The mobility of service providers brings new features into the research of dynamic network based service composition.From an optimistic perspective,the mobility of services could benefit the optimization of service co...The mobility of service providers brings new features into the research of dynamic network based service composition.From an optimistic perspective,the mobility of services could benefit the optimization of service composition,if properly handled.Therefore,the impacts of node mobility on the dynamic network based service composition are investigated.Then,a movement-assisted optimization method,namely MASCO,is proposed to improve the performance of the composited services by minimizing the length of data stream and the hop-counts of the service routes in the underlying networks.The correctness and efficiency of the proposed method are then verified through theoretical analysis and computer simulations.展开更多
We investigate the similarities and differences among three queue rules,the first-in-first-out(FIFO)rule,last-in-firstout(LIFO)rule and random-in-random-out(RIRO)rule,on dynamical networks with limited buffer size.In ...We investigate the similarities and differences among three queue rules,the first-in-first-out(FIFO)rule,last-in-firstout(LIFO)rule and random-in-random-out(RIRO)rule,on dynamical networks with limited buffer size.In our network model,nodes move at each time step.Packets are transmitted by an adaptive routing strategy,combining Euclidean distance and node load by a tunable parameter.Because of this routing strategy,at the initial stage of increasing buffer size,the network density will increase,and the packet loss rate will decrease.Packet loss and traffic congestion occur by these three rules,but nodes keep unblocked and lose no packet in a larger buffer size range on the RIRO rule networks.If packets are lost and traffic congestion occurs,different dynamic characteristics are shown by these three queue rules.Moreover,a phenomenon similar to Braess’paradox is also found by the LIFO rule and the RIRO rule.展开更多
Identifying critical nodes or sets in large-scale networks is a fundamental scientific problem and one of the key research directions in the fields of data mining and network science when implementing network attacks,...Identifying critical nodes or sets in large-scale networks is a fundamental scientific problem and one of the key research directions in the fields of data mining and network science when implementing network attacks, defense, repair and control.Traditional methods usually begin from the centrality, node location or the impact on the largest connected component after node destruction, mainly based on the network structure.However, these algorithms do not consider network state changes.We applied a model that combines a random connectivity matrix and minimal low-dimensional structures to represent network connectivity.By using mean field theory and information entropy to calculate node activity,we calculated the overlap between the random parts and fixed low-dimensional parts to quantify the influence of node impact on network state changes and ranked them by importance.We applied this algorithm and the proposed importance algorithm to the overall analysis and stratified analysis of the C.elegans neural network.We observed a change in the critical entropy of the network state and by utilizing the proposed method we can calculate the nodes that indirectly affect muscle cells through neural layers.展开更多
In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation ...In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation of target state variables in multi-layer complex dynamical networks with nonlinear node dynamics is studied.A suitable functional state observer is constructed with the limited measurement.The parameters of the designed functional observer are obtained from the algebraic method and the stability of the functional observer is proven by the Lyapunov theorem.Some necessary conditions that need to be satisfied for the design of the functional state observer are obtained.Different from previous studies, in the multi-layer complex dynamical network with nonlinear node dynamics, the proposed method can estimate the state of target variables on some layers directly instead of estimating all the individual states.Thus, it can greatly reduce the placement of observers and computational cost.Numerical simulations with the three-layer complex dynamical network composed of three-dimensional nonlinear dynamical nodes are developed to verify the effectiveness of the method.展开更多
Complex networked systems,which range from biological systems in the natural world to infrastructure systems in the human-made world,can exhibit spontaneous recovery after a failure;for example,a brain may spontaneous...Complex networked systems,which range from biological systems in the natural world to infrastructure systems in the human-made world,can exhibit spontaneous recovery after a failure;for example,a brain may spontaneously return to normal after a seizure,and traffic flow can become smooth again after a jam.Previous studies on the spontaneous recovery of dynamical networks have been limited to undirected networks.However,most real-world networks are directed.To fill this gap,we build a model in which nodes may alternately fail and recover,and we develop a theoretical tool to analyze the recovery properties of directed dynamical networks.We find that the tool can accurately predict the final fraction of active nodes,and the prediction accuracy decreases as the fraction of bidirectional links in the network increases,which emphasizes the importance of directionality in network dynamics.Due to different initial states,directed dynamical networks may show alternative stable states under the same control parameter,exhibiting hysteresis behavior.In addition,for networks with finite sizes,the fraction of active nodes may jump back and forth between high and low states,mimicking repetitive failure-recovery processes.These findings could help clarify the system recovery mechanism and enable better design of networked systems with high resilience.展开更多
