Network virtualization can effectively establish dedicated virtual networks to implement various network functions.However,the existing research works have some shortcomings,for example,although computing resource pro...Network virtualization can effectively establish dedicated virtual networks to implement various network functions.However,the existing research works have some shortcomings,for example,although computing resource properties of individual nodes are considered,node storage properties and the network topology properties are usually ignored in Virtual Network(VN)modelling,which leads to the inaccurate measurement of node availability and priority.In addition,most static virtual network mapping methods allocate fixed resources to users during the entire life cycle,and the users’actual resource requirements vary with the workload,which results in resource allocation redundancy.Based on the above analysis,in this paper,we propose a dynamic resource sharing virtual network mapping algorithm named NMA-PRS-VNE,first,we construct a new,more realistic network framework in which the properties of nodes include computing resources,storage resources and topology properties.In the node mapping process,three properties of the node are used to measure its mapping ability.Second,we consider the resources of adjacent nodes and links instead of the traditional method of measuring the availability and priority of nodes by considering only the resource properties,so as to more accurately select the physical mapping nodes that meet the constraints and conditions and improve the success rate of subsequent link mapping.Finally,we divide the resource requirements of Virtual Network Requests(VNRs)into basic subrequirements and variable sub-variable requirements to complete dynamic resource allocation.The former represents monopolizing resource requirements by the VNRs,while the latter represents shared resources by many VNRs with the probability of occupying resources,where we keep a balance between resource sharing and collision among users by calculating the collision probability.Simulation results show that the proposed NMAPRS-VNE can increase the average acceptance rate and network revenue by 15%and 38%,and reduce the network cost and link pressure by 25%and 17%.展开更多
Shared manufacturing is recognized as a new point-to-point manufac-turing mode in the digital era.Shared manufacturing is referred to as a new man-ufacturing mode to realize the dynamic allocation of manufacturing tas...Shared manufacturing is recognized as a new point-to-point manufac-turing mode in the digital era.Shared manufacturing is referred to as a new man-ufacturing mode to realize the dynamic allocation of manufacturing tasks and resources.Compared with the traditional mode,shared manufacturing offers more abundant manufacturing resources and flexible configuration options.This paper proposes a model based on the description of the dynamic allocation of tasks and resources in the shared manufacturing environment,and the characteristics of shared manufacturing resource allocation.The execution of manufacturing tasks,in which candidate manufacturing resources enter or exit at various time nodes,enables the dynamic allocation of manufacturing tasks and resources.Then non-dominated sorting genetic algorithm(NSGA-II)and multi-objective particle swarm optimization(MOPSO)algorithms are designed to solve the model.The optimal parameter settings for the NSGA-II and MOPSO algorithms have been obtained according to the experiments with various population sizes and iteration numbers.In addition,the proposed model’s efficiency,which considers the entries and exits of manufacturing resources in the shared manufacturing environment,is further demonstrated by the overlap between the outputs of the NSGA-II and MOPSO algorithms for optimal resource allocation.展开更多
To solve the problems of updating sub-secrets or secrets as well as adding or deleting agents in the quantum secret sharing protocol, we propose a two-particle transform of Bell states, and consequently present a nove...To solve the problems of updating sub-secrets or secrets as well as adding or deleting agents in the quantum secret sharing protocol, we propose a two-particle transform of Bell states, and consequently present a novel dynamic quantum secret sharing protocol. The new protocol can not only resist some typical attacks, but also be more efficient than the existing protocols. Furthermore, we take advantage of the protocol to establish the dynamic secret sharing of a quantum state protocol for two-particle maximum entangled states.展开更多
A vector space secret sharing scheme based on certificates is proposed in this paper. The difficulties of solving discrete logarithm assure confidential information's security, and the use of each participant's cert...A vector space secret sharing scheme based on certificates is proposed in this paper. The difficulties of solving discrete logarithm assure confidential information's security, and the use of each participant's certificate makes the dealer have no need to transfer secret information to the participants. The proposed scheme is dynamic. It can effectively check cheaters and does not have secure channel requirements.展开更多
A new nonlinear transverse-torsional coupled model with backlash and bearing clearance was proposed for planetary gear set. Meanwhile, sun gear and planet's eccentricity errors, static transmission error, and time...A new nonlinear transverse-torsional coupled model with backlash and bearing clearance was proposed for planetary gear set. Meanwhile, sun gear and planet's eccentricity errors, static transmission error, and time-varying meshing stiffness were taken into consideration. The differential governing equations of motion were solved by employing variable step-size Rung-Kutta numerical integration method. The behavior of dynamic load sharing characteristics affected by the system parameters including input rate, sun gear's supporting stiffness and eccentricity error, planet's eccentricity error, sun gear's bearing clearance, backlashes of sun-planet and planet-ring meshes were investigated qualitatively and systematically. Some theoretical results are summarized at last which extend the current understanding of the dynamic load sharing behavior of planet gear train, enrich the related literature and provide references for the design of planetary gear train.展开更多
