Existing transversely isotropic poroelastodynamics solutions are limited to infinite domains and without experimental validation. Furthermore, there is a lack of analytical simulations for the elastic moduli dispersio...Existing transversely isotropic poroelastodynamics solutions are limited to infinite domains and without experimental validation. Furthermore, there is a lack of analytical simulations for the elastic moduli dispersion of fluid-saturated porous cylinders. To address these three limitations and investigate the mechanisms of moduli dispersion, we present the analytical solutions of the poromechanical responses and the elastic moduli dispersion of a transversely isotropic, fluid-saturated, finite porous cylinder subjected to a forced deformation test. Through an example, we demonstrate the effects of loading frequency, boundary conditions, and material's anisotropy, dimension, and permeability on the responses of pore pressure,force, displacement, and dynamic elastic moduli of the cylinder. The specimen's responses are significantly influenced by the frequency of the applied load, resulting in a drained state at low frequencies and an undrained state at high frequencies. At high frequencies, the sample behaves identically for an open or a closed lateral boundary, and permeability has insignificant effects. The dynamic elastic moduli are mainly controlled by the loading frequency and the ratio of the sample's radius to its height. Lastly,we show excellent matches between the newly derived analytical solution and laboratory measurements on one clay and two shale samples from Mont Terri.展开更多
Method of testing for dynamic output forces from jet elements is studied, the handwidth is large in testing with this method. By establishing a model of the test system and simulating it, principles of how inherent fe...Method of testing for dynamic output forces from jet elements is studied, the handwidth is large in testing with this method. By establishing a model of the test system and simulating it, principles of how inherent features of the test system affect the dynamic force test are found out. Thus a theoretical foundation is given for the design and error modification to the actual test system.展开更多
To find a better way to estimate the lift force induced by an interceptor on a high-speed mono-hull ship,a series of high-speed mono-hull ship models are designed and investigated under different conditions.Different ...To find a better way to estimate the lift force induced by an interceptor on a high-speed mono-hull ship,a series of high-speed mono-hull ship models are designed and investigated under different conditions.Different lift forces are obtained by numerical calculations and validated by a model test in a towing tank.The factors that influence the force are the interceptor height,velocity,draft,and deadrise angle.The relationship between each factor and the induced lift force is investigated and obtained.We found that the induced lift mainly depends on the interceptor height and advancing velocity,and is proportional to the square of the interceptor height and velocity.The results also showed that the effects of the draft and deadrise angle are relatively less important,and the relationship between the induced lift and these two factors is generally linear.Based on the results,a formula including the combined effect of all factors used to estimate the lift force induced by the interceptor is developed based on systematic analysis.The proposed formula could be used to estimate the lift force induced by interceptors,especially under high-speed condition.展开更多
Cells are capable of sensing and responding to the extracellular mechanical microenvironment via the actin skeleton.In vivo,tissues are frequently subject to mechanical forces,such as the rapid and significant shear f...Cells are capable of sensing and responding to the extracellular mechanical microenvironment via the actin skeleton.In vivo,tissues are frequently subject to mechanical forces,such as the rapid and significant shear flow encountered by vascular endothelial cells.However,the investigations about the transient response of intracellular actin networks under these intense external mechanical forces,their intrinsic mechanisms,and potential implications are very limited.Here,we observe that when cells are subject to the shear flow,an actin ring structure could be rapidly assembled at the periphery of the nucleus.To gain insights into the mechanism underlying this perinuclear actin ring assembly,we develop a computational model of actin dynamics.We demonstrate that this perinuclear actin ring assembly is triggered by the depolymerization of cortical actin,Arp2/3-dependent actin filament polymerization,and myosin-mediated actin network contraction.Furthermore,we discover that the compressive stress generated by the perinuclear actin ring could lead to a reduction in the nuclear spreading area,an increase in the nuclear height,and a decrease in the nuclear volume.The present model thus explains the mechanism of the perinuclear actin ring assembly under external mechanical forces and suggests that the spontaneous contraction of this actin structure can significantly impact nuclear morphology.展开更多
