期刊文献+
共找到213篇文章
< 1 2 11 >
每页显示 20 50 100
Identification of failure behaviors of underground structures under dynamic loading using machine learning
1
作者 Chun Zhu Yingze Xu +5 位作者 Manchao He Yujing Jiang Murat Karakus Lihua Hu Yalong Jiang Fuqiang Ren 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期414-431,共18页
Understanding the dynamic responses of hard rocks is crucial during deep mining and tunneling activities and when constructing nuclear waste repositories. However, the response of deep massive rocks with openings of d... Understanding the dynamic responses of hard rocks is crucial during deep mining and tunneling activities and when constructing nuclear waste repositories. However, the response of deep massive rocks with openings of different shapes and orientations to dynamic loading is not well understood. Therefore, this study investigates the dynamic responses of hard rocks of deep underground excavation activities. Split Hopkins Pressure Bar (SHPB) tests on granite with holes of different shapes (rectangle, circle, vertical ellipse (elliptical short (ES) axis parallel to the impact load direction), and horizontal ellipse (elliptical long (EL) axis parallel to the impact load direction)) were carried out. The influence of hole shape and location on the dynamic responses was analyzed to reveal the rocks' dynamic strengths and cracking characteristics. We used the ResNet18 (convolutional neural network-based) network to recognize crack types using high-speed photographs. Moreover, a prediction model for the stress-strain response of rocks with different openings was established using Deep Neural Network (DNN). The results show that the dynamic strengths of the granite with EL and ES holes are the highest and lowest, respectively. The strength-weakening coefficient decreases first and then increases with an increase of thickness-span ratio (h/L). The weakening of the granite with ES holes is the most obvious. The ResNet18 network can improve the analyzing efficiency of the cracking mechanism, and the trained model's recognition accuracy reaches 99%. Finally, the dynamic stress-strain prediction model can predict the complete stress-strain curve well, with an accuracy above 85%. 展开更多
关键词 dynamic mechanical response Cracking mode Hole shape/location effect Deep Neural Network(DNN) Stress-strain prediction
下载PDF
Hybrid Dynamic Variables-Dependent Event-Triggered Fuzzy Model Predictive Control 被引量:1
2
作者 Xiongbo Wan Chaoling Zhang +2 位作者 Fan Wei Chuan-Ke Zhang Min Wu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期723-733,共11页
This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative ... This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance. 展开更多
关键词 dynamic event-triggered mechanism(DETM) hybrid dynamic variables model predictive control(MPC) robust positive invariant(RPI)set T-S fuzzy systems
下载PDF
Analysis of mesoscopic mechanical dynamic characteristics of ballast bed with under sleeper pads 被引量:1
3
作者 Xiong Yang Liuyang Yu +3 位作者 Xuejun Wang Zhigang Xu Yu Deng Houxu Li 《Railway Engineering Science》 EI 2024年第1期107-123,共17页
The meso-dynamical behaviour of a high-speed rail ballast bed with under sleeper pads(USPs)was studied.The geometrically irregular refined discrete element model of the ballast particles was constructed using 3D scann... The meso-dynamical behaviour of a high-speed rail ballast bed with under sleeper pads(USPs)was studied.The geometrically irregular refined discrete element model of the ballast particles was constructed using 3D scanning techniques,and the 3D dynamic model of the rail-sleeper-ballast bed was constructed using the coupled discrete element method-multiflexible-body dynamics(DEM-MFBD)approach.We analyse the meso-mechanical dynamics of the ballast bed with USPs under dynamic load on a train and verify the correctness of the model in laboratory tests.It is shown that the deformation of the USPs increases the contact area between the sleeper and the ballast particles,and subsequently the number of contacts between them.As the depth of the granular ballast bed increases,the contact area becomes larger,and the contact force between the ballast particles gradually decreases.Under the action of the elastic USPs,the contact forces between ballast particles are reduced and the overall vibration level of the ballast bed can be reduced.The settlement of the granular ballast bed occurs mainly at the shallow position of the sleeper bottom,and the installation of the elastic USPs can be effective in reducing the stress on the ballast particles and the settlement of the ballast bed. 展开更多
关键词 Under sleeper pads Ballast bed Discrete element method Mesoscopic mechanical dynamic characteristics