This paper studies the proactive spec-trum monitoring with one half-duplex spectrum moni-tor(SM)to cope with the potential suspicious wireless powered communications(SWPC)in dynamic spec-trum sharing networks.The jamm...This paper studies the proactive spec-trum monitoring with one half-duplex spectrum moni-tor(SM)to cope with the potential suspicious wireless powered communications(SWPC)in dynamic spec-trum sharing networks.The jamming-assisted spec-trum monitoring scheme via spectrum monitoring data(SMD)transmission is proposed to maximize the sum ergodic monitoring rate at SM.In SWPC,the suspi-cious communications of each data block occupy mul-tiple independent blocks,with a block dedicated to the wireless energy transfer by the energy-constrained suspicious nodes with locations in a same cluster(symmetric scene)or randomly distributed(asymmet-ric scene)and the remaining blocks used for the in-formation transmission from suspicious transmitters(STs)to suspicious destination(SD).For the sym-metric scene,with a given number of blocks for SMD transmission,namely the jamming operation,we first reveal that SM should transmit SMD signal(jam the SD)with tolerable maximum power in the given blocks.The perceived suspicious signal power at SM could be maximized,and thus so does the correspond-ing sum ergodic monitoring rate.Then,we further reveal one fundamental trade-off in deciding the op-timal number of given blocks for SMD transmission.For the asymmetric scene,a low-complexity greedy block selection scheme is proposed to guarantee the optimal performance.Simulation results show that the jamming-assisted spectrum monitoring schemes via SMD transmission achieve much better perfor-mance than conventional passive spectrum monitor-ing,since the proposed schemes can obtain more accu-rate and effective spectrum characteristic parameters,which provide basic support for fine-grained spectrum management and a solution for spectrum security in dynamic spectrum sharing network.展开更多
Mobile crowdsensing(MCS) has become an emerging paradigm to solve urban sensing problems by leveraging the ubiquitous sensing capabilities of the crowd. One critical issue in MCS is how to recruit users to fulfill mor...Mobile crowdsensing(MCS) has become an emerging paradigm to solve urban sensing problems by leveraging the ubiquitous sensing capabilities of the crowd. One critical issue in MCS is how to recruit users to fulfill more sensing tasks with budget restriction, while sharing data among tasks can be a credible way to improve the efficiency. The data-sharing based user recruitment problem under budget constraint in a realistic scenario is studied, where multiple tasks require homogeneous data but have various spatio-temporal execution ranges, meanwhile users suffer from uncertain future positions. The problem is formulated in a manner of probability by predicting user mobility, then a dynamic user recruitment algorithm is proposed to solve it. In the algorithm a greedy-adding-and-substitution(GAS) heuristic is repeatedly implemented by updating user mobility prediction in each time slot to gradually achieve the final solution. Extensive simulations are conducted using a real-world taxi trace dataset, and the results demonstrate that the approach can fulfill more tasks than existing methods.展开更多
By using the dynamic shift-share analysis, the industrial structure and competitive strength of 31 provincial districts except Taiwan, Hong Kong and Macao are studied by taking the GDP of the three industries as the r...By using the dynamic shift-share analysis, the industrial structure and competitive strength of 31 provincial districts except Taiwan, Hong Kong and Macao are studied by taking the GDP of the three industries as the research entrance and the whole nation as the reference district. The industrial structure and competitive strength of each provincial district is measured. Through the analysis of pertinence, the correlation degree of industrial structure and industrial competitive strength to economic growth is analyzed. The results show that the industrial competitive strength is closely related to the economic growth of the 31 provincial districts, but the contribution made by the industrial structure to economic growth is insufficient and the effect of industrial structure does not match with that of industrial competitive strength. According to industrial competitiveness and industrial structure effect, 31 provincial districts of the whole nation are divided into 4 types and the relevant countermeasures of the four types are put forward.展开更多
As renewable energy continues to be integrated into the grid,energy storage has become a vital technique supporting power system development.To effectively promote the efficiency and economics of energy storage,centra...As renewable energy continues to be integrated into the grid,energy storage has become a vital technique supporting power system development.To effectively promote the efficiency and economics of energy storage,centralized shared energy storage(SES)station with multiple energy storage batteries is developed to enable energy trading among a group of entities.In this paper,we propose the optimal operation with dynamic partitioning strategy for the centralized SES station,considering the day-ahead demands of large-scale renewable energy power plants.We implement a multi-entity cooperative optimization operation model based on Nash bargaining theory.This model is decomposed into two subproblems:the operation profit maximization problem with energy trading and the leasing payment bargaining problem.The distributed alternating direction multiplier method(ADMM)is employed to address the subproblems separately.Simulations reveal that the optimal operation with a dynamic partitioning strategy improves the tracking of planned output of renewable energy entities,enhances the actual utilization rate of energy storage,and increases the profits of each participating entity.The results confirm the practicality and effectiveness of the strategy.展开更多
