As an important indicator parameter of fluid identification,fluid factor has always been a concern for scholars.However,when predicting Russell fluid factor or effective pore-fluid bulk modulus,it is necessary to intr...As an important indicator parameter of fluid identification,fluid factor has always been a concern for scholars.However,when predicting Russell fluid factor or effective pore-fluid bulk modulus,it is necessary to introduce a new rock skeleton parameter which is the dry-rock VP/VS ratio squared(DVRS).In the process of fluid factor calculation or inversion,the existing methods take this parameter as a static constant,which has been estimated in advance,and then apply it to the fluid factor calculation and inversion.The fluid identification analysis based on a portion of the Marmousi 2 model and numerical forward modeling test show that,taking the DVRS as a static constant will limit the identification ability of fluid factor and reduce the inversion accuracy.To solve the above problems,we proposed a new method to regard the DVRS as a dynamic variable varying with depth and lithology for the first time,then apply it to fluid factor calculation and inversion.Firstly,the exact Zoeppritz equations are rewritten into a new form containing the fluid factor and DVRS of upper and lower layers.Next,the new equations are applied to the four parameters simultaneous inversion based on the generalized nonlinear inversion(GNI)method.The testing results on a portion of the Marmousi 2 model and field data show that dynamic DVRS can significantly improve the fluid factor identification ability,effectively suppress illusion.Both synthetic and filed data tests also demonstrate that the GNI method based on Bayesian deterministic inversion(BDI)theory can successfully solve the above four parameter simultaneous inversion problem,and taking the dynamic DVRS as a target inversion parameter can effectively improve the inversion accuracy of fluid factor.All these results completely verified the feasibility and effectiveness of the proposed method.展开更多
Nonlinear dynamic inversion(NDI)has been applied to the control law design of quad-rotors mainly thanks to its good robustness and simplicity of parameter tuning.However,the weakness of relying on accurate model great...Nonlinear dynamic inversion(NDI)has been applied to the control law design of quad-rotors mainly thanks to its good robustness and simplicity of parameter tuning.However,the weakness of relying on accurate model greatly restrains its application on quad-rotors,especially nano quad-rotors(NQRs).NQRs are easy to be influenced by uncertainties such as model uncertainties(mainly from complicated aerodynamic interferences,strong coupling in roll-pitch-yaw channels and inaccurate aerodynamic prediction of rotors)and external uncertainties(mainly from winds or gusts),particularly persistent ones.Therefore,developing accurate model for altitude and attitude control of NQRs is difficult.To solve this problem,in this paper,an improved nonlinear dynamic inversion(INDI)method is developed,which can reject the above-mentioned uncertainties by estimating them and then counteracting in real time using linear extended state observer(LESO).Comparison with the traditional NDI(TNDI)method was carried out numerically,and the results show that,in coping with persistent uncertainties,the INDI-based method presents significant superiority.展开更多
A type of nonlinear dynamic inversion control with adaptive compensation is proposed in order to overcome its over sensitivity to parameter uncertainty and disturbance for flight control system using nonlinear dynam...A type of nonlinear dynamic inversion control with adaptive compensation is proposed in order to overcome its over sensitivity to parameter uncertainty and disturbance for flight control system using nonlinear dynamic inversion. This control strategy is different from the general strategy of a nonlinear adaptive control by taking into consideration both parameter uncertainty and external disturbance, the two major uncertain forms in flight control. Finally, an analysis of the stabilily of this control structure is given.展开更多
For the problem of sensor faults and actuator faults in aircraft attitude control,this paper proposes a fault tolerant control(FTC)scheme based on extended state observer(ESO)and nonlinear dynamic inversion(NDI).First...For the problem of sensor faults and actuator faults in aircraft attitude control,this paper proposes a fault tolerant control(FTC)scheme based on extended state observer(ESO)and nonlinear dynamic inversion(NDI).First,two ESOs are designed to estimate sensor faults and actuator faults respectively.Second,the angular rate signal is reconstructed according to the estimation of sensor faults.Third,in angular rate loop,NDI is designed based on reconstruction of angular rate signals and estimation of actuator faults.The FTC scheme proposed in this paper is testified through numerical simulations.The results show that it is feasible and has good fault tolerant ability.展开更多
This paper presents trajectory tracking control works concerning quadrotor aerial robot with rigid cross structure. The quadrotor consists of four propellers which are two paired clockwise rotate and anticlockwise rot...This paper presents trajectory tracking control works concerning quadrotor aerial robot with rigid cross structure. The quadrotor consists of four propellers which are two paired clockwise rotate and anticlockwise rotate. A nonlinear dynamic model of the quadrotor is provided, and a controller based on the improved dynamic inverse is synthesized for the purpose of stabilization and trajectory tracking. The proposed control strategy has been tested in simulation that can balance the deviation of model inaccuracy well.展开更多