下载PDF
Dynamic Event-Triggered Consensus Control for Input Constrained Multi-Agent Systems With a Designable Minimum Inter-Event Time
4
作者 Meilin Li Yue Long +2 位作者 Tieshan Li Hongjing Liang C.L.Philip Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期649-660,共12页
This paper investigates the consensus control of multi-agent systems(MASs) with constrained input using the dynamic event-triggered mechanism(ETM).Consider the MASs with small-scale networks where a centralized dynami... This paper investigates the consensus control of multi-agent systems(MASs) with constrained input using the dynamic event-triggered mechanism(ETM).Consider the MASs with small-scale networks where a centralized dynamic ETM with global information of the MASs is first designed.Then,a distributed dynamic ETM which only uses local information is developed for the MASs with large-scale networks.It is shown that the semi-global consensus of the MASs can be achieved by the designed bounded control protocol where the Zeno phenomenon is eliminated by a designable minimum inter-event time.In addition,it is easier to find a trade-off between the convergence rate and the minimum inter-event time by an adjustable parameter.Furthermore,the results are extended to regional consensus of the MASs with the bounded control protocol.Numerical simulations show the effectiveness of the proposed approach. 展开更多
关键词 Constrained input designable minimum inter-event time directed communication topology dynamic event-triggered mechanism MASs consensus control
下载PDF
Experimental and numerical study on dynamic mechanical behaviors of shale under true triaxial compression at high strain rate
5
作者 Xiaoping Zhou Linyuan Han +1 位作者 Jing Bi Yundong Shou 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第2期149-165,共17页
High-energy gas fracturing of shale is a novel,high efficacy and eco-friendly mining technique,which is a typical dynamic perturbing behavior.To effectively extract shale gas,it is important to understand the dynamic ... High-energy gas fracturing of shale is a novel,high efficacy and eco-friendly mining technique,which is a typical dynamic perturbing behavior.To effectively extract shale gas,it is important to understand the dynamic mechanical properties of shale.Dynamic experiments on shale subjected to true triaxial compression at different strain rates are first conducted in this research.The dynamic stress-strain curves,peak strain,peak stress and failure modes of shale are investigated.The results of the study indicate that the intermediate principal stress and the minor principal stress have the significant influence on the dynamic mechanical behaviors,although this effect decreases as the strain rate increases.The characteristics of compression-shear failure primarily occur in shale subjected to triaxial compression at high strain rates,which distinguishes it from the fragmentation characteristics observed in shale under dynamic uniaxial compression.Additionally,a numerical three-dimensional Split Hopkinson Pressure Bar(3D-SHPB),which is established by coupling PFC3D and FLAC3D methods,is validated to replicate the laboratory characteristics of shale.The dynamic mechanical characteristics of shale subjected to different confining stresses are systematically investigated by the coupling PFC3D and FLAC3D method.The numerical results are in good agreement with the experimental data. 展开更多
关键词 dynamic behaviors True triaxial compression High strain rates dynamic failure mechanism PFC3D-FLAC3D coupled method
下载PDF
Set-Membership Filtering Approach to Dynamic Event-Triggered Fault Estimation for a Class of Nonlinear Time-Varying Complex Networks
6
作者 Xiaoting Du Lei Zou Maiying Zhong 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期638-648,共11页
The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered ... The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered mechanism(DETM).In order to optimize communication resource utilization,the DETM is employed to determine whether the current measurement data should be transmitted to the estimator or not.To guarantee a satisfactory estimation performance for the fault signal,an unknown-input-observer-based estimator is constructed to decouple the estimation error dynamics from the influence of fault signals.The aim of this paper is to find the suitable estimator parameters under the effects of DETM such that both the state estimates and fault estimates are confined within two sets of closed ellipsoid domains.The techniques of recursive matrix inequality are applied to derive sufficient conditions for the existence of the desired estimator,ensuring that the specified performance requirements are met under certain conditions.Then,the estimator gains are derived by minimizing the ellipsoid domain in the sense of trace and a recursive estimator parameter design algorithm is then provided.Finally,a numerical example is conducted to demonstrate the effectiveness of the designed estimator. 展开更多