As the simplest hydrogen-bonded alcohol,liquid methanol has attracted intensive experimental and theoretical interest.However,theoretical investigations on this system have primarily relied on empirical intermolecular...As the simplest hydrogen-bonded alcohol,liquid methanol has attracted intensive experimental and theoretical interest.However,theoretical investigations on this system have primarily relied on empirical intermolecular force fields or ab initio molecular dynamics with semilocal density functionals.Inspired by recent studies on bulk water using increasingly accurate machine learning force fields,we report a new machine learning force field for liquid methanol with a hybrid functional revPBE0 plus dispersion correction.Molecular dynamics simulations on this machine learning force field are orders of magnitude faster than ab initio molecular dynamics simulations,yielding the radial distribution functions,selfdiffusion coefficients,and hydrogen bond network properties with very small statistical errors.The resulting structural and dynamical properties are compared well with the experimental data,demonstrating the superior accuracy of this machine learning force field.This work represents a successful step toward a first-principles description of this benchmark system and showcases the general applicability of the machine learning force field in studying liquid systems.展开更多
Dynamic characteristics and spatial-temporal distribution patterns of wetland landscapes in northeast China from 1986 to 2000 were quantitatively analyzed and studied by applying theories and methods of landscape ecol...Dynamic characteristics and spatial-temporal distribution patterns of wetland landscapes in northeast China from 1986 to 2000 were quantitatively analyzed and studied by applying theories and methods of landscape ecology,Land Change Science,remote sensing and GIS techniques.Through analyzing the dynamic spatial-temporal change degree,direction and pattern of wetland within the study area,as well as the characteristics of landscape pattern change and landscape transformation,this study got the following results:area and patch amount of wetland in northeast China showed a decreasing trend as a whole in the past 15 years.In terms of dynamic landscape changes,although the annual decrease rate of the last 5 years was 28 times more than that of the first 10 years,the first 10 years was a period with relatively more drastic patch changes of wetland landscapes in northeast China.By reviewing the overall changes of wetland landscapes in northeast China,the following characteristics were summarized:expanding in certain periods but decreasing in the overall trend,shrinking in parts but expanding from boundaries,showing high fragmentation and so on.Study on its driving forces showed that a unique spatial pattern of wetland landscapes was formed with the dual intervention of natural and artificial factors.展开更多
Conventional conductivity methods for measuring the void fraction in gas-liquid multiphase systems are typically affected by accuracy problems due to the presence of fluid flow and salinity.This study presents a novel...Conventional conductivity methods for measuring the void fraction in gas-liquid multiphase systems are typically affected by accuracy problems due to the presence of fluid flow and salinity.This study presents a novel approach for determining the void fraction based on a reciprocating dynamic conductivity probe used to measure the liquid film thickness under forced annular-flow conditions.The measurement system comprises a cyclone,a conductivity probe,a probe reciprocating device,and a data acquisition and processing system.This method ensures that the flow pattern is adjusted to a forced annular flow,thereby minimizing the influence of complex and variable gas-liquid flow patterns on the measurement results;Moreover,it determines the liquid film thickness solely according to circuit connectivity rather than specific conductivity values,thereby mitigating the impact of salinity.The reliability of the measurement system is demonstrated through laboratory experiments.The experimental results indicate that,in a range of gas phase superficial velocities 5–20 m/s and liquid phase superficial velocities 0.079–0.48 m/s,the maximum measurement deviation for the void fraction is 4.23%.展开更多
Aiming to mitigate the aerodynamic lift force imbalance between pantograph strips,which exacerbates wear and affects the current collection performance of the pantograph-catenary system,a study has been conducted to s...Aiming to mitigate the aerodynamic lift force imbalance between pantograph strips,which exacerbates wear and affects the current collection performance of the pantograph-catenary system,a study has been conducted to support the beam deflector optimization using a combination of experimental measurements and computational fluid dynamics(CFD)simulations.The results demonstrate that the size,position,and installation orientation of the wind deflectors significantly influence the amount of force compensation.They also indicate that the front strip deflectors should be installed downwards and the rear strip deflectors upwards,thereby forming a“π”shape.Moreover,the lift force compensation provided by the wind deflectors increases with the size of the deflector.Alternative wind compensation strategies,such as control circuits,are also discussed,putting emphasis on the pros and cons of various pantograph types and wind compensation approaches.展开更多
