservoir landslides and prevent future landslide disasters.展开更多
The dynamic pile-soil interaction in a liquefied site was investigated by means of numerical simulation and shaking table tests in this study.Based on the results from the shaking table experiment,the cross-correlatio...The dynamic pile-soil interaction in a liquefied site was investigated by means of numerical simulation and shaking table tests in this study.Based on the results from the shaking table experiment,the cross-correlation analysis of the soil displacement-pile bending moment and superstructure acceleration-pile bending moment was performed to study the influence of kinematic interaction and inertial interaction on the seismic response of piles.A relatively reasonable and accurate finite difference numerical analysis model of liquefiable soil-pile group-superstructure dynamic system was established.Through numerical simulation,the understanding of kinematic interaction and inertial interaction in the shaking table test was verified.The mass,damping and period of the superstructure were selected as variables to carry out parameter analysis to further study the influence of inertial interaction on the pile-structure failure mechanism.The results show that the influence of kinematic interaction on the pile was much greater than that of inertial interaction.The mass of the superstructure was the most important parameter of inertial interaction,and dynamic characteristics of the superstructure also had an effect on inertial interaction.The effect of inertial interaction on the part near the pile tip was more significant,indicating that the failure near the pile tip is closely related to inertial interaction.展开更多
In order to clarify the damage mechanism of the subway structure, the dynamic soil-structure interaction and the dynamic forces acting on the structure, a series of shaking table tests and simulation analyses were per...In order to clarify the damage mechanism of the subway structure, the dynamic soil-structure interaction and the dynamic forces acting on the structure, a series of shaking table tests and simulation analyses were performed. The seismic response of the structure and the dynamic forces acting on the structure due to sinusoidal and random waves were investigated with special attention to the dynamic soil-structure interaction. The result shows that the compression seismic soil pressures and extension seismic soil pressures simultaneously act on the sidewalls, and big shear stress also acts on the ceiling slab due to horizontal excitation. The seismic soil pressure could be approximated to hyperbola curve, and reached a peak value with increase of the shear strain of the model ground. In addition, a slide and exfoliation phenomenon between the structure and the surrounding ground was simulated, using the nonlinear analyses. The foundation is provided for amending the calculation method of seismic soil pressure and improving the anti-earthquake designing level of underground structure.展开更多
As a combined supporting structure,the anchor cable and lattice beam have a complex interaction with the slope body.In order to investigate the seismic behaviors of the slope reinforced by anchor cable and lattice bea...As a combined supporting structure,the anchor cable and lattice beam have a complex interaction with the slope body.In order to investigate the seismic behaviors of the slope reinforced by anchor cable and lattice beam,a largescale shaking table test was carried out on a slope model(geometric scale of 1:20)by applying recorded and artificial seismic waves with different amplitudes.The acceleration and displacement of the slope,the displacement of lattice beam and the axial force of anchor cable were obtained to study the interaction between the slope and the supporting structure.The test results show that:(1)the acceleration responses of the slope at different relative elevations display obvious nonlinear characteristics with increasing of the peak ground acceleration(PGA)of the inputted seismic waves,and the weak intercalated layer has a stronger effect on acceleration amplification at the upper part of the slope than that at the lower part of the slope;(2)the frequency component near the second dominant frequency is significantly magnified by the interaction between the slope and the supporting structure;(3)the anchor cables at the upper part of the slope have larger peak and residual axial forces than that at the lower part of the slope,and the prestress loss of the anchor cable first occurs at the top of the slope and then passes down;(4)the peak and residual displacements inside the slope and on the lattice beam increase with the increase of relative elevation.When the inputted PGA is not greater than 0.5 g,the combined effect of anchor cable and lattice beam is remarkable for stabilizing the middle and lower parts of the potential sliding body.The research results can provide a reference for the seismic design of such slope and the optimization of supporting structure.展开更多