关键词 dynamic event-triggered mechanism(DETM) fault estimation nonlinear time-varying complex networks set-member-ship filtering unknown input observer
下载PDF
Flexible Load Participation in Peaking Shaving and Valley Filling Based on Dynamic Price Incentives
7
作者 Lifeng Wang Jing Yu Wenlu Ji 《Energy Engineering》 EI 2024年第2期523-540,共18页
Considering the widening of the peak-valley difference in the power grid and the difficulty of the existing fixed time-of-use electricity price mechanism in meeting the energy demand of heterogeneous users at various ... Considering the widening of the peak-valley difference in the power grid and the difficulty of the existing fixed time-of-use electricity price mechanism in meeting the energy demand of heterogeneous users at various moments or motivating users,the design of a reasonable dynamic pricing mechanism to actively engage users in demand response becomes imperative for power grid companies.For this purpose,a power grid-flexible load bilevel model is constructed based on dynamic pricing,where the leader is the dispatching center and the lower-level flexible load acts as the follower.Initially,an upper-level day-ahead dispatching model for the power grid is established,considering the lowest power grid dispatching cost as the objective function and incorporating the power grid-side constraints.Then,the lower level comprehensively considers the load characteristics of industrial load,energy storage,and data centers,and then establishes a lower-level flexible load operation model with the lowest user power-consuming cost as the objective function.Finally,the proposed method is validated using the IEEE-118 system,and the findings indicate that the dynamic pricing mechanism for peaking shaving and valley filling can effectively guide users to respond actively,thereby reducing the peak-valley difference and decreasing users’purchasing costs. 展开更多
关键词 Demand response fixed time-of-use electricity price mechanism dynamic price incentives mechanism bi-level model flexible load
下载PDF
Microscopic damage and dynamic mechanical properties of rock under freeze-thaw environment 被引量:25
8
作者 周科平 李斌 +2 位作者 李杰林 邓红卫 宾峰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第4期1254-1261,共8页
For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were c... For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were conducted. After freezethaw, nuclear magnetic resonance(NMR) tests and impact loading tests were carried out, from which microscopic damage characteristics of sandstone and dynamic mechanical parameters were obtained. The results indicate that the porosity increases with the increase of cycle number, the rate of porosity growth descends at the beginning of freeze-thaw, yet accelerates after a certain number of cycles. The proportion of pores with different sizes changes dynamically and the multi-scale distribution of pores tends to develop on pore structure with the continuing impact of freeze-thaw and thawing. Dynamic compressive stress-strain curve of sandstone undergoing freeze-thaw can be divided into four phases, and the phase of compaction is inconspicuous compared with the static curve. Elastic modulus and dynamic peak intensity of sandstone gradually decrease with freeze-thaw cycles, while peak strain increases. The higher the porosity is, the more serious the degradation of dynamic intensity is. The porosity is of a polynomial relationship with the dynamic peak intensity. 展开更多
关键词 ROCK freeze-thaw cycle nuclear magnetic resonance(NMR) pore structure dynamic mechanical property dynamic compression stress-strain curve
下载PDF
Dynamic mechanical properties and constitutive equations of 2519A aluminum alloy 被引量:10
9
作者 刘文辉 何圳涛 +1 位作者 陈宇强 唐思文 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第7期2179-2186,共8页