Reasonable distribution of braking force is a factor for a smooth,safe,and comfortable braking of trains.A dynamic optimal allocation strategy of electric-air braking force is proposed in this paper to solve the probl...Reasonable distribution of braking force is a factor for a smooth,safe,and comfortable braking of trains.A dynamic optimal allocation strategy of electric-air braking force is proposed in this paper to solve the problem of the lack of consideration of adhesion difference of train wheelsets in the existing high-speed train electric-air braking force optimal allocation strategies.In this method,the braking strategy gives priority to the use of electric braking force.The force model of a single train in the braking process is analyzed to calculate the change of adhesion between the wheel and rail of each wheelset after axle load transfer,and then the adhesion of the train is estimated in real time.Next,with the goal of maximizing the total adhesion utilization ratio of trailer/motor vehicles,a linear programming distribution function is constructed.The proportional coefficient of adhesion utilization ratio of each train and the application upper limit of braking force in the function is updated according to the change time point of wheelset adhesion.Finally,the braking force is dynamically allocated.The simulation results of Matlab/Simulink show that the proposed algorithm not only uses the different adhesion limits of each trailer to reduce the total amount of braking force undertaken by the motor vehicle,but also considers the adhesion difference of each wheelset.The strategy can effectively reduce the risk and time of motor vehicles during the braking process and improve the stability of the train braking.展开更多
Based on the principle of vehicle-track coupling dynamics, SIMPACK multi-body dynamics software is used to establish a C80 wagon line-coupled multi-body dynamics model with 73 degrees of freedom. And the reasonablenes...Based on the principle of vehicle-track coupling dynamics, SIMPACK multi-body dynamics software is used to establish a C80 wagon line-coupled multi-body dynamics model with 73 degrees of freedom. And the reasonableness of the line-coupled dynamics model is verified by using the maximum residual acceleration, the nonlinear critical speed of the wagon. The experimental results show that the established vehicle line coupling dynamics model meets the requirements of vehicle line coupling dynamics modeling.展开更多
The change in land development intensity is an important perspective to reflect the variation in regional social and economic development and spatial differentiation.In this paper,spatial statistical analysis,Ordinary...The change in land development intensity is an important perspective to reflect the variation in regional social and economic development and spatial differentiation.In this paper,spatial statistical analysis,Ordinary Least Squares(OLS),and Geographically weighted regression(GWR)methods are used to systematically analyse the spatial-temporal characteristics and driving forces of land development intensity for 131 spatial units in the western China from 2000 to 2015.The findings of the study are as follows:1)The land development intensity in the western China has been increasing rapidly.From 2000 to 2015,land development intensity increased by 3.4 times on average.2)The hotspot areas have shifted from central Inner Mongolia,northern Shaanxi and the Beibu Gulf of Guangxi to the Guanzhong Plain and the Chengdu-Chongqing urban agglomeration.The areas of cold spots were mainly concentrated in the Qinghai-Tibet Plateau,Yunnan,and Xinjiang.3)Investment intensity and the natural environment have always been the main drivers of land development intensity in the western China.Investment played a powerful role in promoting land development intensity,while the natural and ecological environment distinctly constrained such development.The effect of the economic factors on land development intensity in the western China has changed,which is reflected in the driving factor of construction land development shifting from economic growth in 2000 to economic structure,especially industrial structure,in 2015.展开更多
Currently, the modeling of cutting process mainly focuses on two aspects: one is the setup of the universal cutting force model that can be adapted to a broader cutting condition; the other is the setup of the exact c...Currently, the modeling of cutting process mainly focuses on two aspects: one is the setup of the universal cutting force model that can be adapted to a broader cutting condition; the other is the setup of the exact cutting force model that can accurately reflect a true cutting process. However, there is little research on the prediction of chatter stablity in milling. Based on the generalized mathematical model of inserted cutters introduced by ENGIN, an improved geometrical, mechanical and dynamic model for the vast variety of inserted cutters widely used in engineering applications is presented, in which the average directional cutting force coefficients are obtained by