A realistic population density distribution scenario in conjunction with the spatial dynamic spectrum allocation (DSA) is taken into account to mitigate the spectrum wastage in terms of extra guard bands. For the in...A realistic population density distribution scenario in conjunction with the spatial dynamic spectrum allocation (DSA) is taken into account to mitigate the spectrum wastage in terms of extra guard bands. For the insertion of the extra guard bands, an efficient strategy based on self-assessment is applied to each victim cell individually and independently. Consequently, it is no more required to spread the extra guard band over the whole DSA region. Simulation results StlOW an improvement of 3% -4% in percentage of satisfied users for Universal Mobile Telecommunications System (UMTS) network and 4%-5% for Digital Video Broadcasting Terrestrial (DVB-T) network.展开更多
To address the problem that existing bipartite secret sharing scheme is short of dynamic characteristic, and to solve the problem that each participant can only use secret share once, this paper proposed a bipartite (...To address the problem that existing bipartite secret sharing scheme is short of dynamic characteristic, and to solve the problem that each participant can only use secret share once, this paper proposed a bipartite (n1+n2, m1+m2)-threshold multi-secret sharing scheme which combined cryptography and hypersphere geometry. In this scheme, we introduced a bivariate function and a coordinate function over finite field Zp to calculate the derived points of secret share, which can reconstruct the shared secrets by producing the intersection point of hypernormal plane and normal line on the hypertangent plane. At the initial stage the secret dealer distributes to each participant a secret share that can be kept secret based on the intractability of discrete logarithm problem and need not be changed with updating the shared secrets.Each cooperative participant only needs to submit a derived point calculated from the secret share without exposing this secret share during the process of reconstructing the shared secret. Analyses indicate that the proposed scheme is not only sound and secure because of hypersphere geometric properties and the difficulty of discrete logarithm problem, but also efficient because of its well dynamic behavior and the invariant secret share. Therefore, this bipartite threshold multi-secret sharing scheme is easy to implement and is applicable in practical settings.展开更多
Nowadays, an increasing number of persons choose to outsource their computing demands and storage demands to the Cloud. In order to ensure the integrity of the data in the untrusted Cloud, especially the dynamic files...Nowadays, an increasing number of persons choose to outsource their computing demands and storage demands to the Cloud. In order to ensure the integrity of the data in the untrusted Cloud, especially the dynamic files which can be updated online, we propose an improved dynamic provable data possession model. We use some homomorphic tags to verify the integrity of the file and use some hash values generated by some secret values and tags to prevent replay attack and forgery attack. Compared with previous works, our proposal reduces the computational and communication complexity from O(logn) to O(1). We did some experiments to ensure this improvement and extended the model to file sharing situation.展开更多
In this study, we propose new dynamic spectrum allocations in multi-cells and intra-cell of cognitive network to enhance system performance in terms of decreasing probability of interruption and spectrum handoff of co...In this study, we propose new dynamic spectrum allocations in multi-cells and intra-cell of cognitive network to enhance system performance in terms of decreasing probability of interruption and spectrum handoff of communication services in a cognitive system. The inter-cells of the spectrum allocation mechanism is designed to share the risk of vacating spectrum caused by licensed incumbents re-occupying the spectrum and minimize probability of service interruption in the cognitive network. This mechanism also can guarantee fairness among multi-cells. The intra-cell of the proposed spectrum allocation is based on a service data hierarchical model and establishes a mapping mechanism between layered data and the spectrum. It can reduce probability of spectrum handoff. Finally, simulation results are given and show that the new mechanism can reduce service interruption ratio and the probability of spectrum handoff caused by licensed incumbents with re-occupying the spectrum.展开更多
A threshold scheme, which is introduced by Shamir in 1979, is very famous as a secret sharing scheme. We can consider that this scheme is based on Lagrange's interpolation formula. A secret sharing scheme has one key...A threshold scheme, which is introduced by Shamir in 1979, is very famous as a secret sharing scheme. We can consider that this scheme is based on Lagrange's interpolation formula. A secret sharing scheme has one key. On the other hand, a multi-secret sharing scheme has more than one key, that is, a multi-secret sharing scheme has p (〉_ 2) keys. Dealer distribute shares of keys among n participants. Gathering t (〈 n) participants, keys can be reconstructed. Yang et al. (2004) gave a scheme of a (t, n) multi-secret sharing based on Lagrange's interpolation. Zhao et al. (2007) gave a scheme of a (t, n) verifiable multi-secret sharing based on Lagrange's interpolation. Recently, Adachi and Okazaki give a scheme of a (t, n) multi-secret sharing based on Hermite interpolation, in the case ofp 〈 t. In this paper, we give a scheme ofa (t, n) verifiable multi-secret sharing based on Hermite interpolation.展开更多