This paper considers a concrete stochastic nonlinear system with stochastic unmeasurable inverse dynamics. Motivated by the concept of integral input-to-state stability (iISS) in deterministic systems and stochastic...This paper considers a concrete stochastic nonlinear system with stochastic unmeasurable inverse dynamics. Motivated by the concept of integral input-to-state stability (iISS) in deterministic systems and stochastic input-to-state stability (SISS) in stochastic systems, a concept of stochastic integral input-to-state stability (SiISS) using Lyapunov functions is first introduced. A constructive strategy is proposed to design a dynamic output feedback control law, which drives the state to the origin almost surely while keeping all other closed-loop signals almost surely bounded. At last, a simulation is given to verify the effectiveness of the control law.展开更多
SiO_(2)-particle reinforced silicon rubber composite(SP-RSRC)is a widely utilized material that offers shock absorption protection to various engineering structures in impact environments.This paper presents a compreh...SiO_(2)-particle reinforced silicon rubber composite(SP-RSRC)is a widely utilized material that offers shock absorption protection to various engineering structures in impact environments.This paper presents a comprehensive investigation of the mechanical behavior of SP-RSRC under various strain rates,employing a combination of experimental,theoretical,and numerical analyses.Firstly,quasi-static and dynamic compression tests were performed on SP-RSRC utilizing a universal testing machine and split Hopkinson pressure bar(SHPB)apparatus.Nonlinear stress-strain relationships of SP-RSRC were obtained for strain rates ranging from 1×10^(−3) to 3065 s^(−1).The results indicated that the composite showed evident strain rate sensitivity,along with nonlinearity.Then,a nonlinear visco-hyperelastic constitutive model was developed,consisting of a hyperelastic component utilizing the 3rd-order Ogden energy function and a viscous component employing a rate-dependent relaxation time scheme.The model accurately characterized the dynamic mechanical response of SP-RSRC,effectively mitigating the challenge of calibrating an excessive number of material parameters inherent in conventional viscoelastic models.Furthermore,the simplified rubber material(SRM)model,integrated within the LS-DYNA software,was chosen to depict the mechanical properties of SP-RSRC in numerical simulations.The parameters of the SRM model were further calibrated based on the strain-stress relationships of SP-RSRC,as predicted by the developed nonlinear visco-hyperelastic constitutive model.Finally,an inverse ballistic experiment using a single-stage air gun was conducted for SP-RSRC.Numerical simulations of SHPB experiments and the inverse ballistic experiment were then performed,and the reliability of the calibrated SRM model was verified by comparing the results of experiments and numerical simulations.This study offers a valuable reference for the utilization of SP-RSRC in the realm of impact protection.展开更多
A technique for inversion of a nonlinear dynamical model from the observations has been developed, and examined by using the Lorenz system. The results show that the Lorenz system can be accurately inversed by using t...A technique for inversion of a nonlinear dynamical model from the observations has been developed, and examined by using the Lorenz system. The results show that the Lorenz system can be accurately inversed by using the observation data set. This technique will be broadly used in establishing the nonlinear dynamical model from an actual data set.展开更多
An overview on nonlinear reconfigurable flight control approaches that have been demonstrated in flight-test or highfidelity simulation is presented. Various approaches for reconfigurable flight control systems are co...An overview on nonlinear reconfigurable flight control approaches that have been demonstrated in flight-test or highfidelity simulation is presented. Various approaches for reconfigurable flight control systems are considered, including nonlinear dynamic inversion, parameter identification and neural network technologies, backstepping and model predictive control approaches. The recent research work, flight tests, and potential strength and weakness of each approach are discussed objectively in order to give readers and researchers some reference. Finally, possible future directions and open problems in this area are addressed.展开更多
A control synthesis method for output regulation based on singular perturbation theory combined with inverting design is considered for a class of nonaffine nonlinear systems. The resulting control signal is defined a...A control synthesis method for output regulation based on singular perturbation theory combined with inverting design is considered for a class of nonaffine nonlinear systems. The resulting control signal is defined as a solution to "fast" dynamics which inverts a series error model, whose state is exponentially stable. It is shown that, under sufficient conditions being consistent with the assumptions of singular perturbation theory, this problem is solvable with (ε) tracking error if and only if a set of first-order nonlinear partial differential equations are solvable. The control law can be easily constructed and the simulations show the feasibility and effectiveness of the controller.展开更多