means of a numerical approach, thus leading to an analytical determination of stability lobes diagram (SLD) on the axial depth of cut. A new kind of SLD on the radial depth of cut is also created to satisfy the special requirement of inserted cutter milling. The corresponding algorithms used for predicting cutting forces, vibrations, dimensional surface finish and stability lobes in inserted cutter milling under different cutting conditions are put forward. Thereafter, a dynamic simulation module of inserted cutter milling is implemented by using hybrid program of Matlab with Visual Basic. Verification tests are conducted on a vertical machine center for Aluminum alloy LC4 by using two different types of inserted cutters, and the effectiveness of the model and the algorithm is verified by the good agreement of simulation result with that of cutting tests under different cutting conditions. The proposed model can predict the cutting process accurately under a variety of cutting conditions, and a high efficient and chatter-free milling operation can be achieved by a cutting condition optimization in industry applications.展开更多
Vibrations of a rotor-bearing system(RBS)can be affected by the frictional forces between the components of the inherent bearings.Thus,an in-depth investigation of the influences of the frictional moments of the beari...Vibrations of a rotor-bearing system(RBS)can be affected by the frictional forces between the components of the inherent bearings.Thus,an in-depth investigation of the influences of the frictional moments of the bearings on the vibrations of the RBS can be helpful for understanding the vibration mechanisms in the rotating machinery.In this study,an improved dynamic model of a RBS considering different frictional force models is presented.A comparative investigation on the influences of the empirical and analytical frictional force models on the vibration characteristics of the RBS is proposed.The empirical frictional force models include Palmgren’s and SKF’s models.The analytical frictional force model considers the rolling friction caused by the radial elastic material hysteresis,slipping friction between the ball and races,viscosity friction caused by the lubricating oil,and contact friction between the ball and cage.The influences of the external load and rotational speed on the vibrations of the RBS are analyzed.The comparative results show that the analytical frictional force model can give a more reasonable method for formulating the effects of the friction forces in the bearings on the vibrations of the RBS.The results also demonstrate that the friction forces in the bearings can significantly affect the vibrations of the RBSs.展开更多
Effects of unsteady deformation of a'flapping model insect wing on its aerodynamic force production are studied by solving the Navier-Stokes equations on a dynamically deforming grid. Aerodynamic forces on the flappi...Effects of unsteady deformation of a'flapping model insect wing on its aerodynamic force production are studied by solving the Navier-Stokes equations on a dynamically deforming grid. Aerodynamic forces on the flapping wing are not much affected by considerable twist, but affected by camber deformation. The effect of combined camber and twist deformation is similar to that of camber deformation. With a deformation of 6% camber and 20% twist (typical values observed for wings of many insects), lift is increased by 10% - 20% and lift-to-drag ratio by around 10% compared with the case of a rigid fiat-plate wing. As a result, the deformation can increase the maximum lift coefficient of an insect, and reduce its power requirement for flight. For example, for a hovering bumblebee with dynamically deforming wings (6% camber and 20% twist), aerodynamic power required is reduced by about 16% compared with the case of rigid wings.展开更多
A new concept of banana vibrating screen which has the same effect as traditional banana vibrating screen in a new way was put forward.The dynamic model of vibrating screen was established and its working principle wa...A new concept of banana vibrating screen which has the same effect as traditional banana vibrating screen in a new way was put forward.The dynamic model of vibrating screen was established and its working principle was analyzed when the action line of the exciting force did not act through the centroid of screen box.Moreover,the dynamic differential equations of centroid and screen surface were obtained.The motions of centroid and screen surface were simulated with actual parameters of the design example in Matlab/Simulink.The results show that not only the amplitude has a significant decrease from 9.38 to 4.10 mm,but also the throwing index and vibrating direction angle have a significant decrease from 10.49 to 4.59,and from 58.10° to 33.29°,respectively,along the screen surface,which indicates that motion characteristics of vibrating screen are consistent with those of traditional banana vibrating screen only by means of a single angle of screen surface.What's more,such banana vibrating screen of variable linear trajectory with greater processing capacity could be obtained by adjusting the relative position of force center and the centroid of screen box properly.展开更多