To study the dynamic response of vertical and batter pile groups in saturated sand,dynamic tests of these pile groups in saturated sand were carried out using the ZJU400 geotechnical centrifuge at Zhejiang University....To study the dynamic response of vertical and batter pile groups in saturated sand,dynamic tests of these pile groups in saturated sand were carried out using the ZJU400 geotechnical centrifuge at Zhejiang University.The following results were obtained.(1)As the motion intensity increased,the peak acceleration in soil layers at different depths significantly decreased,indicating that the soil stiffness was significantly reduced.(2)During the motion process,the instantaneous bending moment of the vertical and batter pile groups at different depths changed continuously,which had a strong relationship with the saturated sand liquefaction.In the process of sand liquefaction,the residual bending moment generated by the batter pile was more obvious than that of the vertical pile.(3)With the liquefaction of the saturated sand,the distribution of the maximum bending moment of the vertical pile group changed,and the bending moment near the pile cap of the vertical and batter pile groups was always large.(4)In certain cases,the horizontal acceleration and dynamic displacement of the vertical pile cap were amplified.When the motion intensity was large,residual displacement of the batter pile cap occurred.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.62205350)the Special Project of Central Government Guiding Local Science and Technology Development in Beijing 2020 (Grant No.Z20111000430000)the Guangxi Nanning Key R&D Program (Grant No.20233067)。
文摘Computer-generated holography technology has been widely applied,and as research in this field deepens,the demand for memory and computational power in small AR and VR devices continues to increase.This paper presents a hologram generation method,i.e.,a symmetrically high-compressed look-up table method,which can reduce memory usage by50%.In offline computing,half of the basic horizontal and vertical modulation factors are stored,halving the memory requirements without affecting inline speed.Currently,its potential extends to various holographic applications,including the production of optical diffraction elements.
基金funded by the National Natural Science Foundation of China(50879071 and 40801103)the Ph.D.Programs Foundation of the Ministry of Education of China (200800271029)
文摘As groundwater table declination is an important factor resulting in degradation of eco-environment in the Minqin Basin, China, it is significant to investigate and understand the groundwater table dynamics in this area. According to the physical and geographical conditions of the Minqin Basin, a hydrogeological conceptual model and a mathematical model were established, and the mathematical model was figured out by using Finite Element subsurface Flow system (Feflow). Accurate hydrogeological parameters were acquired, and the spatio-temporal distribution dynamics of groundwater table for 1983-2001 were also simulated. The model performed well with a correlation coefficient of 0.977 and a mean error of 0.9768 m. The inflow and outflow of the groundwater system were predicted by time series analysis, and the groundwater table dynamics for 2011 were further acquired. Gen- erally the groundwater table in the Minqin Basin would continue to decline. The groundwater table would decline during spring and summer irrigation, while it would rise during autumn-winter irrigation. The groundwater depression cones would expand with the increase of center depths. Therefore, regulatory measures should be taken to prevent the declination of groundwater table and improve the eco-environment of this area.
文摘A series of scaled-model shaking table tests and its simulation analyses using dynamic finite element method were performed to clarify the dynamic behaviors and the seismic stability of embedded corrugated steel culverts due to strong earth-quakes like the 1995 Hyogoken-nanbu earthquake. The dynamic strains of the embedded culvert models and the seismic soil pressure acting on the models due to sinusoidal and random strong motions were investigated. This study verified that the cor-rugated culvert model was subjected to dynamic horizontal forces (lateral seismic soil pressure) from the surrounding ground, which caused the large bending strains on the structure; and that the structures do not exceed the allowable plastic deformation and do not collapse completely during strong earthquake like Hyogoken-nanbu earthquake. The results obtained are useful for design and construction of embedded long span corrugated steel culverts in seismic regions.