This paper deals with the theory of nonlinear accelerator beam transport op-erator.For nonautonomous accelerator dynamics,a theorem of finding the inversenonlinear beam transport operator is developed.Several concrete...This paper deals with the theory of nonlinear accelerator beam transport op-erator.For nonautonomous accelerator dynamics,a theorem of finding the inversenonlinear beam transport operator is developed.Several concrete examples are workedout in detail to show the practical applications of this theory.展开更多
The real dynamic thrust measurement system usually tends to be nonlinear due to the complex characteristics of the rig, pipes connection, etc. For a real dynamic measuring system, the nonlinearity must be eliminated b...The real dynamic thrust measurement system usually tends to be nonlinear due to the complex characteristics of the rig, pipes connection, etc. For a real dynamic measuring system, the nonlinearity must be eliminated by some adequate methods. In this paper, a nonlinear model of dynamic thrust measurement system is established by using radial basis function neural network (RBF-NN), where a novel multi-step force generator is designed to stimulate the nonlinearity of the system, and a practical compensation method for the measurement system using left inverse model is proposed. Left inverse model can be considered as a perfect dynamic compensation of the dynamic thrust measurement system, and in practice, it can be approximated by RBF-NN based on least mean square (LMS) algorithms. Different weights are set for producing the multi-step force, which is the ideal input signal of the nonlinear dynamic thrust measurement system. The validity of the compensation method depends on the engine's performance and the tolerance error 0.5%, which is commonly demanded in engineering. Results from simulations and experiments show that the practical compensation using left inverse model based on RBF-NN in dynamic thrust measuring system can yield high tracking accuracy than the conventional methods.展开更多
基金the National Natural Science Foundation of China(41904116,41874156,42074167 and 42204135)the Natural Science Foundation of Hunan Province(2020JJ5168)the China Postdoctoral Science Foundation(2021M703629)for their funding of this research.
文摘As an important indicator parameter of fluid identification,fluid factor has always been a concern for scholars.However,when predicting Russell fluid factor or effective pore-fluid bulk modulus,it is necessary to introduce a new rock skeleton parameter which is the dry-rock VP/VS ratio squared(DVRS).In the process of fluid factor calculation or inversion,the existing methods take this parameter as a static constant,which has been estimated in advance,and then apply it to the fluid factor calculation and inversion.The fluid identification analysis based on a portion of the Marmousi 2 model and numerical forward modeling test show that,taking the DVRS as a static constant will limit the identification ability of fluid factor and reduce the inversion accuracy.To solve the above problems,we proposed a new method to regard the DVRS as a dynamic variable varying with depth and lithology for the first time,then apply it to fluid factor calculation and inversion.Firstly,the exact Zoeppritz equations are rewritten into a new form containing the fluid factor and DVRS of upper and lower layers.Next,the new equations are applied to the four parameters simultaneous inversion based on the generalized nonlinear inversion(GNI)method.The testing results on a portion of the Marmousi 2 model and field data show that dynamic DVRS can significantly improve the fluid factor identification ability,effectively suppress illusion.Both synthetic and filed data tests also demonstrate that the GNI method based on Bayesian deterministic inversion(BDI)theory can successfully solve the above four parameter simultaneous inversion problem,and taking the dynamic DVRS as a target inversion parameter can effectively improve the inversion accuracy of fluid factor.All these results completely verified the feasibility and effectiveness of the proposed method.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Advanced Research Project of Army Equipment Development(No.301020803)
文摘Nonlinear dynamic inversion(NDI)has been applied to the control law design of quad-rotors mainly thanks to its good robustness and simplicity of parameter tuning.However,the weakness of relying on accurate model greatly restrains its application on quad-rotors,especially nano quad-rotors(NQRs).NQRs are easy to be influenced by uncertainties such as model uncertainties(mainly from complicated aerodynamic interferences,strong coupling in roll-pitch-yaw channels and inaccurate aerodynamic prediction of rotors)and external uncertainties(mainly from winds or gusts),particularly persistent ones.Therefore,developing accurate model for altitude and attitude control of NQRs is difficult.To solve this problem,in this paper,an improved nonlinear dynamic inversion(INDI)method is developed,which can reject the above-mentioned uncertainties by estimating them and then counteracting in real time using linear extended state observer(LESO).Comparison with the traditional NDI(TNDI)method was carried out numerically,and the results show that,in coping with persistent uncertainties,the INDI-based method presents significant superiority.