The outbreak of corona virus disease 2019 has profoundly affected people’s way of life.It is increasingly necessary to investigate epidemics over social networks.This paper studies susceptible-infected-removed(SIR)ep...The outbreak of corona virus disease 2019 has profoundly affected people’s way of life.It is increasingly necessary to investigate epidemics over social networks.This paper studies susceptible-infected-removed(SIR)epidemics via the semi-tensor product.First,a formal susceptible-infected-removed epidemic dynamic model over probabilistic dynamic networks(SIRED-PDN)is given.Based on an evolutionary rule,the algebraic form for the dynamics of individual states and network topologies is given,respectively.Second,the SIRED-PDN can be described by a probabilistic mix-valued logical network.After providing an algorithm,all possible final spreading equilibria can be obtained for any given initial epidemic state and network topology by seeking attractors of the network.And the shortest time for all possible initial epidemic state and network topology profiles to evolve to the final spreading equilibria can be obtained by seeking the transient time of the network.Finally,an illustrative example is given to show the effectiveness of our model.展开更多
One of the major factors inhibiting the construction of deep underground projects is the risk posed by rockbursts.A study was conducted on the access tunnel of the Shuangjiangkou hydropower station to determine the ev...One of the major factors inhibiting the construction of deep underground projects is the risk posed by rockbursts.A study was conducted on the access tunnel of the Shuangjiangkou hydropower station to determine the evolutionary mechanism of microfractures within the surrounding rock mass during rockburst development and develop a rockburst warning model.The study area was chosen through the combination of field studies with an analysis of the spatial and temporal distribution of microseismic(MS)events.The moment tensor inversion method was adopted to study rockburst mechanism,and a dynamic Bayesian network(DBN)was applied to investigating the sensitivity of MS source parameters for rockburst warnings.A MS multivariable rockburst warning model was proposed and validated using two case studies.The results indicate that fractures in the surrounding rock mass during the development of strain-structure rockbursts initially show shear failure and are then followed by tensile failure.The effectiveness of the DBN-based rockburst warning model was demonstrated using self-validation and K-fold cross-validation.Moment magnitude and source radius are the most sensitive factors based on an investigation of the influence on the parent and child nodes in the model,which can serve as important standards for rockburst warnings.The proposed rockburst warning model was found to be effective when applied to two actual projects.展开更多
Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely exp...Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely express predicted high‐quality images for complex scenes.A dynamic network for image super‐resolution(DSRNet)is presented,which contains a residual enhancement block,wide enhancement block,feature refine-ment block and construction block.The residual enhancement block is composed of a residual enhanced architecture to facilitate hierarchical features for image super‐resolution.To enhance robustness of obtained super‐resolution model for complex scenes,a wide enhancement block achieves a dynamic architecture to learn more robust information to enhance applicability of an obtained super‐resolution model for varying scenes.To prevent interference of components in a wide enhancement block,a refine-ment block utilises a stacked architecture to accurately learn obtained features.Also,a residual learning operation is embedded in the refinement block to prevent long‐term dependency problem.Finally,a construction block is responsible for reconstructing high‐quality images.Designed heterogeneous architecture can not only facilitate richer structural information,but also be lightweight,which is suitable for mobile digital devices.Experimental results show that our method is more competitive in terms of performance,recovering time of image super‐resolution and complexity.The code of DSRNet can be obtained at https://github.com/hellloxiaotian/DSRNet.展开更多
The dynamic wireless communication network is a complex network that needs to consider various influence factors including communication devices,radio propagation,network topology,and dynamic behaviors.Existing works ...The dynamic wireless communication network is a complex network that needs to consider various influence factors including communication devices,radio propagation,network topology,and dynamic behaviors.Existing works focus on suggesting simplified reliability analysis methods for these dynamic networks.As one of the most popular modeling methodologies,the dynamic Bayesian network(DBN)is proposed.However,it is insufficient for the wireless communication network which contains temporal and non-temporal events.To this end,we present a modeling methodology for a generalized continuous time Bayesian network(CTBN)with a 2-state conditional probability table(CPT).Moreover,a comprehensive reliability analysis method for communication devices and radio propagation is suggested.The proposed methodology is verified by a reliability analysis of a real wireless communication network.展开更多
