The dynamic and static modulus of elasticity (MOE) between bluestained and non-bluestained lumber of Lodgepole pine were tested and analyzed by using three methods of Non-destructive testing (NDT), Portable Ultras...The dynamic and static modulus of elasticity (MOE) between bluestained and non-bluestained lumber of Lodgepole pine were tested and analyzed by using three methods of Non-destructive testing (NDT), Portable Ultrasonic Non-destructive Digital Indicating Testing (Pundit), Metriguard and Fast Fourier Transform (FFT) and the normal bending method. Results showed that the dynamic and static MOE of bluestained wood were higher than those of non-bluestained wood. The significant differences in dynamic MOE and static MOE were found between bulestained and non-bluestained wood, of which, the difference in each of three dynamic MOE (Ep. the ultrasonic wave modulus of elasticity, Ems, the stress wave modulus of elasticity and El, the longitudinal wave modulus of elasticity) between bulestained and non-bluestained wood arrived at the 0.01 significance level, whereas that in the static MOE at the 0.05 significance level. The differences in MOE between bulestained and non-bluestained wood were induced by the variation between sapwood and heartwood and the different densities of bulestained and non-bluestained wood. The correlation between dynamic MOE and static MOE was statistically significant at the 0.01 significance level. Although the dynamic MOE values of Ep, Em, Er were significantly different, there exists a close relationship between them (arriving at the 0.01 correlation level). Comparative analysis among the three techniques indicated that the accurateness of FFT was higher than that of Pundit and Metriguard. Effect of tree knots on MOE was also investigated. Result showed that the dynamic and static MOE gradually decreased with the increase of knot number, indicating that knot number had significant effect on MOE value.展开更多
In light of the highly demanding cement market in Jordan, comprehensive studies should be undertaken to investigate the properties of the different cement types. This paper studies the Dynamic modulus of elasticity (D...In light of the highly demanding cement market in Jordan, comprehensive studies should be undertaken to investigate the properties of the different cement types. This paper studies the Dynamic modulus of elasticity (DME) at 2, 7 and 28 days in mortars using six cement Jordanian types with CaO contents less than that of the ordinary Portland cements. It was found that the DME has strong relation with compressive strength. At the age of 28 days the mortars had some different values of DME. One important result of our work is that DME at the age of 28 days can be derived from those of the two days mixes. To account for the differences in dynamic modulus of elasticity with time, it is highly recommended to study in detail the mortars petrography under the light microscope. Using the scanning electron microscope (SEM), usually with attachment for chemical analysis at the crystal scale, in addition to X-ray diffraction technique may help characterization of the cement phases qualitatively and quantitatively.展开更多
This paper introduced a nondestructive testing method to evaluate the dynamic elastic modulus of cement paste. Moreover, the effect of water-cement ratio and conventional admixtures on the dynamic elastic modulus of c...This paper introduced a nondestructive testing method to evaluate the dynamic elastic modulus of cement paste. Moreover, the effect of water-cement ratio and conventional admixtures on the dynamic elastic modulus of cement paste was investigated, in which three kinds of admixtures were taken into account including viscosity modifying admixture (VMA), silica.fume (SF), and shrinkage-reducing admixture (SRA). The experimental results indicate that the dynamic elastic modulus of cement paste increases with decreasing water-cement ratio. The addition of SF increases the dynamic elastic modulus, however, the overdosage of VMA causes its reduction. SRA reduces the dynamic elastic modulus at early age without affecting it in later period. Finally, a multiscale micromechanics approach coupled with a hydration model CEMHYD3D and percolation theory is utilized to predict the elastic modulus of cement paste, and the predictive results by the model are in accordance with the experimental data.展开更多
In this paper, a molecular dynamics simulations are provided for atomic structure of nanocrystals(1~3nm)by which t he lattice parameter of X_ray diffraction, cohesive energy and modulus of elas ticity were computed...In this paper, a molecular dynamics simulations are provided for atomic structure of nanocrystals(1~3nm)by which t he lattice parameter of X_ray diffraction, cohesive energy and modulus of elas ticity were computed. The results show that the structure of grain and grain bou ndaries in the same in both nanocrystal and coarse grain materials. The decrease of grain size and the increase volume fraction of grain boundaries lead to a se ries of different features, the modulus of elasticity of nanocrystalline materia ls have been found to be much reduced.展开更多