文摘A type of nonlinear dynamic inversion control with adaptive compensation is proposed in order to overcome its over sensitivity to parameter uncertainty and disturbance for flight control system using nonlinear dynamic inversion. This control strategy is different from the general strategy of a nonlinear adaptive control by taking into consideration both parameter uncertainty and external disturbance, the two major uncertain forms in flight control. Finally, an analysis of the stabilily of this control structure is given.
基金supported by the Chinese Aviation Science Fund(20160757001)the National Natural Science Foundation of China(10577012)。
文摘For the problem of sensor faults and actuator faults in aircraft attitude control,this paper proposes a fault tolerant control(FTC)scheme based on extended state observer(ESO)and nonlinear dynamic inversion(NDI).First,two ESOs are designed to estimate sensor faults and actuator faults respectively.Second,the angular rate signal is reconstructed according to the estimation of sensor faults.Third,in angular rate loop,NDI is designed based on reconstruction of angular rate signals and estimation of actuator faults.The FTC scheme proposed in this paper is testified through numerical simulations.The results show that it is feasible and has good fault tolerant ability.
文摘This paper presents trajectory tracking control works concerning quadrotor aerial robot with rigid cross structure. The quadrotor consists of four propellers which are two paired clockwise rotate and anticlockwise rotate. A nonlinear dynamic model of the quadrotor is provided, and a controller based on the improved dynamic inverse is synthesized for the purpose of stabilization and trajectory tracking. The proposed control strategy has been tested in simulation that can balance the deviation of model inaccuracy well.
基金supported by National Natural Science Foundation of China (No. 60774010, 10971256, and 60974028)Jiangsu"Six Top Talents" (No. 07-A-020)+2 种基金Natural Science Foundation of Jiangsu Province (No. BK2009083)Program for Fundamental Research of Natural Sciences in Universities of Jiangsu Province(No.07KJB510114)Natural Science Foundation of Xuzhou Normal University (No. 08XLB20)
文摘This paper considers a concrete stochastic nonlinear system with stochastic unmeasurable inverse dynamics. Motivated by the concept of integral input-to-state stability (iISS) in deterministic systems and stochastic input-to-state stability (SISS) in stochastic systems, a concept of stochastic integral input-to-state stability (SiISS) using Lyapunov functions is first introduced. A constructive strategy is proposed to design a dynamic output feedback control law, which drives the state to the origin almost surely while keeping all other closed-loop signals almost surely bounded. At last, a simulation is given to verify the effectiveness of the control law.