In this paper, Hailin City of Heilongjiang Province, China is taken as the research area. As an important city in Heilongjiang Province, China, the sustainable development of its ecological environment is related to t...In this paper, Hailin City of Heilongjiang Province, China is taken as the research area. As an important city in Heilongjiang Province, China, the sustainable development of its ecological environment is related to the opening up, economic prosperity and social stability of Northeast China. In this paper, the remote sensing ecological index (RSEI) of Hailin City in recent 20 years was calculated by using Landsat 5/8/9 series satellite images, and the temporal and spatial changes of the ecological environment in Hailin City were further analyzed and the influencing factors were discussed. From 2003 to 2023, the mean value of RSEI in Hailin City decreased and increased, and the ecological environment decreased slightly as a whole. RSEI declined most significantly from 2003 to 2008, and it increased from 2008 to 2013, decreased from 2013 to 2018, and increased from 2018 to 2023 again, with higher RSEI value in the south and lower RSEI value in the northwest. It is suggested to appropriately increase vegetation coverage in the northwest to improve ecological quality. As a result, the predicted value of Elman dynamic recurrent neural network model is consistent with the change trend of the mean value, and the prediction error converges quickly, which can accurately predict the ecological environment quality in the future study area.展开更多
This paper proposes second-order consensus protocols with time-delays and gives the measure of the robustness of the protocols to the time-delay existing in the network of agents with second-order dynamics. By employi...This paper proposes second-order consensus protocols with time-delays and gives the measure of the robustness of the protocols to the time-delay existing in the network of agents with second-order dynamics. By employing a frequency domain method, it is proven that the information states and their time derivatives of all the agents in the network achieve consensus asymptotically, respectively, for appropriate communication timedelay if the topology of weighted network is connected. Particularly, a tight upper bound on the communication time-delay that can be tolerated in the dynamic network is found. The consensus protocols are distributed in the sense that each agent only needs information from its neighboring agents, which reduces the complexity of connections between neighboring agents significantly. Numerical simulation results are provided to demonstrate the effectiveness and the sharpness of the theoretical results for second-order consensus in networks in the presence of communication time-delays.展开更多
Multivariate dynamic networks indicate networks whose topology structure and vertex attributes are evolving along time.They are common in multimedia applications.Anomaly detection is one of the essential tasks in anal...Multivariate dynamic networks indicate networks whose topology structure and vertex attributes are evolving along time.They are common in multimedia applications.Anomaly detection is one of the essential tasks in analyzing these networks though it is not well addressed.In this paper,we combine a rare category detection method and visualization techniques to help users to identify and analyze anomalies in multivariate dynamic networks.We conclude features of rare categories and two types of anomalies of rare categories.Then we present a novel rare category detection method,called DIRAD,to detect rare category candidates with anomalies.We develop a prototype system called iNet,which integrates two major visualization components,including a glyph-based rare category identifier,which helps users to identify rare categories among detected substructures,a major view,which assists users to analyze and interpret the anomalies of rare categories in network topology and vertex attributes.Evaluations,including an algorithm performance evaluation,a case study,and a user study,are conducted to test the effectiveness of proposed methods.展开更多
This paper investigates epidemic dynamics over dynamic networks via the approach of semi-tensor product of matrices. First, a formal susceptible-infected-susceptible epidemic dynamic model over dynamic networks (SISE...This paper investigates epidemic dynamics over dynamic networks via the approach of semi-tensor product of matrices. First, a formal susceptible-infected-susceptible epidemic dynamic model over dynamic networks (SISED-DN) is given. Second, based on a class of determinate co-evolutionary rule, the matrix expressions are established for the dynamics of individual states and network topologies, respectively. Then, all possible final spreading equilibria are obtained for any given initial epidemic state and network topology by the matrix expression. Third, a sufficient and necessary condition of the existence of state feedback vaccination control is presented to make every individual susceptible. The study of illustrative examples shows the effectiveness of our new results.展开更多
This paper studies local exponential synchronization of complex delayed networks with switching topology via switched system stability theory. First, by a common unitary matrix, the problem of synchronization is trans...This paper studies local exponential synchronization of complex delayed networks with switching topology via switched system stability theory. First, by a common unitary matrix, the problem of synchronization is transformed into the stability analysis of some linear switched delay systems. Then, when all subnetworks are synchronizable, a delay-dependent sufficient condition is given in terms of linear matrix inequalities (LMIs) which guarantees the solvability of the synchronization problem under an average dwell time scheme. We extend this result to the case that not all subnetworks are synchronizable. It is shown that in addition to average dwell time, if the ratio of the total activation time of synchronizable and non-synchronizable subnetworks satisfy an extra condition, then the problem is also solvable. Two numerical examples of delayed dynamical networks with switching topology are given, which demonstrate the effectiveness of obtained results.展开更多