The influence of different nanoparticle sizes on the elastic modulus and the fatigue properties of epoxy/SiO_(2) nanocomposite is studied in this paper.Here,the cross-linked epoxy resins formed by the combination of D...The influence of different nanoparticle sizes on the elastic modulus and the fatigue properties of epoxy/SiO_(2) nanocomposite is studied in this paper.Here,the cross-linked epoxy resins formed by the combination of DGEBA and 1,3-phenylenediamine are used as the matrix phase,and spherical SiO_(2) particles are used as the reinforcement phase.In order to simulate the elastic modulus and long-term performance of the composite material at room temperature,the simulated temperature is set to 298 K and the mass fraction of SiO_(2) particles is set to 28.9%.The applied strain rate is 109/s during the simulation of the elastic modulus.The results show that the elastic modulus of the material increases with the increase in particle size.Furthermore,fatigue simulation under strain control is performed on the model with SiO_(2) nanoparticle radius of 12˚A.The results indicate that the influence trend of variable frequencies on the fatigue mechanical response is similar,and the mean stress decreases with the increase in number of cycles.In addition,the smaller the loading period and the more the number of cycles,the greater the mean stress reduction.Finally,the change in energy and free volume fraction are evaluated under fatigue loading condition.展开更多
In this work, the dynamic properties of composite cemented clay under a wide range of strains were studied considering the effect of different mixing ratio and the change of confining pressures through dynamic triaxia...In this work, the dynamic properties of composite cemented clay under a wide range of strains were studied considering the effect of different mixing ratio and the change of confining pressures through dynamic triaxial test. A simple and practical method to estimate the dynamic elastic modulus and damping ratio is proposed in this paper and a related empirical normalized formula is also presented. The results provide useful guidelines for preliminary estimation of cement requirements to improve the dynamic properties of clays.展开更多
Tb0.3Dy0.7Fe1.90 <110> oriented rods were prepared by zone melting with unidirectional solidification.The magnetomechanical coupling factor(k33) was measured by magnetomechanical resonance under different DC bia...Tb0.3Dy0.7Fe1.90 <110> oriented rods were prepared by zone melting with unidirectional solidification.The magnetomechanical coupling factor(k33) was measured by magnetomechanical resonance under different DC bias fields up to 77.4 mT.An effective method was provided to calculate sonic velocity,elastic modulus and compliance constant through measuring resonate frequency(fr),and calculate dynamic magnetostriction(d33) via measuring magnetic permeability,magnetomechanical coupling factor(k33) and complia...展开更多
The use of low embankments is of significant concern for ecological protection in aridoasis areas.Based on the project of Sansha Expressway located in Kashgar City,Xinjiang,China,physical model tests were conducted in...The use of low embankments is of significant concern for ecological protection in aridoasis areas.Based on the project of Sansha Expressway located in Kashgar City,Xinjiang,China,physical model tests were conducted in this study to investigate the dynamic response of the low embankment as per the effects of road structure,load amplitude,load frequency,load cycle,and moisture content.The dynamic stress is shown to increase with load amplitude while the dynamic elastic modulus decreases with load amplitude under short-term loading.The load frequency slightly influences the soil’s dynamic behavior;higher frequencies can improve the dynamic elastic modulus of the subgrade soil.The moisture content has greater influence on the mechanical properties of the subsoil than that of subgrade layer.The subgrade bears the majority of the traffic load as the stress dissipates to 37%of the whole value on its surface.The number of load cycles has the greatest effect on the dynamic response among the influencing factors tested.The dynamic elastic modulus with the type of long-term dynamic loading is only 40%-52%of that with static loading across the entire depth range.The dynamic stress shows significant accumulation with load cycles over the long-term dynamic loading test and becomes stable after 8×10~4 cycles of loading.An equation is established to quantify the cumulative dynamic stress in the low embankment under long-term dynamic loading conditions.展开更多
304 stainless steel coating was deposited on the IF steel substrate by cold gas dynamic spraying (CGDS), and the elastic modulus of the 304 stainless steel coating was studied. The elastic modulus of cold sprayed 30...304 stainless steel coating was deposited on the IF steel substrate by cold gas dynamic spraying (CGDS), and the elastic modulus of the 304 stainless steel coating was studied. The elastic modulus of cold sprayed 304 stain- less steel coating was measured using the three-point bend testing and the compound beam theory, and the other me- chanic parameters (such as the equivalent flexural rigidity and the moment of inertia of area) of the coatings were also calculated using this compound beam theory. It is found that the calculated results using the above methods are accu- rate and reliable. The elastic modulus value of the cold sprayed 304 stainless steel coating is 1. 179 X 105 MPa, and it is slightly lower than the 304 stainless steel plate (about 2 X 105 MPa). It indicates that the elastic modulus of the cold sprayed coatings was quite different from the comparable bulk materials. The main reason is that the pores and other defects are existed in the coatings, and the elastic modulus of the coatings also depends on varies parameters such as the feed stock particle size, porosity, and processing parameters.展开更多