To analyze the effects of strain rate and temperature on the flow stress of 2519A aluminum alloy, the dynamic mechanical properties of 2519A aluminum alloy were measured by dynamic impact tests and quasi-static tensil... To analyze the effects of strain rate and temperature on the flow stress of 2519A aluminum alloy, the dynamic mechanical properties of 2519A aluminum alloy were measured by dynamic impact tests and quasi-static tensile tests. The effects of strain rate and temperature on the microstructure evolution were investigated by optical microscopy (OM) and transmission electron microscopy (TEM). The experimental results indicate that 2519A aluminum alloy exhibits strain-rate dependence and temperature susceptibility under dynamic impact. The constitutive constants for Johnson--Cook material model were determined by the quasi-static tests and Hopkinson bar experiments using the methods of variable separation and nonlinear fitting. The constitutive equation seems to be consistent with the experimental results, which provides reference for mechanical characteristics and numerical simulation of ballistic performance. 展开更多
关键词 2519A aluminum alloy dynamic mechanical properties Johnson-Cook model MICROSTRUCTURE
下载PDF
Dynamic recrystallization mechanisms during hot compression of Mg-Gd-Y-Nd-Zr alloy 被引量:2
10
作者 吴懿萍 张新明 +3 位作者 邓运来 唐昌平 杨柳 仲莹莹 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第6期1831-1839,共9页
Hot compression tests were conducted on a homogenized Mg-7Gd-4Y-1Nd-0.5Zr alloy at 450 ℃ and a strain rate of 2 s-1. Dynamic recrystallization (DRX) mechanisms were investigated by optical microscope (OM), scanni... Hot compression tests were conducted on a homogenized Mg-7Gd-4Y-1Nd-0.5Zr alloy at 450 ℃ and a strain rate of 2 s-1. Dynamic recrystallization (DRX) mechanisms were investigated by optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM) systematically. The crystallographic orientation information is obtained through electron back-scattering diffraction (EBSD). The result shows that the flow stress firstly reaches a peak rapidly followed by declining to a valley, and then increases gradually again when the alloy is compressed to a strain of-1.88. DRX related to {10]2} tensile twins is extensively observed at small strains, resulting in an evident grain refinement. DRX grains first nucleate along the edges of twin boundaries with about 30~ (0001) off the twin parents. While at large strains, conventional continuous DRX (CDRX) is frequently identified by the formation of small DRX grains along the original grain boundaries and the continuously increasing misorientation from the centre of large original grains to the grain boundaries. Evidence of particle-stimulated nucleation (PSN) is also observed in the present alloy. 展开更多
关键词 Mg-RE alloy hot compression TWIN dynamic recrystallization mechanism
下载PDF
Static and dynamic mechanical behaviour of ECO-RPC 被引量:2
11
作者 赖建中 孙伟 +1 位作者 林玮 金祖权 《Journal of Southeast University(English Edition)》 EI CAS 2005年第2期197-202,共6页
Ecological reactive powder concrete (ECO-RPC) with small sized and differentvolume fraction steel fibers was prepared by substitution of ultra-fine industrial waste powder for50% to 60% cement by weight and replacemen... Ecological reactive powder concrete (ECO-RPC) with small sized and differentvolume fraction steel fibers was prepared by substitution of ultra-fine industrial waste powder for50% to 60% cement by weight and replacement of ground fine quartz sand with natural fine aggregate.The effect of steel fiber volume fraction and curing ages on the static mechanical behaviour ofECO-RPC was studied. Using the split Hopkinson pressure bar technique, the dynamic mechanicalbehaviour of ECO-RPC was investigated under different strain rates. The results show that the staticmechanical behaviour of ECO-RPC increases with the increase of steel fiber volume fraction andcuring ages. The type of ECO-RPC with the substitution of 25% ultra-fine slag, 25% ultra-fine flyash and 10% silica fume is better than the others with compressive strength, flexural strength, andfracture energy more than 200 MPa, 60 MPa and 30 kJ/m^2, respectively. ECO-RPC has excellent strainrate stiffening effects under dynamic load. Its peak stress, peak strain and the area understrain-stress curve increase with the increase of strain rate. Its fracture pattern changes frombrittleness to toughness under high strain rates. 展开更多
关键词 ecological reactive powder concrete (ECO-RPC) industrial waste powder interfacial bond strength fracture energy static and dynamic mechanical behaviour high strainrate
下载PDF
Research on the River-Crossing Development Process and Dynamic Mechanism in Nanchang City 被引量:1
12
作者 赵晓杰 吴巍 胡细英 《Agricultural Science & Technology》 CAS 2017年第12期2635-2637,共3页