A test rig is built to model the dynamic response of submarine pipelines with an underwater shaking table in the State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, China. Model ...A test rig is built to model the dynamic response of submarine pipelines with an underwater shaking table in the State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, China. Model tests are carried out to consider the effects of exciting wave directions and types. Based on the experimental results, two hydrodynamic force models derived from Morisen equation and Wake model are presented respectively. By use of hydrodynamic force models suitable for free spanning submarine pipelines under earthquakes, diseretized equations of motion are obtained and finite element models are established to analyze dynamic response of free spanning submarine pipeline subjected to multi-support seismic excitations. The comparison of numerical results with experimental results shows that the improved Morison and Wake hydrodynamic force models could satisfactorily predict dynamic response on the free spanning submarine pipelines subjected to earthquakes.展开更多
Force chains based mesoscale simulation is conducted to investigate the response behavior of aluminumpolytetrafluoroethylene(Al-PTFE)granular composites under a low-velocity impact.A two-dimensional model followed the...Force chains based mesoscale simulation is conducted to investigate the response behavior of aluminumpolytetrafluoroethylene(Al-PTFE)granular composites under a low-velocity impact.A two-dimensional model followed the randomly normal distribution of real Al particles size is developed.The dynamic compressive process of Al-PTFE composites with varied Al mass fraction is simulated and validated against the experiments.The results indicate that,force chains behavior governed by the number and the size of agglomerated Al particles,significantly affects the impact response of the material.The failure mode of the material evolves from shear failure of matrix to debonding failure of particles with increasing density.A high crack area of the material is critical mechanism to arouse the initiation reaction.The damage maintained by force chains during large plastic strain builds up more local stresses concentration to enhance a possible reaction performance.In addition,simulation is performed with identical mass fraction but various Al size distribution to explore the effects of size centralization and dispersion on the mechanical properties of materials.It is found that smaller sized Al particle of composites are more preferred than its bulky material in ultimate strength.Increasing dispersed degree is facilitated to create stable force chains in samples with comparable particle number.The simulation studies provide further insights into the plastic deformation,failure mechanism,and possible energy release capacity for Al-PTFE composites,which is helpful for further design and application of reactive materials.展开更多
By establishing the interpreting elements, and applying supervised classification, the sandy desertific- ation was interpreted and the desertified land areas of the counties in the western Jilin Province in 1986 and i...By establishing the interpreting elements, and applying supervised classification, the sandy desertific- ation was interpreted and the desertified land areas of the counties in the western Jilin Province in 1986 and in 2000 were obtained. Taking Tongyu and Qian’an as examples, the natural driving forces and man-made driving forces were analyzed. The paper comes the conclusions that the material sources and the warming and dry climate are the internal causes of potential land desertification; the irrational human activities, such as destroying forest and reclaiming the grassland, are the external causes of potential land desertification; while more rational human activities, such as planting trees and restoring grassland can reverse the land desertification. Furthermore, the countermeasures and suggestions for the development of agriculture and animal husbandry in the western Jilin Province are put forward.展开更多
The parametric dynamic stability of resonant beams with various parameters under periodic axial force is studied. It is assumed that the theoretical formulations are based on Euler-Bernoulli beam theory. The governing...The parametric dynamic stability of resonant beams with various parameters under periodic axial force is studied. It is assumed that the theoretical formulations are based on Euler-Bernoulli beam theory. The governing equations of motion are derived by using the Rayleigh-Ritz method and transformed into Mathieu equations, which are formed to determine the stability criterion and stability regions for parametricallyexcited linear resonant beams. An improved stability criterion is obtained using periodic Lyapunov functions. The boundary points on the stable regions are determined by using a small parameter perturbation method. Numerical results and discussion are presented to highlight the effects of beam length, axial force and damped coefficient on the stability criterion and stability regions. While some stability rules are easy to anticipate, we draw some conclusions: with the increase of damped coefficient, stable regions arise; with the decrease of beam length, the conditions of the damped coefficient arise instead. These conclusions can provide a reference for the robust design of parametricallyexcited linear resonant sensors.展开更多