基金National Natural Science Foundation of China Under Grant No.59978013
文摘This paper presents the results from shaking table tests of a one-tenth-scale reinforced concrete (RC) building model.The test model is a protype of a building that was seriously damaged during the 1985 Mexico earthquake.The input ground excitation used during the test was from the records obtained near the site of the prototype building during the 1985 and 1995 Mexico earthquakes.The tests showed that the damage pattern of the test model agreed well with that of the prototype building.Analytical prediction of earthquake response has been conducted for the prototype building using a sophisticated 3-D frame model.The input motion used for the dynamic analysis was the shaking table test measurements with similarity transformation.The comparison of the analytical results and the shaking table test results indicates that the response of the RC building to minor and the moderate earthquakes can be predicated well.However,there is difference between the predication and the actual response to the major earthquake.
基金supported by the China Railway Ministry of Railway's Research and Development Project(Grant No.Z2012-061)
文摘With the fast development of bridge construction in mountainous and seismic areas,it is necessary to conduct related research. Based on the design of a shaking table model test,here are the following test results: the filtering effect exists in soil and is affected by the dynamic constraint conditions,the amplitude is strengthened around the natural frequency and weakened in other frequency bands in the Fourier spectrum. Since the acceleration scaling effect occurred on a sloped surface,the acceleration response decreases from the outside to the inside in soil. The dynamic response is relatively strong near the slip surface in bedrock due to the reflection of seismic waves. The failure mode of landslide is decided by the slope angle and slipping mass distribution, and the test shows the front row stabilizing piles should keep a proper distance from bridge foundation so that seismic resistance can be guaranteed for the bridge foundation.
基金sponsored by the Basic Scientific Research FundScience and Technology Innovation Base of Lanzhou,Institute of Earthquake Forecasting,China Earthquake Administration(2018IESLZ07)the Key R&D Projects in Gansu Province(18YF1FA101)。
文摘The natural loess that covers the ground surface has good stability due to its low water content.However,when violent earthquakes occur,the strong dynamic stress generated in the slope may induce landslide disasters with different sizes.In this paper,a large-scale shaking table model test is used to reveal the dynamic response and instability failure process of the loess slope.The test results show that different parts of the slope have different vibration characteristics and the first natural frequency in the model increases with the increase of the slope height.The response acceleration of different parts may change due to the coupling relationship between the spectral characteristics of input wave and the natural frequencies of different parts of slope,suggesting the characteristics of regional differential dynamic response.Under the condition of different dynamic response,stress state and boundary conditions of different parts of slope,a rapid microstructural damage,cumulative residual deformation evolution,and tension-shear coupling instability failure process may appear at the top of the slope with the strong dynamic response associated with the increase of dynamic loading intensity.The Sd values presented in this paper may reflect soil damage and slope instability and failure.
基金Supported by National Natural Science Foundation of China ( No. 50275104) .
文摘To improve the machining precision of a surface grinding machine, a micropositioning workpiece table with high performance was used as auxiliary infeed mechanism to implement nanometer level positioning and dynamic compensation. To better understand the characteristics of the grinding machine modulated with micropositioning workpiece table, the dynamic model of the grinding system was established with modal synthesis and Lagrange's equation methods. The grinding system was divided into five subsystems. For each subsystem, the generalized kinematic and potential energies were obtained. Accordingly the dynamic model of the grinding system was given in the modal domain. The waviness of the grinding process was achieved based on the wheel and workpiece vibration. A nonlinear proportional integral derivative (PID) controller with differential trackers was developed to realize dynamic control. The simulation results show that the machining accuracy of the workpiece can be effectively improved by utilizing the micropositioning workpiece table to implement dynamic compensation. An experimental test was carried out to verify the proposed method, and the waviness of the workpiece can be reduced from 0.46 μm to 0.10 μm.
基金supported by the National Natural Science Foundation of China under contract No.40506036the High Tech Research and Development"863"Program of China under contract No.2003AA131160-04the Science and Technology Plan of Zhejiang Province of China under contract Nos 2004E60054 and 2004C13027.