In this article, a synchronization problem for master-slave Markovian switching complex dynamical networks with time-varying delays in nonlinear function via sliding mode control is investigated. On the basis of the a...In this article, a synchronization problem for master-slave Markovian switching complex dynamical networks with time-varying delays in nonlinear function via sliding mode control is investigated. On the basis of the appropriate Lyapunov-Krasovskii functional, introducing some free weighting matrices, new synchronization criteria are derived in terms of linear matrix inequalities (LMIs). Then, an integral sliding surface is designed to guarantee synchronization of master-slave Markovian switching complex dynamical networks, and the suitable controller is synthesized to ensure that the trajectory of the closed-loop error system can be driven onto the prescribed sliding mode surface. By using Dynkin's formula, we established the stochastic stablity of master-slave system. Finally, numerical example is provided to demonstrate the effectiveness of the obtained theoretical results.展开更多
A problem of topology identification for complex dynamical networks is investigated in this paper. An adaptive observer is proposed to identify the topology of a complex dynamical networks based on the Lyapunov stabil...A problem of topology identification for complex dynamical networks is investigated in this paper. An adaptive observer is proposed to identify the topology of a complex dynamical networks based on the Lyapunov stability theory. Here the output of the network and the states of the observer are used to construct the updating law of the topology such that the communication resources from the network to its observer are saved. Some convergent criteria of the adaptive observer are derived in the form of linear inequality matrices. Several numerical examples are shown to demonstrate the effectiveness of the proposed observer.展开更多
Under unanticipated natural disasters, any failure of structure components may cause the crash of an entire structure system. Resilience is an important metric for the structure system. Although many resilience metric...Under unanticipated natural disasters, any failure of structure components may cause the crash of an entire structure system. Resilience is an important metric for the structure system. Although many resilience metrics and assessment approaches are proposed for engineering system, they are not suitable for complex structure systems, since the failure mechanisms of them are different under the influences of natural disasters. This paper proposes a novel resilience assessment metric for structure system from a macroscopic perspective, named structure resilience, and develops a corresponding assessment approach based on remaining useful life of key components. Dynamic Bayesian networks(DBNs) and Markov are applied to establish the resilience assessment model. In the degradation process, natural degradation and accelerated degradation are modelled by using Bayesian networks, and then coupled by using DBNs. In the recovery process, the model is established by combining Markov and DBNs. Subsea oil and gas pipelines are adopted to demonstrate the application of the proposed structure metric and assessment approach.展开更多
An adaptive multi-QoS routing algorithm called AMQRA is proposed for dynamic topology networks, such as satellite networks and Ad-hoc networks. The AMQRA is a distributed and mobile-agents-based routing algorithm, whi...An adaptive multi-QoS routing algorithm called AMQRA is proposed for dynamic topology networks, such as satellite networks and Ad-hoc networks. The AMQRA is a distributed and mobile-agents-based routing algorithm, which combines ant quantity system (AQS) with ant colony optimization (ACO) that is used in AntNet routing algorithm. In dynamic topology networks, the AMQRA achieves timely optimization for concave metric QoS constraint and fast convergence. The proposed routing algorithm is simulated in Iridium satellite constellation on OPNET. The results show that AMQRA not only outperforms the AntNet in convergence rate in dynamic topology networks but also can optimize concave metric QoS constraint and reasonably allot bandwidth to the load to avoid networks congestion.展开更多
In this paper, successive lag synchronization (SLS) on a dynamical network with communication delay is investigated. In order to achieve SLS on the dynamical network with communication delay, we design linear feedba...In this paper, successive lag synchronization (SLS) on a dynamical network with communication delay is investigated. In order to achieve SLS on the dynamical network with communication delay, we design linear feedback control and adaptive control, respectively. By using the Lyapunov function method, we obtain some sufficient conditions for global stability of SLS. To verify these results, some numerical examples are further presented. This work may find potential applications in consensus of multi-agent systems.展开更多
This paper concerns the disturbance rejection problem of a linear complex dynamical network subject to external disturbances. A dynamical network is said to be robust to disturbance, if the H∞ norm of its transfer fu...This paper concerns the disturbance rejection problem of a linear complex dynamical network subject to external disturbances. A dynamical network is said to be robust to disturbance, if the H∞ norm of its transfer function matrix from the disturbance to the performance variable is satisfactorily small. It is shown that the disturbance rejection problem of a dynamical network can be solved by analysing the H∞ control problem of a set of independent systems whose dimensions are equal to that of a single node. A counter-intuitive result is that the disturbance rejection level of the whole network with a diffusive coupling will never be better than that of an isolated node. To improve this, local feedback injections are applied to a small fraction of the nodes in the network. Some criteria for possible performance improvement are derived in terms of linear matrix inequalities. It is further demonstrated via a simulation example that one can indeed improve the disturbance rejection level of the network by pinning the nodes with higher degrees than pinning those with lower degrees.展开更多
基金Supported by the National Natural Science Foundation of China(No.61070182,60873192)