基金This paper was supported by "Wood-inorganic Res-toration Material" in "Technique Introduction and Innovation of Bio-macromolecule New Material" of Introducing Overseas Advanced Forest Technology Innovation Program of China ("948" Innovation Pro-ject, Number: 2006-4-C03)
文摘The dynamic and static modulus of elasticity (MOE) between bluestained and non-bluestained lumber of Lodgepole pine were tested and analyzed by using three methods of Non-destructive testing (NDT), Portable Ultrasonic Non-destructive Digital Indicating Testing (Pundit), Metriguard and Fast Fourier Transform (FFT) and the normal bending method. Results showed that the dynamic and static MOE of bluestained wood were higher than those of non-bluestained wood. The significant differences in dynamic MOE and static MOE were found between bulestained and non-bluestained wood, of which, the difference in each of three dynamic MOE (Ep. the ultrasonic wave modulus of elasticity, Ems, the stress wave modulus of elasticity and El, the longitudinal wave modulus of elasticity) between bulestained and non-bluestained wood arrived at the 0.01 significance level, whereas that in the static MOE at the 0.05 significance level. The differences in MOE between bulestained and non-bluestained wood were induced by the variation between sapwood and heartwood and the different densities of bulestained and non-bluestained wood. The correlation between dynamic MOE and static MOE was statistically significant at the 0.01 significance level. Although the dynamic MOE values of Ep, Em, Er were significantly different, there exists a close relationship between them (arriving at the 0.01 correlation level). Comparative analysis among the three techniques indicated that the accurateness of FFT was higher than that of Pundit and Metriguard. Effect of tree knots on MOE was also investigated. Result showed that the dynamic and static MOE gradually decreased with the increase of knot number, indicating that knot number had significant effect on MOE value.
文摘In light of the highly demanding cement market in Jordan, comprehensive studies should be undertaken to investigate the properties of the different cement types. This paper studies the Dynamic modulus of elasticity (DME) at 2, 7 and 28 days in mortars using six cement Jordanian types with CaO contents less than that of the ordinary Portland cements. It was found that the DME has strong relation with compressive strength. At the age of 28 days the mortars had some different values of DME. One important result of our work is that DME at the age of 28 days can be derived from those of the two days mixes. To account for the differences in dynamic modulus of elasticity with time, it is highly recommended to study in detail the mortars petrography under the light microscope. Using the scanning electron microscope (SEM), usually with attachment for chemical analysis at the crystal scale, in addition to X-ray diffraction technique may help characterization of the cement phases qualitatively and quantitatively.
基金Funded by the National Natural Science Foundation of China(No.51309090)the National Science Foundation for Postdoctoral Scientists of China(No.2013M531268)the Jiangsu Planned Projects for Postdoctoral Research Funds(No.1302101C)
文摘This paper introduced a nondestructive testing method to evaluate the dynamic elastic modulus of cement paste. Moreover, the effect of water-cement ratio and conventional admixtures on the dynamic elastic modulus of cement paste was investigated, in which three kinds of admixtures were taken into account including viscosity modifying admixture (VMA), silica.fume (SF), and shrinkage-reducing admixture (SRA). The experimental results indicate that the dynamic elastic modulus of cement paste increases with decreasing water-cement ratio. The addition of SF increases the dynamic elastic modulus, however, the overdosage of VMA causes its reduction. SRA reduces the dynamic elastic modulus at early age without affecting it in later period. Finally, a multiscale micromechanics approach coupled with a hydration model CEMHYD3D and percolation theory is utilized to predict the elastic modulus of cement paste, and the predictive results by the model are in accordance with the experimental data.
文摘In this paper, a molecular dynamics simulations are provided for atomic structure of nanocrystals(1~3nm)by which t he lattice parameter of X_ray diffraction, cohesive energy and modulus of elas ticity were computed. The results show that the structure of grain and grain bou ndaries in the same in both nanocrystal and coarse grain materials. The decrease of grain size and the increase volume fraction of grain boundaries lead to a se ries of different features, the modulus of elasticity of nanocrystalline materia ls have been found to be much reduced.