文摘The current exact Rayleigh scattering calculation of ocean color remote sensing uses the look-up table (LUT), which is usually created for a special remote sensor and cannot be applied to other sensors. For practical application, a general purpose Rayleigh scattering LUT which can be applied to all ocean color remote sensors is generated. An adding-doubling method to solve the vector radiative transfer equation in the plane-parallel atmosphere is deduced in detail. Compared with the exact Rayleigh scattering radiance derived from the MODIS exact Rayleigh scattering LUT, it is proved that the relative error of Rayleigh scattering calculation with the adding-doubling method is less than 0.25%, which meets the required accuracy of the atmospheric correction of ocean color remote sensing. Therefore, the adding-doubling method can be used to generate the exact Rayleigh scattering LUT for the ocean color remote sensors. Finally, the general purpose exact Rayleigh scattering LUT is generated using the adding-doubling method. On the basis of the general purpose LUT, the calculated Rayleigh scattering radiance is tested by comparing with the LUTs ofMODIS, SeaWiFS and the other ocean color sensors, showing that the relative errors are all less than 0.5%, and this general purpose LUT can be applied to all ocean color remote sensors.
基金the Open Project of State Key Laboratory of Automotive Simulation and Control,Jilin University(20161108)the National Natural Science Foundation of China(51505221)the Fundamental Research Funds for the Central Universities(NS2019022).
文摘The BeiDou software receiver uses the fast Fourier transform(FFT)to perform the acquisition.The Doppler shift estimation accuracy should be less than 500 Hz to ensure satellite signals to enter a locked state in the tracking loop.Since the frequency step is usually 500 Hz or larger,the Doppler shift estimation accuracy cannot guarantee that satellite signals are brought into a stable tracking state.The straightforward solutions consist in increasing the sampling time and using zero-padding to improve the frequency resolution of the FFT.However,these solutions intensify the complexity and amount of computation.The contradiction between the acquisition accuracy and the computational load leads us to research for a more simple and effective algorithm,which achieves fine acquisition by a look-up table.After coarse acquisition using the parallel frequency acquisition(PFA)algorithm,the proposed algorithm optimizes the Doppler shift estimation through the look-up table method based on the FFT results to improve the acquisition accuracy of the Doppler shift with a minimal additional computing load.When the Doppler shift is within the queryable range of the table,the proposed algorithm can improve the Doppler shift estimation accuracy to 50 Hz for the BeiDou B1I signal.
基金financially supported by the National Natural Science Foundation of China(11202081,11272124,and 11472109)the State Key Lab of Subtropical Building Science,South China University of Technology(2014ZC17)
文摘Global look-up table strategy proposed recently has been proven to be an efficient method to accelerate the interpolation, which is the most time-consuming part in the iterative sub-pixel digital image correlation (DIC) algorithms. In this paper, a global look-up table strategy with cubic B-spline interpolation is developed for the DIC method based on the inverse compositional Gauss-Newton (IC-GN) algorithm. The performance of this strategy, including accuracy, precision, and computation efficiency, is evaluated through a theoretical and experimental study, using the one with widely employed bicubic interpolation as a benchmark. The global look-up table strategy with cubic B-spline interpolation improves significantly the accuracy of the IC-GN algorithm-based DIC method compared with the one using the bicubic interpolation, at a trivial price of computation efficiency.
基金the National Natural Science Foundation of China(Grant No.41875040)the Top-notch Talents Program in Universities of Anhui Province,China(Grant No.gxbjZD2020067)the Natural Science Research Projects of Universities in Anhui Province,China(Grant No.KJ2020A0029).