文摘The mobility of service providers brings new features into the research of dynamic network based service composition.From an optimistic perspective,the mobility of services could benefit the optimization of service composition,if properly handled.Therefore,the impacts of node mobility on the dynamic network based service composition are investigated.Then,a movement-assisted optimization method,namely MASCO,is proposed to improve the performance of the composited services by minimizing the length of data stream and the hop-counts of the service routes in the underlying networks.The correctness and efficiency of the proposed method are then verified through theoretical analysis and computer simulations.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.71801066 and 71431003)the Fundamental Research Funds for the Central Universities of China(Grant Nos.PA2019GDQT0020 and JZ2017HGTB0186)
文摘We investigate the similarities and differences among three queue rules,the first-in-first-out(FIFO)rule,last-in-firstout(LIFO)rule and random-in-random-out(RIRO)rule,on dynamical networks with limited buffer size.In our network model,nodes move at each time step.Packets are transmitted by an adaptive routing strategy,combining Euclidean distance and node load by a tunable parameter.Because of this routing strategy,at the initial stage of increasing buffer size,the network density will increase,and the packet loss rate will decrease.Packet loss and traffic congestion occur by these three rules,but nodes keep unblocked and lose no packet in a larger buffer size range on the RIRO rule networks.If packets are lost and traffic congestion occurs,different dynamic characteristics are shown by these three queue rules.Moreover,a phenomenon similar to Braess’paradox is also found by the LIFO rule and the RIRO rule.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.72071153 and 72231008)Laboratory of Science and Technology on Integrated Logistics Support Foundation (Grant No.6142003190102)the Natural Science Foundation of Shannxi Province (Grant No.2020JM486)。
文摘Identifying critical nodes or sets in large-scale networks is a fundamental scientific problem and one of the key research directions in the fields of data mining and network science when implementing network attacks, defense, repair and control.Traditional methods usually begin from the centrality, node location or the impact on the largest connected component after node destruction, mainly based on the network structure.However, these algorithms do not consider network state changes.We applied a model that combines a random connectivity matrix and minimal low-dimensional structures to represent network connectivity.By using mean field theory and information entropy to calculate node activity,we calculated the overlap between the random parts and fixed low-dimensional parts to quantify the influence of node impact on network state changes and ranked them by importance.We applied this algorithm and the proposed importance algorithm to the overall analysis and stratified analysis of the C.elegans neural network.We observed a change in the critical entropy of the network state and by utilizing the proposed method we can calculate the nodes that indirectly affect muscle cells through neural layers.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.62373197 and 61873326)。
文摘In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation of target state variables in multi-layer complex dynamical networks with nonlinear node dynamics is studied.A suitable functional state observer is constructed with the limited measurement.The parameters of the designed functional observer are obtained from the algebraic method and the stability of the functional observer is proven by the Lyapunov theorem.Some necessary conditions that need to be satisfied for the design of the functional state observer are obtained.Different from previous studies, in the multi-layer complex dynamical network with nonlinear node dynamics, the proposed method can estimate the state of target variables on some layers directly instead of estimating all the individual states.Thus, it can greatly reduce the placement of observers and computational cost.Numerical simulations with the three-layer complex dynamical network composed of three-dimensional nonlinear dynamical nodes are developed to verify the effectiveness of the method.
基金supported by the National Natural Science Foundation of China(62172170)the Science and Technology Project of the State Grid Corporation of China(5100-202199557A-0-5-ZN).
文摘Complex networked systems,which range from biological systems in the natural world to infrastructure systems in the human-made world,can exhibit spontaneous recovery after a failure;for example,a brain may spontaneously return to normal after a seizure,and traffic flow can become smooth again after a jam.Previous studies on the spontaneous recovery of dynamical networks have been limited to undirected networks.However,most real-world networks are directed.To fill this gap,we build a model in which nodes may alternately fail and recover,and we develop a theoretical tool to analyze the recovery properties of directed dynamical networks.We find that the tool can accurately predict the final fraction of active nodes,and the prediction accuracy decreases as the fraction of bidirectional links in the network increases,which emphasizes the importance of directionality in network dynamics.Due to different initial states,directed dynamical networks may show alternative stable states under the same control parameter,exhibiting hysteresis behavior.In addition,for networks with finite sizes,the fraction of active nodes may jump back and forth between high and low states,mimicking repetitive failure-recovery processes.These findings could help clarify the system recovery mechanism and enable better design of networked systems with high resilience.
基金supported by the National Natural Science Foundation of China(Nos.61973175,62203328)the Tianjin Natural Science Foundation(Nos.20JCYBJC01060,21JCQNJC00840)the General Terminal IC Interdisciplinary Science Center of Nankai University.