In order to study the dynamic performance of seismically isolated bridges under the most unfavorable loads in the longitudinal direction, a dynamic equation for vehicle braking in the longitudinal direction is establi...In order to study the dynamic performance of seismically isolated bridges under the most unfavorable loads in the longitudinal direction, a dynamic equation for vehicle braking in the longitudinal direction is established. A four or five- order Runge-Kutta method is adopted to obtain the time-history response of a wheel set under braking force. The quadratic discretization method is then used to transform this time-history into a braking and bending force time-history of a structural fixed node, and a dynamic response analysis of the seismically isolated bridge under the vehicle's braking force is carried out using ANSYS, a universal finite element analysis software. According to the results, seismic isolation design results in a more rational distribution of braking force among piers; the influence of the initial braking velocity on the vehicle braking force is negligible; the location where the first wheel set leaves the bridge is the most unfavorable parking location; a seismic isolation bridge bearing constructed according to typical design methods enters into a yield stage under the braking force, while the shearing force at the bottom of the pier declines as the isolation period is extended; the design requirements can be met when the yield displacement of the seismic isolation bearing is less than 5 mm and the yield strength is greater than the braking force.展开更多
文摘Existing transversely isotropic poroelastodynamics solutions are limited to infinite domains and without experimental validation. Furthermore, there is a lack of analytical simulations for the elastic moduli dispersion of fluid-saturated porous cylinders. To address these three limitations and investigate the mechanisms of moduli dispersion, we present the analytical solutions of the poromechanical responses and the elastic moduli dispersion of a transversely isotropic, fluid-saturated, finite porous cylinder subjected to a forced deformation test. Through an example, we demonstrate the effects of loading frequency, boundary conditions, and material's anisotropy, dimension, and permeability on the responses of pore pressure,force, displacement, and dynamic elastic moduli of the cylinder. The specimen's responses are significantly influenced by the frequency of the applied load, resulting in a drained state at low frequencies and an undrained state at high frequencies. At high frequencies, the sample behaves identically for an open or a closed lateral boundary, and permeability has insignificant effects. The dynamic elastic moduli are mainly controlled by the loading frequency and the ratio of the sample's radius to its height. Lastly,we show excellent matches between the newly derived analytical solution and laboratory measurements on one clay and two shale samples from Mont Terri.
文摘Method of testing for dynamic output forces from jet elements is studied, the handwidth is large in testing with this method. By establishing a model of the test system and simulating it, principles of how inherent features of the test system affect the dynamic force test are found out. Thus a theoretical foundation is given for the design and error modification to the actual test system.
基金financially supported by the National Key Research and Development Program of China(Grant No.2021YFC2800700)the National Natural Science Foundation of China(Grant Nos.52171330,52101379,52101380,51679053)+2 种基金the Project of Research and Development Plan in Key Areas of Guangdong Province(Grant No.2020B1111010002)the Foundation of Key Laboratory of Marine Environmental Survey Technology and Application,Ministry of Natural Resources(Grant No.MESTA-2021-B010)the Natural Science Foundation of Guangdong Province,China(Grant No.2021A1515012134)。
文摘To find a better way to estimate the lift force induced by an interceptor on a high-speed mono-hull ship,a series of high-speed mono-hull ship models are designed and investigated under different conditions.Different lift forces are obtained by numerical calculations and validated by a model test in a towing tank.The factors that influence the force are the interceptor height,velocity,draft,and deadrise angle.The relationship between each factor and the induced lift force is investigated and obtained.We found that the induced lift mainly depends on the interceptor height and advancing velocity,and is proportional to the square of the interceptor height and velocity.The results also showed that the effects of the draft and deadrise angle are relatively less important,and the relationship between the induced lift and these two factors is generally linear.Based on the results,a formula including the combined effect of all factors used to estimate the lift force induced by the interceptor is developed based on systematic analysis.The proposed formula could be used to estimate the lift force induced by interceptors,especially under high-speed condition.