文摘Obtaining the vertical distribution profile of trace gas is of great significance for studying the diffusion procedure of air pollution.In this article,a look-up table method based on multi-axis differential optical absorption spectroscopy(MAX-DOAS)technology is established for retrieving the tropospheric NO_(2) vertical distribution profiles.This method retrieves the aerosol extinction profiles with minimum cost function.Then,the aerosol extinction profiles and the atmospheric radiation transfer model(RTM)are employed to establish the look-up table for retrieving the NO_(2) vertical column densities(VCDs)and profiles.The measured NO_(2) differential slant column densities(DSCDs)are compared with the NO_(2) DSCDs simulated by the atmospheric RTM,and the NO_(2) VCDs,the weight factor of NO_(2) in the boundary layer,and the boundary layer height are obtained by the minimization process.The look-up table is established to retrieve NO_(2) VCDs based on MAX-DOAS measurements in Huaibei area,and the results are compared with the data from Copernicus Atmospheric Monitoring Service(CAMS)model.It is found that there are nearly consistent and the correlation coefficient R2 is more than 0.86.The results show that this technology provides a more convenient and accurate retrieval method for the stereoscopic monitoring of atmospheric environment.
基金The Academic Colleges and Universities Innovation Program 2.0(No.BP0719013)。
文摘To solve the hardware deployment problem caused by the vast demanding computational complexity of convolutional layers and limited hardware resources for the hardware network inference,a look-up table(LUT)-based convolution architecture built on a field-programmable gate array using integer multipliers and addition trees is used.With the help of the Winograd algorithm,the optimization of convolution and multiplication is realized to reduce the computational complexity.The LUT-based operator is further optimized to construct a processing unit(PE).Simultaneously optimized storage streams improve memory access efficiency and solve bandwidth constraints.The data toggle rate is reduced to optimize power consumption.The experimental results show that the use of the Winograd algorithm to build basic processing units can significantly reduce the number of multipliers and achieve hardware deployment acceleration,while the time-division multiplexing of processing units improves resource utilization.Under this experimental condition,compared with the traditional convolution method,the architecture optimizes computing resources by 2.25 times and improves the peak throughput by 19.3 times.The LUT-based Winograd accelerator can effectively solve the deployment problem caused by limited hardware resources.
基金This research is financially supported by the Science and Technology Foundation of Liaoning Province (Grant No.972240)
文摘Seismic load has a significant effect on the response of a free spanning submarine pipeline when the pipeline is constructed in a seismically active region. The model experiment is performed on an underwater shaking table to simulate the response of submarine pipelines under dynamic input. In consideration of the effects of the terrestrial and submarine pipeline, water depth, support condition, distance from seabed, empty and full pipeline, and span on dynamic response, 120 groups of experiments are conducted. Affecting factors are analyzed and conclusions are drawn for reference. For the control of dynamic response, the span of a submarine pipeline is by far more important than the other factors. Meanwhile, the rosponse difference between a submarine pipeline under sine excitation and that under random excitation exists in experiments.
基金the National Natural Science Foundation of China(Nos.20435010 and 20503012)Natural Science Founda-tion of Jiangsu Province, China(No.BK2005413)
文摘In light of the special need of nano-engineering, an ultra-large scale and high-performance molecular dynamics(MD) simulation program was implemented. In many nano-engineering processes, the free boundary condition should be adopted. To meet this particular requirement, a pointer link and dynamic array data structures were employed so that both reliability and accuracy of simulation could be ensured. Using this method, one could realize the MD simulation of the nano-engineering system consisting of several million atoms per single CPU.