It is not more and more, easy to satisfy the important and growing spectrum demands in the context of the static conventional policy spectrum allocation. Therefore, to find a suitable solution to this problem, we are ...It is not more and more, easy to satisfy the important and growing spectrum demands in the context of the static conventional policy spectrum allocation. Therefore, to find a suitable solution to this problem, we are to days observing the apparition of flexible dynamic spectrum allocation methods. These methods that ought to improve more significantly the spectrum use have gained much interest. In fact, the digital dividend due to the change-over from the analog television to the digital terrestrial television must be efficiently used. So the Dynamic Spectrum Access (DSA) can potentially play a key role in shaping the future digital dividend use. In the DSA, two kinds of users or networks coexist on different channels. The first one, known as the primary user, accesses to a channel with high priority;and the second one, known as secondary user has a low priority. This paper presents a dynamic spectrum access protocol based on an auction framework. Our protocol is an interesting tool that allows the networks to bid and obtain on the available spectrum, the rights to be primary and secondary users according their valuations and traffic needs. Based on certain offers, our protocol selects primary and secondary users for each idle channel in order to realize the maximum economic for the regulator or social benefits. We deal with the case in which the offers of the networks are independent one another even if they will share the same channels. We design an algorithm in accordance with our dynamic spectrum access protocol. The algorithm is used here to find an optimal solution to the access allocation problem, specifically to digital dividend. Finally, the results in the numeric section, regarding the three suggested scenarios, show that the proposed dynamic spectrum access protocol is viable. The algorithm is able to eliminate all non-compliant bidders for the available spectrum sharing. We notice that the revenue or social benefits of the regulator is maximized when we have on each channel, one primary user and the maximum number of secondary users.展开更多
The organic food market has become an important part of food industry. We analyze sales data from Austria for 2014 to 2020 of 124 products from 25 product groups in six categories, each in conventional and organic for...The organic food market has become an important part of food industry. We analyze sales data from Austria for 2014 to 2020 of 124 products from 25 product groups in six categories, each in conventional and organic form. We fitted their market shares by means of a modified Lotka-Volterra model with constant coefficients. When only organic and conventional products were compared, a significant increase in market shares was observed for 15 of 25 organic product groups, indicating a continuing growth of the organic food market. The typical Lotka-Volterra dynamics was a predator-prey dynamics with an organic product (group) predating on conventional products that were in symbiosis.展开更多
This paper presents an efficient dynamic spectrum allocation (DSA) scheme in a flexible spectrum licensing environment where multiple networks coexist and interfere with each other. In particular, an extension of vi...This paper presents an efficient dynamic spectrum allocation (DSA) scheme in a flexible spectrum licensing environment where multiple networks coexist and interfere with each other. In particular, an extension of virtual boundary concept in DSA is proposed, which is spectrally efficient than the previous virtual boundary concept applied to donor systems only. Here, the same technique is applied to both donor and rental systems so as to further reduce the occurrences where the insertion of guard bands is obligatory and as a result provides better spectral efficiency. The proposed extension improves the spectrum utilization without any compromise on interference and fairness issues.展开更多
The purpose of introducing blockchain into electronic archives sharing and utilization is to break the information barrier between electronic archives sharing departments by relying on technologies such as smart contr...The purpose of introducing blockchain into electronic archives sharing and utilization is to break the information barrier between electronic archives sharing departments by relying on technologies such as smart contract and asymmetric encryption.Aiming at the problem of dynamic permission management in common access control methods,a new access control method based on smart contract under blockchain is proposed,which improves the intelligence level under blockchain technology.Firstly,the Internet attribute access control model based on smart contract is established.For the dynamic access of heterogeneous devices,the management contract,permission judgment contract and access control contract are designed;Secondly,the access object credit evaluation algorithm based on particle swarm optimization radial basis function(PSO-RBF)neural network is used to dynamically generate the access node credit threshold combined with the access policy,so as to realize the intelligent access right management method.Finally,combined with the abovemodels and algorithms,the workflow of electronic archives sharing and utilization model of multi blockchain is constructed.The experimental results show that the timeconsuming of the process increases linearly with the number of continuous access to electronic archives blocks,and the secure access control of sharing and utilization is feasible,secure and effective.展开更多
基金We are grateful for the support of the Natural Science Foundation of Shandong Province(No.ZR2020LZH008,ZR2020QF112,ZR2019MF071)the National Natural Science Foundation of China(61373149).