文摘SiO_(2)-particle reinforced silicon rubber composite(SP-RSRC)is a widely utilized material that offers shock absorption protection to various engineering structures in impact environments.This paper presents a comprehensive investigation of the mechanical behavior of SP-RSRC under various strain rates,employing a combination of experimental,theoretical,and numerical analyses.Firstly,quasi-static and dynamic compression tests were performed on SP-RSRC utilizing a universal testing machine and split Hopkinson pressure bar(SHPB)apparatus.Nonlinear stress-strain relationships of SP-RSRC were obtained for strain rates ranging from 1×10^(−3) to 3065 s^(−1).The results indicated that the composite showed evident strain rate sensitivity,along with nonlinearity.Then,a nonlinear visco-hyperelastic constitutive model was developed,consisting of a hyperelastic component utilizing the 3rd-order Ogden energy function and a viscous component employing a rate-dependent relaxation time scheme.The model accurately characterized the dynamic mechanical response of SP-RSRC,effectively mitigating the challenge of calibrating an excessive number of material parameters inherent in conventional viscoelastic models.Furthermore,the simplified rubber material(SRM)model,integrated within the LS-DYNA software,was chosen to depict the mechanical properties of SP-RSRC in numerical simulations.The parameters of the SRM model were further calibrated based on the strain-stress relationships of SP-RSRC,as predicted by the developed nonlinear visco-hyperelastic constitutive model.Finally,an inverse ballistic experiment using a single-stage air gun was conducted for SP-RSRC.Numerical simulations of SHPB experiments and the inverse ballistic experiment were then performed,and the reliability of the calibrated SRM model was verified by comparing the results of experiments and numerical simulations.This study offers a valuable reference for the utilization of SP-RSRC in the realm of impact protection.
基金Project supported by the National Natural Science Foundation of China.
文摘A technique for inversion of a nonlinear dynamical model from the observations has been developed, and examined by using the Lorenz system. The results show that the Lorenz system can be accurately inversed by using the observation data set. This technique will be broadly used in establishing the nonlinear dynamical model from an actual data set.
基金supported by the National Natural Science Foundation of China (61273171)the National Aerospace Science Foundation of China (2011ZA52009)
文摘An overview on nonlinear reconfigurable flight control approaches that have been demonstrated in flight-test or highfidelity simulation is presented. Various approaches for reconfigurable flight control systems are considered, including nonlinear dynamic inversion, parameter identification and neural network technologies, backstepping and model predictive control approaches. The recent research work, flight tests, and potential strength and weakness of each approach are discussed objectively in order to give readers and researchers some reference. Finally, possible future directions and open problems in this area are addressed.
基金supported by the National Natural Science Foundation of China (No.60274009)Specialized Research Fund for the Doctoral Program of Higher Education (No.20020145007)
文摘A control synthesis method for output regulation based on singular perturbation theory combined with inverting design is considered for a class of nonaffine nonlinear systems. The resulting control signal is defined as a solution to "fast" dynamics which inverts a series error model, whose state is exponentially stable. It is shown that, under sufficient conditions being consistent with the assumptions of singular perturbation theory, this problem is solvable with (ε) tracking error if and only if a set of first-order nonlinear partial differential equations are solvable. The control law can be easily constructed and the simulations show the feasibility and effectiveness of the controller.
文摘This paper deals with the theory of nonlinear accelerator beam transport op-erator.For nonautonomous accelerator dynamics,a theorem of finding the inversenonlinear beam transport operator is developed.Several concrete examples are workedout in detail to show the practical applications of this theory.
文摘The real dynamic thrust measurement system usually tends to be nonlinear due to the complex characteristics of the rig, pipes connection, etc. For a real dynamic measuring system, the nonlinearity must be eliminated by some adequate methods. In this paper, a nonlinear model of dynamic thrust measurement system is established by using radial basis function neural network (RBF-NN), where a novel multi-step force generator is designed to stimulate the nonlinearity of the system, and a practical compensation method for the measurement system using left inverse model is proposed. Left inverse model can be considered as a perfect dynamic compensation of the dynamic thrust measurement system, and in practice, it can be approximated by RBF-NN based on least mean square (LMS) algorithms. Different weights are set for producing the multi-step force, which is the ideal input signal of the nonlinear dynamic thrust measurement system. The validity of the compensation method depends on the engine's performance and the tolerance error 0.5%, which is commonly demanded in engineering. Results from simulations and experiments show that the practical compensation using left inverse model based on RBF-NN in dynamic thrust measuring system can yield high tracking accuracy than the conventional methods.