基金the financial support by the National Key R&D Program of China(No.2018YFC1504901)Gansu Province Youth Science and Technology Fund program,China(Grant No.21JR7RA739)+1 种基金Natural Science Foundation of Gansu Province,China(Grant No.21JR7RA738)Natural Science Foundation of Gansu Province,China(No.145RJZA068)。
文摘Despite the continuous advancements of engineering construction in high-intensity areas,many engineering landslides are still manufactured with huge thrust force,and double-row piles are effective to control such large landslides.In this study,large shaking table test were performed to test and obtain multi-attribute seismic data such as feature image,acceleration,and dynamic soil pressure.Through the feature image processing analysis,the deformation characteristics for the slope reinforced by double-row piles were revealed.By analyzing the acceleration and the dynamic soil pressure time domain,the spatial dynamic response characteristics were revealed.Using Fast Fourier Transform and half-power bandwidth,the damping ratio of acceleration and dynamic soil pressure was obtained.Following that,the Seism Signal was used to calculate the spectral displacement of the accelerations to obtain the regional differences of spectral displacement.The results showed that the overall deformation mechanism of the slope originates from tension failure in the soil mass.The platform at the back of the slope was caused by seismic subsidence,and the peak acceleration ratio was positively correlated with the relative pile heights.The dynamic soil pressure of the front row piles showed an inverted"K"-shaped distribution,but that of the back row piles showed an"S"-shaped distribution.The predominant frequency of acceleration was 2.16 Hz,and the main frequency band was 0.7-6.87 Hz;for dynamic soil pressure,the two parameters became 1.15 Hz and 0.5-6.59 Hz,respectively.In conclusion,dynamic soil pressure was more sensitive to dampening effects than acceleration.Besides,compared to acceleration,dynamic soil pressure exhibited larger loss factors and lower resonance peaks.Finally,back row pile heads were highly sensitive to spectral displacement compared to front row pile heads.These findings may be of reference value for future seismic designs of double-row piles.
基金National Natural Science Foundation of China under Grant No. 41372356the College Cultivation Project of the National Natural Science Foundation of China under Grant No. 2018PY30+1 种基金the Basic Research and Frontier Exploration Project of Chongqing,China under Grant No. cstc2018jcyj A1597the Graduate Scientific Research and Innovation Foundation of Chongqing,China under Grant No. CYS18026。
文摘Shake table testing was performed to investigate the dynamic stability of a mid-dip bedding rock slope under frequent earthquakes. Then, numerical modelling was established to further study the slope dynamic stability under purely microseisms and the influence of five factors, including seismic amplitude, slope height, slope angle, strata inclination and strata thickness, were considered. The experimental results show that the natural frequency of the slope decreases and damping ratio increases as the earthquake loading times increase. The dynamic strength reduction method is adopted for the stability evaluation of the bedding rock slope in numerical simulation, and the slope stability decreases with the increase of seismic amplitude, increase of slope height, reduction of strata thickness and increase of slope angle. The failure mode of a mid-dip bedding rock slope in the shaking table test is integral slipping along the bedding surface with dipping tensile cracks at the slope rear edge going through the bedding surfaces. In the numerical simulation, the long-term stability of a mid-dip bedding slope is worst under frequent microseisms and the slope is at risk of integral sliding instability, whereas the slope rock mass is more broken than shown in the shaking table test. The research results are of practical significance to better understand the formation mechanism of reservoir landslides and prevent future landslide disasters.
基金Foundation for Innovative Research Groups of the National Natural Science Foundation of China under Grant No.51421005National Natural Science Foundation of China under Grant No.51578026National Outstanding Youth Science Fund Project of National Natural Science Foundation of China under Grant No.51722801。
文摘The dynamic pile-soil interaction in a liquefied site was investigated by means of numerical simulation and shaking table tests in this study.Based on the results from the shaking table experiment,the cross-correlation analysis of the soil displacement-pile bending moment and superstructure acceleration-pile bending moment was performed to study the influence of kinematic interaction and inertial interaction on the seismic response of piles.A relatively reasonable and accurate finite difference numerical analysis model of liquefiable soil-pile group-superstructure dynamic system was established.Through numerical simulation,the understanding of kinematic interaction and inertial interaction in the shaking table test was verified.The mass,damping and period of the superstructure were selected as variables to carry out parameter analysis to further study the influence of inertial interaction on the pile-structure failure mechanism.The results show that the influence of kinematic interaction on the pile was much greater than that of inertial interaction.The mass of the superstructure was the most important parameter of inertial interaction,and dynamic characteristics of the superstructure also had an effect on inertial interaction.The effect of inertial interaction on the part near the pile tip was more significant,indicating that the failure near the pile tip is closely related to inertial interaction.