文摘Network virtualization can effectively establish dedicated virtual networks to implement various network functions.However,the existing research works have some shortcomings,for example,although computing resource properties of individual nodes are considered,node storage properties and the network topology properties are usually ignored in Virtual Network(VN)modelling,which leads to the inaccurate measurement of node availability and priority.In addition,most static virtual network mapping methods allocate fixed resources to users during the entire life cycle,and the users’actual resource requirements vary with the workload,which results in resource allocation redundancy.Based on the above analysis,in this paper,we propose a dynamic resource sharing virtual network mapping algorithm named NMA-PRS-VNE,first,we construct a new,more realistic network framework in which the properties of nodes include computing resources,storage resources and topology properties.In the node mapping process,three properties of the node are used to measure its mapping ability.Second,we consider the resources of adjacent nodes and links instead of the traditional method of measuring the availability and priority of nodes by considering only the resource properties,so as to more accurately select the physical mapping nodes that meet the constraints and conditions and improve the success rate of subsequent link mapping.Finally,we divide the resource requirements of Virtual Network Requests(VNRs)into basic subrequirements and variable sub-variable requirements to complete dynamic resource allocation.The former represents monopolizing resource requirements by the VNRs,while the latter represents shared resources by many VNRs with the probability of occupying resources,where we keep a balance between resource sharing and collision among users by calculating the collision probability.Simulation results show that the proposed NMAPRS-VNE can increase the average acceptance rate and network revenue by 15%and 38%,and reduce the network cost and link pressure by 25%and 17%.
基金This work was supported by the Key Program of Social Science Planning Foundation of Liaoning Province under Grant L21AGL017.
文摘Shared manufacturing is recognized as a new point-to-point manufac-turing mode in the digital era.Shared manufacturing is referred to as a new man-ufacturing mode to realize the dynamic allocation of manufacturing tasks and resources.Compared with the traditional mode,shared manufacturing offers more abundant manufacturing resources and flexible configuration options.This paper proposes a model based on the description of the dynamic allocation of tasks and resources in the shared manufacturing environment,and the characteristics of shared manufacturing resource allocation.The execution of manufacturing tasks,in which candidate manufacturing resources enter or exit at various time nodes,enables the dynamic allocation of manufacturing tasks and resources.Then non-dominated sorting genetic algorithm(NSGA-II)and multi-objective particle swarm optimization(MOPSO)algorithms are designed to solve the model.The optimal parameter settings for the NSGA-II and MOPSO algorithms have been obtained according to the experiments with various population sizes and iteration numbers.In addition,the proposed model’s efficiency,which considers the entries and exits of manufacturing resources in the shared manufacturing environment,is further demonstrated by the overlap between the outputs of the NSGA-II and MOPSO algorithms for optimal resource allocation.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB338002)
文摘To solve the problems of updating sub-secrets or secrets as well as adding or deleting agents in the quantum secret sharing protocol, we propose a two-particle transform of Bell states, and consequently present a novel dynamic quantum secret sharing protocol. The new protocol can not only resist some typical attacks, but also be more efficient than the existing protocols. Furthermore, we take advantage of the protocol to establish the dynamic secret sharing of a quantum state protocol for two-particle maximum entangled states.
基金Supported by the National Natural Science Foun-dation of China(60573129) the Opening Foundation of State Key La-boratory of Information Security and the Opening Foundation of KeyLaboratory of Computer Network and Information Security, Ministryof Education of PRC.
文摘A vector space secret sharing scheme based on certificates is proposed in this paper. The difficulties of solving discrete logarithm assure confidential information's security, and the use of each participant's certificate makes the dealer have no need to transfer secret information to the participants. The proposed scheme is dynamic. It can effectively check cheaters and does not have secure channel requirements.