文摘The outbreak of corona virus disease 2019 has profoundly affected people’s way of life.It is increasingly necessary to investigate epidemics over social networks.This paper studies susceptible-infected-removed(SIR)epidemics via the semi-tensor product.First,a formal susceptible-infected-removed epidemic dynamic model over probabilistic dynamic networks(SIRED-PDN)is given.Based on an evolutionary rule,the algebraic form for the dynamics of individual states and network topologies is given,respectively.Second,the SIRED-PDN can be described by a probabilistic mix-valued logical network.After providing an algorithm,all possible final spreading equilibria can be obtained for any given initial epidemic state and network topology by seeking attractors of the network.And the shortest time for all possible initial epidemic state and network topology profiles to evolve to the final spreading equilibria can be obtained by seeking the transient time of the network.Finally,an illustrative example is given to show the effectiveness of our model.
基金funding support from the National Natural Science Foundation of China(Grant No.42177143 and 51809221)the Science Foundation for Distinguished Young Scholars of Sichuan Province,China(Grant No.2020JDJQ0011).
文摘One of the major factors inhibiting the construction of deep underground projects is the risk posed by rockbursts.A study was conducted on the access tunnel of the Shuangjiangkou hydropower station to determine the evolutionary mechanism of microfractures within the surrounding rock mass during rockburst development and develop a rockburst warning model.The study area was chosen through the combination of field studies with an analysis of the spatial and temporal distribution of microseismic(MS)events.The moment tensor inversion method was adopted to study rockburst mechanism,and a dynamic Bayesian network(DBN)was applied to investigating the sensitivity of MS source parameters for rockburst warnings.A MS multivariable rockburst warning model was proposed and validated using two case studies.The results indicate that fractures in the surrounding rock mass during the development of strain-structure rockbursts initially show shear failure and are then followed by tensile failure.The effectiveness of the DBN-based rockburst warning model was demonstrated using self-validation and K-fold cross-validation.Moment magnitude and source radius are the most sensitive factors based on an investigation of the influence on the parent and child nodes in the model,which can serve as important standards for rockburst warnings.The proposed rockburst warning model was found to be effective when applied to two actual projects.
基金the TCL Science and Technology Innovation Fundthe Youth Science and Technology Talent Promotion Project of Jiangsu Association for Science and Technology,Grant/Award Number:JSTJ‐2023‐017+4 种基金Shenzhen Municipal Science and Technology Innovation Council,Grant/Award Number:JSGG20220831105002004National Natural Science Foundation of China,Grant/Award Number:62201468Postdoctoral Research Foundation of China,Grant/Award Number:2022M722599the Fundamental Research Funds for the Central Universities,Grant/Award Number:D5000210966the Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2021A1515110079。
文摘Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely express predicted high‐quality images for complex scenes.A dynamic network for image super‐resolution(DSRNet)is presented,which contains a residual enhancement block,wide enhancement block,feature refine-ment block and construction block.The residual enhancement block is composed of a residual enhanced architecture to facilitate hierarchical features for image super‐resolution.To enhance robustness of obtained super‐resolution model for complex scenes,a wide enhancement block achieves a dynamic architecture to learn more robust information to enhance applicability of an obtained super‐resolution model for varying scenes.To prevent interference of components in a wide enhancement block,a refine-ment block utilises a stacked architecture to accurately learn obtained features.Also,a residual learning operation is embedded in the refinement block to prevent long‐term dependency problem.Finally,a construction block is responsible for reconstructing high‐quality images.Designed heterogeneous architecture can not only facilitate richer structural information,but also be lightweight,which is suitable for mobile digital devices.Experimental results show that our method is more competitive in terms of performance,recovering time of image super‐resolution and complexity.The code of DSRNet can be obtained at https://github.com/hellloxiaotian/DSRNet.
基金supported by the Chinese Universities Scientific Fund(ZYGX2020ZB022)the National Natural Science Foundation of China(51775090).
文摘The dynamic wireless communication network is a complex network that needs to consider various influence factors including communication devices,radio propagation,network topology,and dynamic behaviors.Existing works focus on suggesting simplified reliability analysis methods for these dynamic networks.As one of the most popular modeling methodologies,the dynamic Bayesian network(DBN)is proposed.However,it is insufficient for the wireless communication network which contains temporal and non-temporal events.To this end,we present a modeling methodology for a generalized continuous time Bayesian network(CTBN)with a 2-state conditional probability table(CPT).Moreover,a comprehensive reliability analysis method for communication devices and radio propagation is suggested.The proposed methodology is verified by a reliability analysis of a real wireless communication network.