文摘In order to clarify the damage mechanism of the subway structure, the dynamic soil-structure interaction and the dynamic forces acting on the structure, a series of shaking table tests and simulation analyses were performed. The seismic response of the structure and the dynamic forces acting on the structure due to sinusoidal and random waves were investigated with special attention to the dynamic soil-structure interaction. The result shows that the compression seismic soil pressures and extension seismic soil pressures simultaneously act on the sidewalls, and big shear stress also acts on the ceiling slab due to horizontal excitation. The seismic soil pressure could be approximated to hyperbola curve, and reached a peak value with increase of the shear strain of the model ground. In addition, a slide and exfoliation phenomenon between the structure and the surrounding ground was simulated, using the nonlinear analyses. The foundation is provided for amending the calculation method of seismic soil pressure and improving the anti-earthquake designing level of underground structure.
基金National Key R&D Program of China(Grant No.2017YFC0504901)the Science and Technology Plan Projects of Sichuan Province(Grant No 2015SZ0068)
文摘As a combined supporting structure,the anchor cable and lattice beam have a complex interaction with the slope body.In order to investigate the seismic behaviors of the slope reinforced by anchor cable and lattice beam,a largescale shaking table test was carried out on a slope model(geometric scale of 1:20)by applying recorded and artificial seismic waves with different amplitudes.The acceleration and displacement of the slope,the displacement of lattice beam and the axial force of anchor cable were obtained to study the interaction between the slope and the supporting structure.The test results show that:(1)the acceleration responses of the slope at different relative elevations display obvious nonlinear characteristics with increasing of the peak ground acceleration(PGA)of the inputted seismic waves,and the weak intercalated layer has a stronger effect on acceleration amplification at the upper part of the slope than that at the lower part of the slope;(2)the frequency component near the second dominant frequency is significantly magnified by the interaction between the slope and the supporting structure;(3)the anchor cables at the upper part of the slope have larger peak and residual axial forces than that at the lower part of the slope,and the prestress loss of the anchor cable first occurs at the top of the slope and then passes down;(4)the peak and residual displacements inside the slope and on the lattice beam increase with the increase of relative elevation.When the inputted PGA is not greater than 0.5 g,the combined effect of anchor cable and lattice beam is remarkable for stabilizing the middle and lower parts of the potential sliding body.The research results can provide a reference for the seismic design of such slope and the optimization of supporting structure.
基金National Natural Science Foundation of China under Grant No.51778207,Natural Science Foundation of Hebei Province under Grant No.E2018202107,Project of Graduate Students′Innovative Ability Training of Hebei Province under Grant No.CXZZBS2019041。
文摘To study the dynamic response of vertical and batter pile groups in saturated sand,dynamic tests of these pile groups in saturated sand were carried out using the ZJU400 geotechnical centrifuge at Zhejiang University.The following results were obtained.(1)As the motion intensity increased,the peak acceleration in soil layers at different depths significantly decreased,indicating that the soil stiffness was significantly reduced.(2)During the motion process,the instantaneous bending moment of the vertical and batter pile groups at different depths changed continuously,which had a strong relationship with the saturated sand liquefaction.In the process of sand liquefaction,the residual bending moment generated by the batter pile was more obvious than that of the vertical pile.(3)With the liquefaction of the saturated sand,the distribution of the maximum bending moment of the vertical pile group changed,and the bending moment near the pile cap of the vertical and batter pile groups was always large.(4)In certain cases,the horizontal acceleration and dynamic displacement of the vertical pile cap were amplified.When the motion intensity was large,residual displacement of the batter pile cap occurred.