基金Project(51105194)supported by the National Natural Science Foundation of ChinaProject(20113218110017)supported by the Doctoral Program Foundation of Institutions of Higher Education of China+2 种基金Project supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,ChinaProject(CXZZ11_0199)supported by the Funding of Jiangsu Innovation Program for Graduate Education,ChinaProjects(NZ2013303,NZ2014201)supported by the Fundamental Research Funds for the Central Universities,China
文摘A new nonlinear transverse-torsional coupled model with backlash and bearing clearance was proposed for planetary gear set. Meanwhile, sun gear and planet's eccentricity errors, static transmission error, and time-varying meshing stiffness were taken into consideration. The differential governing equations of motion were solved by employing variable step-size Rung-Kutta numerical integration method. The behavior of dynamic load sharing characteristics affected by the system parameters including input rate, sun gear's supporting stiffness and eccentricity error, planet's eccentricity error, sun gear's bearing clearance, backlashes of sun-planet and planet-ring meshes were investigated qualitatively and systematically. Some theoretical results are summarized at last which extend the current understanding of the dynamic load sharing behavior of planet gear train, enrich the related literature and provide references for the design of planetary gear train.
基金the Natural Science Foun-dations of China(No.62171464,61771487)the Defense Science Foundation of China(No.2019-JCJQ-JJ-221).
文摘This paper studies the proactive spec-trum monitoring with one half-duplex spectrum moni-tor(SM)to cope with the potential suspicious wireless powered communications(SWPC)in dynamic spec-trum sharing networks.The jamming-assisted spec-trum monitoring scheme via spectrum monitoring data(SMD)transmission is proposed to maximize the sum ergodic monitoring rate at SM.In SWPC,the suspi-cious communications of each data block occupy mul-tiple independent blocks,with a block dedicated to the wireless energy transfer by the energy-constrained suspicious nodes with locations in a same cluster(symmetric scene)or randomly distributed(asymmet-ric scene)and the remaining blocks used for the in-formation transmission from suspicious transmitters(STs)to suspicious destination(SD).For the sym-metric scene,with a given number of blocks for SMD transmission,namely the jamming operation,we first reveal that SM should transmit SMD signal(jam the SD)with tolerable maximum power in the given blocks.The perceived suspicious signal power at SM could be maximized,and thus so does the correspond-ing sum ergodic monitoring rate.Then,we further reveal one fundamental trade-off in deciding the op-timal number of given blocks for SMD transmission.For the asymmetric scene,a low-complexity greedy block selection scheme is proposed to guarantee the optimal performance.Simulation results show that the jamming-assisted spectrum monitoring schemes via SMD transmission achieve much better perfor-mance than conventional passive spectrum monitor-ing,since the proposed schemes can obtain more accu-rate and effective spectrum characteristic parameters,which provide basic support for fine-grained spectrum management and a solution for spectrum security in dynamic spectrum sharing network.
基金Supported by the National Natural Science Foundation of China(No.61472402,61472404,61732017,61501125,61502457)
文摘Mobile crowdsensing(MCS) has become an emerging paradigm to solve urban sensing problems by leveraging the ubiquitous sensing capabilities of the crowd. One critical issue in MCS is how to recruit users to fulfill more sensing tasks with budget restriction, while sharing data among tasks can be a credible way to improve the efficiency. The data-sharing based user recruitment problem under budget constraint in a realistic scenario is studied, where multiple tasks require homogeneous data but have various spatio-temporal execution ranges, meanwhile users suffer from uncertain future positions. The problem is formulated in a manner of probability by predicting user mobility, then a dynamic user recruitment algorithm is proposed to solve it. In the algorithm a greedy-adding-and-substitution(GAS) heuristic is repeatedly implemented by updating user mobility prediction in each time slot to gradually achieve the final solution. Extensive simulations are conducted using a real-world taxi trace dataset, and the results demonstrate that the approach can fulfill more tasks than existing methods.
文摘By using the dynamic shift-share analysis, the industrial structure and competitive strength of 31 provincial districts except Taiwan, Hong Kong and Macao are studied by taking the GDP of the three industries as the research entrance and the whole nation as the reference district. The industrial structure and competitive strength of each provincial district is measured. Through the analysis of pertinence, the correlation degree of industrial structure and industrial competitive strength to economic growth is analyzed. The results show that the industrial competitive strength is closely related to the economic growth of the 31 provincial districts, but the contribution made by the industrial structure to economic growth is insufficient and the effect of industrial structure does not match with that of industrial competitive strength. According to industrial competitiveness and industrial structure effect, 31 provincial districts of the whole nation are divided into 4 types and the relevant countermeasures of the four types are put forward.