With the deepening of the market economy and the big step of urbaniza- tion, the spatial restricted effect of the development of the riverside cities in China is becoming more and more obvious. The river-crossing deve... With the deepening of the market economy and the big step of urbaniza- tion, the spatial restricted effect of the development of the riverside cities in China is becoming more and more obvious. The river-crossing development of cities is imperative. The Riverside New Area has gradually become the key area of urban development and the new economy growth pole. Based on the development history of Nanchang, the evolution of the river-crossing development of Nanchang city was analyzed systematically, and river-crossing development of Nanchang was divided into 3 stages of initial river-crossing development stage, slow river-crossing develop- ment stage and rapid river-crossing development stage. In-depth discussion was made to the dynamic mechanism of the river-crossing development in Nanchang. 展开更多
关键词 Nanchang River-crossing development dynamic mechanism
下载PDF
Effects of laser power density on static and dynamic mechanical properties of dissimilar stainless steel welded joints 被引量:1
13
作者 Yan-Peng Wei Mao-Hui Li +3 位作者 Gang Yu Xian-Qian Wu Chen-Guang Huang Zhu-Ping Duan 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第5期1334-1339,共6页
The mechanical properties of laser welded joints under impact loadings such as explosion and car crash etc. are critical for the engineering designs. The hardness, static and dynamic mechanical properties of AISI304 a... The mechanical properties of laser welded joints under impact loadings such as explosion and car crash etc. are critical for the engineering designs. The hardness, static and dynamic mechanical properties of AISI304 and AISI316L dissimilar stainless steel welded joints by CO2 laser were experimentally studied. The dynamic strainstress curves at the strain rate around 103 s-1 were obtained by the split Hopkinson tensile bar (SHTB). The static mechanical properties of the welded joints have little changes with the laser power density and all fracture occurs at 316 L side. However, the strain rate sensitivity has a strong depen- dence on laser power density. The value of strain rate factor decreases with the increase of laser power density. The welded joint which may be applied for the impact loading can be obtained by reducing the laser power density in the case of welding quality assurance. 展开更多
关键词 Laser welding dynamic mechanics Strain rate.Power density
下载PDF
Microstructure Evolution and Dynamic Mechanical Properties of Laser Additive Manufacturing Ti-6Al-4V Under High Strain Rate 被引量:1
14
作者 Tao Wang Lei Zhu +7 位作者 Changhong Wang Mingming Liu Ning Wang Lingchao Qin Hao Wang Jianbo Lei Jie Tang Jun Wu 《Journal of Beijing Institute of Technology》 EI CAS 2020年第4期568-580,共13页
The dynamic mechanical properties of the Ti-6Al-4V(TC4)alloy prepared by laser additive manufacturing(LAM-TC4)under the high strain rate(HSR)are proposed.The dynamic compression experiments of LAM-TC4 are conducted wi... The dynamic mechanical properties of the Ti-6Al-4V(TC4)alloy prepared by laser additive manufacturing(LAM-TC4)under the high strain rate(HSR)are proposed.The dynamic compression experiments of LAM-TC4 are conducted with the split Hopkinson pressure bar(SHPB)equipment.The results show that as the strain rate increases,the widths of the adiabatic shear band(ASB),the micro-hardness,the degree of grain refinement near the ASB,and the dislocation density of grains grow gradually.Moreover,the increase of dislocation density of grains is the root factor in enhancing the yield strength of LAM-TC4.Meanwhile,the heat produced from the distortion and dislocations of grains promotes the heat softening effect favorable for the recrystallization of grains,resulting in the grain refinement of ASB.Furthermore,the contrastive analysis between LAM-TC4 and TC4 prepared by forging(F-TC4)indicates that under the HSR,the yield strength of LAM-TC4 is higher than that of F-TC4. 展开更多
关键词 laser additive manufacturing TI-6AL-4V dynamic mechanics properties MICROSTRUCTURE
下载PDF
Dynamic mechanical properties and instability behavior of layered backfill under intermediate strain rates 被引量:21
15
作者 Yun-hai ZHANG Xin-min WANG +1 位作者 Chong WEI Qin-li ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第7期1608-1617,共10页