文摘The influence of different nanoparticle sizes on the elastic modulus and the fatigue properties of epoxy/SiO_(2) nanocomposite is studied in this paper.Here,the cross-linked epoxy resins formed by the combination of DGEBA and 1,3-phenylenediamine are used as the matrix phase,and spherical SiO_(2) particles are used as the reinforcement phase.In order to simulate the elastic modulus and long-term performance of the composite material at room temperature,the simulated temperature is set to 298 K and the mass fraction of SiO_(2) particles is set to 28.9%.The applied strain rate is 109/s during the simulation of the elastic modulus.The results show that the elastic modulus of the material increases with the increase in particle size.Furthermore,fatigue simulation under strain control is performed on the model with SiO_(2) nanoparticle radius of 12˚A.The results indicate that the influence trend of variable frequencies on the fatigue mechanical response is similar,and the mean stress decreases with the increase in number of cycles.In addition,the smaller the loading period and the more the number of cycles,the greater the mean stress reduction.Finally,the change in energy and free volume fraction are evaluated under fatigue loading condition.
文摘In this work, the dynamic properties of composite cemented clay under a wide range of strains were studied considering the effect of different mixing ratio and the change of confining pressures through dynamic triaxial test. A simple and practical method to estimate the dynamic elastic modulus and damping ratio is proposed in this paper and a related empirical normalized formula is also presented. The results provide useful guidelines for preliminary estimation of cement requirements to improve the dynamic properties of clays.
基金supported by the New Century Excellent Talents in University (04-0165) the National Natural Science Foundation of China (60534020)
文摘Tb0.3Dy0.7Fe1.90 <110> oriented rods were prepared by zone melting with unidirectional solidification.The magnetomechanical coupling factor(k33) was measured by magnetomechanical resonance under different DC bias fields up to 77.4 mT.An effective method was provided to calculate sonic velocity,elastic modulus and compliance constant through measuring resonate frequency(fr),and calculate dynamic magnetostriction(d33) via measuring magnetic permeability,magnetomechanical coupling factor(k33) and complia...
基金funded by the National Natural Science Foundation of China(Grant No.41790443)the Fundamental Research Funds for the Central Universities,Chang’an University(CHD)(Grant No.300102218412)。
文摘The use of low embankments is of significant concern for ecological protection in aridoasis areas.Based on the project of Sansha Expressway located in Kashgar City,Xinjiang,China,physical model tests were conducted in this study to investigate the dynamic response of the low embankment as per the effects of road structure,load amplitude,load frequency,load cycle,and moisture content.The dynamic stress is shown to increase with load amplitude while the dynamic elastic modulus decreases with load amplitude under short-term loading.The load frequency slightly influences the soil’s dynamic behavior;higher frequencies can improve the dynamic elastic modulus of the subgrade soil.The moisture content has greater influence on the mechanical properties of the subsoil than that of subgrade layer.The subgrade bears the majority of the traffic load as the stress dissipates to 37%of the whole value on its surface.The number of load cycles has the greatest effect on the dynamic response among the influencing factors tested.The dynamic elastic modulus with the type of long-term dynamic loading is only 40%-52%of that with static loading across the entire depth range.The dynamic stress shows significant accumulation with load cycles over the long-term dynamic loading test and becomes stable after 8×10~4 cycles of loading.An equation is established to quantify the cumulative dynamic stress in the low embankment under long-term dynamic loading conditions.
基金Sponsored by National Natural Foundtion of China(51134013,51171037)
文摘304 stainless steel coating was deposited on the IF steel substrate by cold gas dynamic spraying (CGDS), and the elastic modulus of the 304 stainless steel coating was studied. The elastic modulus of cold sprayed 304 stain- less steel coating was measured using the three-point bend testing and the compound beam theory, and the other me- chanic parameters (such as the equivalent flexural rigidity and the moment of inertia of area) of the coatings were also calculated using this compound beam theory. It is found that the calculated results using the above methods are accu- rate and reliable. The elastic modulus value of the cold sprayed 304 stainless steel coating is 1. 179 X 105 MPa, and it is slightly lower than the 304 stainless steel plate (about 2 X 105 MPa). It indicates that the elastic modulus of the cold sprayed coatings was quite different from the comparable bulk materials. The main reason is that the pores and other defects are existed in the coatings, and the elastic modulus of the coatings also depends on varies parameters such as the feed stock particle size, porosity, and processing parameters.