基金supported by the National Natural Science Foundation of China“Game control-based planning and simulation modelling of coupled optical storage hydrogen production system”(No.52277211).
文摘As renewable energy continues to be integrated into the grid,energy storage has become a vital technique supporting power system development.To effectively promote the efficiency and economics of energy storage,centralized shared energy storage(SES)station with multiple energy storage batteries is developed to enable energy trading among a group of entities.In this paper,we propose the optimal operation with dynamic partitioning strategy for the centralized SES station,considering the day-ahead demands of large-scale renewable energy power plants.We implement a multi-entity cooperative optimization operation model based on Nash bargaining theory.This model is decomposed into two subproblems:the operation profit maximization problem with energy trading and the leasing payment bargaining problem.The distributed alternating direction multiplier method(ADMM)is employed to address the subproblems separately.Simulations reveal that the optimal operation with a dynamic partitioning strategy improves the tracking of planned output of renewable energy entities,enhances the actual utilization rate of energy storage,and increases the profits of each participating entity.The results confirm the practicality and effectiveness of the strategy.
基金The National High-Tech Research and Development Program of China ( No.2005AA123950)the National Science Foundation of China (No.90604035)
文摘A realistic population density distribution scenario in conjunction with the spatial dynamic spectrum allocation (DSA) is taken into account to mitigate the spectrum wastage in terms of extra guard bands. For the insertion of the extra guard bands, an efficient strategy based on self-assessment is applied to each victim cell individually and independently. Consequently, it is no more required to spread the extra guard band over the whole DSA region. Simulation results StlOW an improvement of 3% -4% in percentage of satisfied users for Universal Mobile Telecommunications System (UMTS) network and 4%-5% for Digital Video Broadcasting Terrestrial (DVB-T) network.
文摘To address the problem that existing bipartite secret sharing scheme is short of dynamic characteristic, and to solve the problem that each participant can only use secret share once, this paper proposed a bipartite (n1+n2, m1+m2)-threshold multi-secret sharing scheme which combined cryptography and hypersphere geometry. In this scheme, we introduced a bivariate function and a coordinate function over finite field Zp to calculate the derived points of secret share, which can reconstruct the shared secrets by producing the intersection point of hypernormal plane and normal line on the hypertangent plane. At the initial stage the secret dealer distributes to each participant a secret share that can be kept secret based on the intractability of discrete logarithm problem and need not be changed with updating the shared secrets.Each cooperative participant only needs to submit a derived point calculated from the secret share without exposing this secret share during the process of reconstructing the shared secret. Analyses indicate that the proposed scheme is not only sound and secure because of hypersphere geometric properties and the difficulty of discrete logarithm problem, but also efficient because of its well dynamic behavior and the invariant secret share. Therefore, this bipartite threshold multi-secret sharing scheme is easy to implement and is applicable in practical settings.
基金supported by Major Program of Shanghai Science and Technology Commission under Grant No.10DZ1500200Collaborative Applied Research and Development Project between Morgan Stanley and Shanghai Jiao Tong University, China
文摘Nowadays, an increasing number of persons choose to outsource their computing demands and storage demands to the Cloud. In order to ensure the integrity of the data in the untrusted Cloud, especially the dynamic files which can be updated online, we propose an improved dynamic provable data possession model. We use some homomorphic tags to verify the integrity of the file and use some hash values generated by some secret values and tags to prevent replay attack and forgery attack. Compared with previous works, our proposal reduces the computational and communication complexity from O(logn) to O(1). We did some experiments to ensure this improvement and extended the model to file sharing situation.
文摘In this study, we propose new dynamic spectrum allocations in multi-cells and intra-cell of cognitive network to enhance system performance in terms of decreasing probability of interruption and spectrum handoff of communication services in a cognitive system. The inter-cells of the spectrum allocation mechanism is designed to share the risk of vacating spectrum caused by licensed incumbents re-occupying the spectrum and minimize probability of service interruption in the cognitive network. This mechanism also can guarantee fairness among multi-cells. The intra-cell of the proposed spectrum allocation is based on a service data hierarchical model and establishes a mapping mechanism between layered data and the spectrum. It can reduce probability of spectrum handoff. Finally, simulation results are given and show that the new mechanism can reduce service interruption ratio and the probability of spectrum handoff caused by licensed incumbents with re-occupying the spectrum.
