Molecular dynamics(MD) simulations using the polymer consistent force field(PCFF) were adopted to investigate the pressure and thickness dependent density of squalane film in a nanogap at 373 K, with three differe...Molecular dynamics(MD) simulations using the polymer consistent force field(PCFF) were adopted to investigate the pressure and thickness dependent density of squalane film in a nanogap at 373 K, with three different initial film thicknesses, and for a wide range of pressures. The equivalent densities predicted by MD simulations were compared with the empirical data. Results show that the squalane atoms tend to form layers parallel to the confining substrates but the orientations of squalane molecules are irregular throughout the film. In addition, distinct excluded volumes are not found at the interfaces of the film and substrates. Furthermore, with the same initial film thickness h_0, the film thickness h and compressibility decrease with increasing pressure, but the compressibility is similar for films with different initial film thicknesses. The equivalent densities predicted by MD simulations with the maximum initial film thickness(9.44 nm) are accurate to the values of Tait equation. The MD simulation with adequate initial film thickness can accurately and conveniently predict the bulk densities of lubricants.展开更多
This work is aimed at investigating the friction and wear performance of different polymeric materials having potential for hydraulic system components under lubricated sliding conditions against a steel counter face....This work is aimed at investigating the friction and wear performance of different polymeric materials having potential for hydraulic system components under lubricated sliding conditions against a steel counter face.A pin-on-disc test configuration was used for the experimental study.The different polymeric materials selected for these studies were commercial polyimides(PI),polyether ether ketone(PEEK),and flouropolymers.Some of these materials were bulk materials whereas others were used as coatings applied on to the cast iron substrate.The tribological characteristics of the polymers were compared with a reference grey cast iron.The frictional characteristics were evaluated in both static and dynamic conditions.The results have shown that by using polymeric materials it is possible to reduce breakaway friction by an order of magnitude compared to grey cast iron.However,the breakaway friction increased significantly after the wear tests.The polymeric materials having lowest breakaway friction have shown the highest wear with the exception of the PEEK-PTFE coating which showed low wear.PI with graphite fillers also showed low wear but it resulted in relatively high friction.The carbon fibre reinforced materials resulted in unstable friction as well as higher wear compared to the PI materials with graphite fillers.展开更多
基金Funded by the National Natural Science Foundation of China(No.51175085)the Tribology Science Fund of State Key Laboratory of Tribology(No.SKLTKF13A09)the Natural Science Foundation of Fujian Province(No.2016J01226)
文摘Molecular dynamics(MD) simulations using the polymer consistent force field(PCFF) were adopted to investigate the pressure and thickness dependent density of squalane film in a nanogap at 373 K, with three different initial film thicknesses, and for a wide range of pressures. The equivalent densities predicted by MD simulations were compared with the empirical data. Results show that the squalane atoms tend to form layers parallel to the confining substrates but the orientations of squalane molecules are irregular throughout the film. In addition, distinct excluded volumes are not found at the interfaces of the film and substrates. Furthermore, with the same initial film thickness h_0, the film thickness h and compressibility decrease with increasing pressure, but the compressibility is similar for films with different initial film thicknesses. The equivalent densities predicted by MD simulations with the maximum initial film thickness(9.44 nm) are accurate to the values of Tait equation. The MD simulation with adequate initial film thickness can accurately and conveniently predict the bulk densities of lubricants.
文摘This work is aimed at investigating the friction and wear performance of different polymeric materials having potential for hydraulic system components under lubricated sliding conditions against a steel counter face.A pin-on-disc test configuration was used for the experimental study.The different polymeric materials selected for these studies were commercial polyimides(PI),polyether ether ketone(PEEK),and flouropolymers.Some of these materials were bulk materials whereas others were used as coatings applied on to the cast iron substrate.The tribological characteristics of the polymers were compared with a reference grey cast iron.The frictional characteristics were evaluated in both static and dynamic conditions.The results have shown that by using polymeric materials it is possible to reduce breakaway friction by an order of magnitude compared to grey cast iron.However,the breakaway friction increased significantly after the wear tests.The polymeric materials having lowest breakaway friction have shown the highest wear with the exception of the PEEK-PTFE coating which showed low wear.PI with graphite fillers also showed low wear but it resulted in relatively high friction.The carbon fibre reinforced materials resulted in unstable friction as well as higher wear compared to the PI materials with graphite fillers.