To obtain dynamic mechanical properties and failure rule of layered backfill under strain rates from10to80s-1,impactloading test on layered backfill specimens(LBS)was conducted by using split Hopkinson pressure bar sy... To obtain dynamic mechanical properties and failure rule of layered backfill under strain rates from10to80s-1,impactloading test on layered backfill specimens(LBS)was conducted by using split Hopkinson pressure bar system.The results indicatethat positive correlation can be found between dynamic compressive strength and strain rate,as well as between strength increasefactor and strain rate.Dynamic compressive strength of LBS gets higher as the arithmetic average cement-sand ratio increases.Compared with static compressive strength,dynamic compressive strength of LBS is enhanced by11%to163%.In addition,theenergy dissipating rate of LBS lies between that of corresponding single specimens,and it decreases as the average cement contentincreases.Deformation of LBS shows obvious discontinuity,deformation degree of lower strength part of LBS is generally higherthan that of higher strength part.A revised brittle fracture criterion based on the Stenerding-Lehnigk criterion is applied to analyzingthe fracture status of LBS,and the average relevant errors of the3groups between the test results and calculation results are4.80%,3.89%and4.66%,respectively. 展开更多
关键词 layered backfill specimen (LBS) split Hopkinson pressure bar (SHPB) dynamic mechanical properties damage characteristic failure criterion
下载PDF
Investigating the dynamic mechanical behaviors of polyurea through experimentation and modeling 被引量:17
16
作者 Hao Wang Ximin Deng +3 位作者 Haijun Wu Aiguo Pi Jinzhu Li Fenglei Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第6期875-884,共10页
Polyurea is widely employed as a protective coating in many fields because of its superior ability to improve the anti-blast and anti-impact capability of structures.In this study,the mechanical properties of polyurea... Polyurea is widely employed as a protective coating in many fields because of its superior ability to improve the anti-blast and anti-impact capability of structures.In this study,the mechanical properties of polyurea XS-350 were investigated via systematic experimentation over a wide range of strain rates(0.001-7000 s^-1)by using an MTS,Instron VHS,and split-Hopkinson bars.The stress-strain behavior of polyurea was obtained for various strain rates,and the effects of strain rate on the primary mechanical properties were analyzed.Additionally,a modified rate-dependent constitutive model is proposed based on the nine-parameter Mooney-Rivlin model.The results show that the stress-strain curves can be divided into three distinct regions:the linear-elastic stage,the highly elastic stage,and an approximate linear region terminating in fracture.The mechanical properties of the polyurea material were found to be highly dependent on the strain rate.Furthermore,a comparison between model predictions and the experimental stress-strain curves demonstrated that the proposed model can characterize the mechanical properties of polyurea over a wide range of strain rates. 展开更多
关键词 POLYUREA Strain rate effect dynamic mechanical properties Constitutive model
下载PDF
Effect of Gd content on microstructure and dynamic mechanical properties of solution-treated Mg−xGd−3Y−0.5Zr alloy 被引量:10
17
作者 Xue-zhao WANG You-qiang WANG +3 位作者 Chen-bing NI Yu-xin FANG Xiao YU Ping ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第7期2177-2189,共13页
The effect of Gd content ranging from 6.5 wt.%to 8.5 wt.%on microstructure evolution and dynamic mechanical behavior of Mg−xGd−3Y−0.5Zr alloys was investigated by optical microscopy,X-ray diffraction,scanning electron... The effect of Gd content ranging from 6.5 wt.%to 8.5 wt.%on microstructure evolution and dynamic mechanical behavior of Mg−xGd−3Y−0.5Zr alloys was investigated by optical microscopy,X-ray diffraction,scanning electron microscopy and split Hopkinson pressure bar.The microstructure of as-cast Mg−xGd−3Y−0.5Zr alloys indicates that the addition of Gd can promote grain refinement in the casting.Due to the rapid cooling rate during solidification,a large amount of non-equilibrium eutectic phase Mg_(24)(Gd,Y)_(5) appears at the grain boundary of as-cast Mg−xGd−3Y−0.5Zr alloys.After solution treatment at 520℃ for 6 h,the Mg_(24)(Gd,Y)_(5) phase dissolves into the matrix,and the rare earth hydrides(REH)phase appears.The stress−strain curves validate that the solution-treated Mg−xGd−3Y−0.5Zr alloys with optimal Gd contents maintain excellent dynamic properties at different strain rates.It was concluded that the variation of Gd content and the agglomeration of residual REH particles and dynamically precipitated fine particles are key factors affecting dynamic mechanical properties of Mg−xGd−3Y−0.5Zr alloys. 展开更多
关键词 Mg−xGd−3Y−0.5Zr alloy MICROSTRUCTURE dynamic mechanical properties rare earth hydrides dynamic precipitated phase
下载PDF
Combined effects of temperature and axial pressure on dynamic mechanical properties of granite 被引量:8
18
作者 Tu-bing YIN Rong-hua SHU +2 位作者 Xi-bing LI Pin WANG Long-jun DONG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第8期2209-2219,共11页