文摘In this paper, Hailin City of Heilongjiang Province, China is taken as the research area. As an important city in Heilongjiang Province, China, the sustainable development of its ecological environment is related to the opening up, economic prosperity and social stability of Northeast China. In this paper, the remote sensing ecological index (RSEI) of Hailin City in recent 20 years was calculated by using Landsat 5/8/9 series satellite images, and the temporal and spatial changes of the ecological environment in Hailin City were further analyzed and the influencing factors were discussed. From 2003 to 2023, the mean value of RSEI in Hailin City decreased and increased, and the ecological environment decreased slightly as a whole. RSEI declined most significantly from 2003 to 2008, and it increased from 2008 to 2013, decreased from 2013 to 2018, and increased from 2018 to 2023 again, with higher RSEI value in the south and lower RSEI value in the northwest. It is suggested to appropriately increase vegetation coverage in the northwest to improve ecological quality. As a result, the predicted value of Elman dynamic recurrent neural network model is consistent with the change trend of the mean value, and the prediction error converges quickly, which can accurately predict the ecological environment quality in the future study area.
基金supported by the National Natural Science Foundation of China (6057408860274014)
文摘This paper proposes second-order consensus protocols with time-delays and gives the measure of the robustness of the protocols to the time-delay existing in the network of agents with second-order dynamics. By employing a frequency domain method, it is proven that the information states and their time derivatives of all the agents in the network achieve consensus asymptotically, respectively, for appropriate communication timedelay if the topology of weighted network is connected. Particularly, a tight upper bound on the communication time-delay that can be tolerated in the dynamic network is found. The consensus protocols are distributed in the sense that each agent only needs information from its neighboring agents, which reduces the complexity of connections between neighboring agents significantly. Numerical simulation results are provided to demonstrate the effectiveness and the sharpness of the theoretical results for second-order consensus in networks in the presence of communication time-delays.
基金This work was supported by National Key Research and Development Program(2018YFB0904503)the National Natural Science Foundation of China(Grant Nos.61772456,U1866602,61761136020,U1736109).
文摘Multivariate dynamic networks indicate networks whose topology structure and vertex attributes are evolving along time.They are common in multimedia applications.Anomaly detection is one of the essential tasks in analyzing these networks though it is not well addressed.In this paper,we combine a rare category detection method and visualization techniques to help users to identify and analyze anomalies in multivariate dynamic networks.We conclude features of rare categories and two types of anomalies of rare categories.Then we present a novel rare category detection method,called DIRAD,to detect rare category candidates with anomalies.We develop a prototype system called iNet,which integrates two major visualization components,including a glyph-based rare category identifier,which helps users to identify rare categories among detected substructures,a major view,which assists users to analyze and interpret the anomalies of rare categories in network topology and vertex attributes.Evaluations,including an algorithm performance evaluation,a case study,and a user study,are conducted to test the effectiveness of proposed methods.
基金This work was supported by the National Natural Science Foundation of China (Nos. 61374065, 61503225), the Research Fund for the Taishan Scholar Project of Shandong Province, and the Natural Science Foundation of Shandong Province (No. ZR2015FQ003).
文摘This paper investigates epidemic dynamics over dynamic networks via the approach of semi-tensor product of matrices. First, a formal susceptible-infected-susceptible epidemic dynamic model over dynamic networks (SISED-DN) is given. Second, based on a class of determinate co-evolutionary rule, the matrix expressions are established for the dynamics of individual states and network topologies, respectively. Then, all possible final spreading equilibria are obtained for any given initial epidemic state and network topology by the matrix expression. Third, a sufficient and necessary condition of the existence of state feedback vaccination control is presented to make every individual susceptible. The study of illustrative examples shows the effectiveness of our new results.
基金the National Natural Science Foundation of China (No.60874024, 60574013).
文摘This paper studies local exponential synchronization of complex delayed networks with switching topology via switched system stability theory. First, by a common unitary matrix, the problem of synchronization is transformed into the stability analysis of some linear switched delay systems. Then, when all subnetworks are synchronizable, a delay-dependent sufficient condition is given in terms of linear matrix inequalities (LMIs) which guarantees the solvability of the synchronization problem under an average dwell time scheme. We extend this result to the case that not all subnetworks are synchronizable. It is shown that in addition to average dwell time, if the ratio of the total activation time of synchronizable and non-synchronizable subnetworks satisfy an extra condition, then the problem is also solvable. Two numerical examples of delayed dynamical networks with switching topology are given, which demonstrate the effectiveness of obtained results.
文摘In this article, a synchronization problem for master-slave Markovian switching complex dynamical networks with time-varying delays in nonlinear function via sliding mode control is investigated. On the basis of the appropriate Lyapunov-Krasovskii functional, introducing some free weighting matrices, new synchronization criteria are derived in terms of linear matrix inequalities (LMIs). Then, an integral sliding surface is designed to guarantee synchronization of master-slave Markovian switching complex dynamical networks, and the suitable controller is synthesized to ensure that the trajectory of the closed-loop error system can be driven onto the prescribed sliding mode surface. By using Dynkin's formula, we established the stochastic stablity of master-slave system. Finally, numerical example is provided to demonstrate the effectiveness of the obtained theoretical results.