文摘A threshold scheme, which is introduced by Shamir in 1979, is very famous as a secret sharing scheme. We can consider that this scheme is based on Lagrange's interpolation formula. A secret sharing scheme has one key. On the other hand, a multi-secret sharing scheme has more than one key, that is, a multi-secret sharing scheme has p (〉_ 2) keys. Dealer distribute shares of keys among n participants. Gathering t (〈 n) participants, keys can be reconstructed. Yang et al. (2004) gave a scheme of a (t, n) multi-secret sharing based on Lagrange's interpolation. Zhao et al. (2007) gave a scheme of a (t, n) verifiable multi-secret sharing based on Lagrange's interpolation. Recently, Adachi and Okazaki give a scheme of a (t, n) multi-secret sharing based on Hermite interpolation, in the case ofp 〈 t. In this paper, we give a scheme ofa (t, n) verifiable multi-secret sharing based on Hermite interpolation.
文摘It is not more and more, easy to satisfy the important and growing spectrum demands in the context of the static conventional policy spectrum allocation. Therefore, to find a suitable solution to this problem, we are to days observing the apparition of flexible dynamic spectrum allocation methods. These methods that ought to improve more significantly the spectrum use have gained much interest. In fact, the digital dividend due to the change-over from the analog television to the digital terrestrial television must be efficiently used. So the Dynamic Spectrum Access (DSA) can potentially play a key role in shaping the future digital dividend use. In the DSA, two kinds of users or networks coexist on different channels. The first one, known as the primary user, accesses to a channel with high priority;and the second one, known as secondary user has a low priority. This paper presents a dynamic spectrum access protocol based on an auction framework. Our protocol is an interesting tool that allows the networks to bid and obtain on the available spectrum, the rights to be primary and secondary users according their valuations and traffic needs. Based on certain offers, our protocol selects primary and secondary users for each idle channel in order to realize the maximum economic for the regulator or social benefits. We deal with the case in which the offers of the networks are independent one another even if they will share the same channels. We design an algorithm in accordance with our dynamic spectrum access protocol. The algorithm is used here to find an optimal solution to the access allocation problem, specifically to digital dividend. Finally, the results in the numeric section, regarding the three suggested scenarios, show that the proposed dynamic spectrum access protocol is viable. The algorithm is able to eliminate all non-compliant bidders for the available spectrum sharing. We notice that the revenue or social benefits of the regulator is maximized when we have on each channel, one primary user and the maximum number of secondary users.
文摘The organic food market has become an important part of food industry. We analyze sales data from Austria for 2014 to 2020 of 124 products from 25 product groups in six categories, each in conventional and organic form. We fitted their market shares by means of a modified Lotka-Volterra model with constant coefficients. When only organic and conventional products were compared, a significant increase in market shares was observed for 15 of 25 organic product groups, indicating a continuing growth of the organic food market. The typical Lotka-Volterra dynamics was a predator-prey dynamics with an organic product (group) predating on conventional products that were in symbiosis.
基金This work was supported in part by the National Nature Science Foundation of China (NSFC) under Grant No. 90604035the 863 high-tech R&D program of China under Grant No. 2005AA123950.
文摘This paper presents an efficient dynamic spectrum allocation (DSA) scheme in a flexible spectrum licensing environment where multiple networks coexist and interfere with each other. In particular, an extension of virtual boundary concept in DSA is proposed, which is spectrally efficient than the previous virtual boundary concept applied to donor systems only. Here, the same technique is applied to both donor and rental systems so as to further reduce the occurrences where the insertion of guard bands is obligatory and as a result provides better spectral efficiency. The proposed extension improves the spectrum utilization without any compromise on interference and fairness issues.
基金supported by Shandong Social Science Planning and Research Project in 2021(No.21CPYJ40).
文摘The purpose of introducing blockchain into electronic archives sharing and utilization is to break the information barrier between electronic archives sharing departments by relying on technologies such as smart contract and asymmetric encryption.Aiming at the problem of dynamic permission management in common access control methods,a new access control method based on smart contract under blockchain is proposed,which improves the intelligence level under blockchain technology.Firstly,the Internet attribute access control model based on smart contract is established.For the dynamic access of heterogeneous devices,the management contract,permission judgment contract and access control contract are designed;Secondly,the access object credit evaluation algorithm based on particle swarm optimization radial basis function(PSO-RBF)neural network is used to dynamically generate the access node credit threshold combined with the access policy,so as to realize the intelligent access right management method.Finally,combined with the abovemodels and algorithms,the workflow of electronic archives sharing and utilization model of multi blockchain is constructed.The experimental results show that the timeconsuming of the process increases linearly with the number of continuous access to electronic archives blocks,and the secure access control of sharing and utilization is feasible,secure and effective.