In order to get the dynamic mechanical properties of deep rock mass suffered both high temperature and high pressure,impact loading experiments on granite subjected to temperature and axial pressure were carried out. ... In order to get the dynamic mechanical properties of deep rock mass suffered both high temperature and high pressure,impact loading experiments on granite subjected to temperature and axial pressure were carried out. Furthermore, the internalstructure characteristics of granite under different temperatures were observed by scanning electron microscopy (SEM). The results show that the longitudinal wave velocity assumes a downward trend which shows a rapid drop before falling slowly as the temperature increases. The uniaxial compressive strength of the specimen decreases significantly at temperatures of 25?100 °C compared to that at temperatures of 100?300 °C. The peak strain rises rapidly before the dividing point of 100 °C, but increases slowly after the dividing point. The internal structure of the rock changes substantially as the temperature increases, such as the extension and transfixion of primary and newborn cracks. In addition, the thermal damage under axial pressure is greater than that described by the longitudinal wave velocity and the phenomenon shows obviously when the temperature increases. 展开更多
关键词 rock dynamics split Hopkincon pressure bar temperature pressure coupling dynamic mechanical properties
下载PDF
Dynamical Mechanisms of Effects of Landslides on Long Distance Oil and Gas Pipelines 被引量:7
19
作者 MA Qingwen WANG Chenghua KONG Jiming 《Wuhan University Journal of Natural Sciences》 EI CAS 2006年第4期820-824,共5页
According to the investigations on the oil and gas pipelines such as the Lan-Cheng-Chong pipeline and the Southwest pipeline, there are two ways of laying pipeline: pipelines paralleling (approximately) to the main... According to the investigations on the oil and gas pipelines such as the Lan-Cheng-Chong pipeline and the Southwest pipeline, there are two ways of laying pipeline: pipelines paralleling (approximately) to the main slide direction and pipelines perpendicular (approximately) to the main slide direction. If earth-retaining walls have been built for pipelines paralleling to the main slide direction, they will prevent the lands from sliding; On the contrary, without earth-retaining walls, the sharp broken rocks in the backfilling soil will scratch the safeguard of the pipeline when the landslides take place. Pipelines perpendicular to the main slide direction can be classified into four types according to the relative positions between pipelines and landslides: Pipelines over the slide planes, pipelines inside the fracture strips of slide planes, pipelines below the slide planes and pipelines behind the backsides of landslides. The different dynamical mechanisms of the process in which landslide acts against pipelines are analyzed based on whether the pipelines are equipped with fixed frusta, because the sliding resistance depends on whether and how many fixed frusta are equipped and the distance between frusta. 展开更多
关键词 LANDSLIDE long distance oil and gas pipeline dynamical mechanism
下载PDF
Magnesium composites with hybrid nano-reinforcements:3D simulation of dynamic tensile response at elevated temperatures 被引量:5
20
作者 Xia ZHOU Zi-fan LIU +1 位作者 Feng SU Ya-fu FAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第3期636-647,共12页
3D numerical simulations of dynamical tensile response of hybrid carbon nanotube(CNT)and SiC nanoparticle reinforced AZ91D magnesium(Mg)based composites considering interface cohesion over a temperature range from 25 ... 3D numerical simulations of dynamical tensile response of hybrid carbon nanotube(CNT)and SiC nanoparticle reinforced AZ91D magnesium(Mg)based composites considering interface cohesion over a temperature range from 25 to 300℃ were carried out using a 3D representative volume element(RVE)approach.The simulation predictions were compared with the experimental results.It is clearly shown that the overall dynamic tensile properties of the nanocomposites at different temperatures are improved when the total volume fraction and volume fraction ratio of hybrid CNTs to SiC nanoparticles increase.The overall maximum hybrid effect is achieved when the hybrid volume fraction ratio of CNTs to SiC nanoparticles is in the range from 7:3 to 8:2 under the condition of total volume fraction of 1.0%.The composites present positive strain rate hardening and temperature softening effects under dynamic loading at high temperatures.The simulation results are in good agreement with the experimental data. 展开更多
关键词 magnesium matrix composites hybrid nanosized reinforcements dynamic mechanical properties numerical analysis
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部