基金supported in part by the National Natural Science Foundation of China (Grant Nos.60874091 and 61104103)the Natural Science Fund for Colleges and Universities in Jiangsu Province,China (Grant No.10KJB120001)the Climbing Program of Nanjing University of Posts & Telecommunications,China (Grant Nos.NY210013 and NY210014)
文摘A problem of topology identification for complex dynamical networks is investigated in this paper. An adaptive observer is proposed to identify the topology of a complex dynamical networks based on the Lyapunov stability theory. Here the output of the network and the states of the observer are used to construct the updating law of the topology such that the communication resources from the network to its observer are saved. Some convergent criteria of the adaptive observer are derived in the form of linear inequality matrices. Several numerical examples are shown to demonstrate the effectiveness of the proposed observer.
基金financially supported by the National Natural Science Foundation of China (Grant No. 51779267)the Taishan Scholars Project (Grant No. tsqn201909063)+3 种基金the Science and Technology Support Plan for Youth Innovation of Universities in Shandong Province (Grant No.2019KJB016)the National Key Research and Development Program of China (Grant No. 2019YFE0105100)the Fundamental Research Funds for the Central Universitiesthe Opening Fund of National Engineering Laboratory of Offshore Geophysical and Exploration Equipment (Grant No.20CX02301A)。
文摘Under unanticipated natural disasters, any failure of structure components may cause the crash of an entire structure system. Resilience is an important metric for the structure system. Although many resilience metrics and assessment approaches are proposed for engineering system, they are not suitable for complex structure systems, since the failure mechanisms of them are different under the influences of natural disasters. This paper proposes a novel resilience assessment metric for structure system from a macroscopic perspective, named structure resilience, and develops a corresponding assessment approach based on remaining useful life of key components. Dynamic Bayesian networks(DBNs) and Markov are applied to establish the resilience assessment model. In the degradation process, natural degradation and accelerated degradation are modelled by using Bayesian networks, and then coupled by using DBNs. In the recovery process, the model is established by combining Markov and DBNs. Subsea oil and gas pipelines are adopted to demonstrate the application of the proposed structure metric and assessment approach.
基金the National Natural Science Foundation of China (60532030)
文摘An adaptive multi-QoS routing algorithm called AMQRA is proposed for dynamic topology networks, such as satellite networks and Ad-hoc networks. The AMQRA is a distributed and mobile-agents-based routing algorithm, which combines ant quantity system (AQS) with ant colony optimization (ACO) that is used in AntNet routing algorithm. In dynamic topology networks, the AMQRA achieves timely optimization for concave metric QoS constraint and fast convergence. The proposed routing algorithm is simulated in Iridium satellite constellation on OPNET. The results show that AMQRA not only outperforms the AntNet in convergence rate in dynamic topology networks but also can optimize concave metric QoS constraint and reasonably allot bandwidth to the load to avoid networks congestion.
基金Project supported by the National Natural Science Foundation of China(Grant No.61004101)the Natural Science Foundation Program of Guangxi Province,China(Grant No.2015GXNSFBB139002)+1 种基金the Graduate Innovation Project of Guilin University of Electronic Technology,China(Grant No.GDYCSZ201472)the Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation,Guilin University of Electronic Technology,China
文摘In this paper, successive lag synchronization (SLS) on a dynamical network with communication delay is investigated. In order to achieve SLS on the dynamical network with communication delay, we design linear feedback control and adaptive control, respectively. By using the Lyapunov function method, we obtain some sufficient conditions for global stability of SLS. To verify these results, some numerical examples are further presented. This work may find potential applications in consensus of multi-agent systems.
基金Project supported by the National Natural Science Foundation of China (Grant No 10832006)the Key Projects of Educational Ministry of China (Grant No 107110)
文摘This paper concerns the disturbance rejection problem of a linear complex dynamical network subject to external disturbances. A dynamical network is said to be robust to disturbance, if the H∞ norm of its transfer function matrix from the disturbance to the performance variable is satisfactorily small. It is shown that the disturbance rejection problem of a dynamical network can be solved by analysing the H∞ control problem of a set of independent systems whose dimensions are equal to that of a single node. A counter-intuitive result is that the disturbance rejection level of the whole network with a diffusive coupling will never be better than that of an isolated node. To improve this, local feedback injections are applied to a small fraction of the nodes in the network. Some criteria for possible performance improvement are derived in terms of linear matrix inequalities. It is further demonstrated via a simulation example that one can indeed improve the disturbance rejection level of the network by pinning the nodes with higher degrees than pinning those with lower degrees.