基金Project supported by the National Natural Science Foundation of China (Nos. 12025207 and 11872357)the Fundamental Research Funds for the Central Universities。
文摘Cells are capable of sensing and responding to the extracellular mechanical microenvironment via the actin skeleton.In vivo,tissues are frequently subject to mechanical forces,such as the rapid and significant shear flow encountered by vascular endothelial cells.However,the investigations about the transient response of intracellular actin networks under these intense external mechanical forces,their intrinsic mechanisms,and potential implications are very limited.Here,we observe that when cells are subject to the shear flow,an actin ring structure could be rapidly assembled at the periphery of the nucleus.To gain insights into the mechanism underlying this perinuclear actin ring assembly,we develop a computational model of actin dynamics.We demonstrate that this perinuclear actin ring assembly is triggered by the depolymerization of cortical actin,Arp2/3-dependent actin filament polymerization,and myosin-mediated actin network contraction.Furthermore,we discover that the compressive stress generated by the perinuclear actin ring could lead to a reduction in the nuclear spreading area,an increase in the nuclear height,and a decrease in the nuclear volume.The present model thus explains the mechanism of the perinuclear actin ring assembly under external mechanical forces and suggests that the spontaneous contraction of this actin structure can significantly impact nuclear morphology.
基金supported by the CAS Project for Young Scientists in Basic Research(YSBR-005)the National Natural Science Foundation of China(22325304,22221003 and 22033007)We acknowledge the Supercomputing Center of USTC,Hefei Advanced Computing Center,Beijing PARATERA Tech Co.,Ltd.,for providing high-performance computing services。
文摘As the simplest hydrogen-bonded alcohol,liquid methanol has attracted intensive experimental and theoretical interest.However,theoretical investigations on this system have primarily relied on empirical intermolecular force fields or ab initio molecular dynamics with semilocal density functionals.Inspired by recent studies on bulk water using increasingly accurate machine learning force fields,we report a new machine learning force field for liquid methanol with a hybrid functional revPBE0 plus dispersion correction.Molecular dynamics simulations on this machine learning force field are orders of magnitude faster than ab initio molecular dynamics simulations,yielding the radial distribution functions,selfdiffusion coefficients,and hydrogen bond network properties with very small statistical errors.The resulting structural and dynamical properties are compared well with the experimental data,demonstrating the superior accuracy of this machine learning force field.This work represents a successful step toward a first-principles description of this benchmark system and showcases the general applicability of the machine learning force field in studying liquid systems.
基金Supported by Talents Education Program of Beijing Municipal Universities (PHR201008346)D Program of Talents Training of Beijing City (20081D0502200244)~~
文摘Dynamic characteristics and spatial-temporal distribution patterns of wetland landscapes in northeast China from 1986 to 2000 were quantitatively analyzed and studied by applying theories and methods of landscape ecology,Land Change Science,remote sensing and GIS techniques.Through analyzing the dynamic spatial-temporal change degree,direction and pattern of wetland within the study area,as well as the characteristics of landscape pattern change and landscape transformation,this study got the following results:area and patch amount of wetland in northeast China showed a decreasing trend as a whole in the past 15 years.In terms of dynamic landscape changes,although the annual decrease rate of the last 5 years was 28 times more than that of the first 10 years,the first 10 years was a period with relatively more drastic patch changes of wetland landscapes in northeast China.By reviewing the overall changes of wetland landscapes in northeast China,the following characteristics were summarized:expanding in certain periods but decreasing in the overall trend,shrinking in parts but expanding from boundaries,showing high fragmentation and so on.Study on its driving forces showed that a unique spatial pattern of wetland landscapes was formed with the dual intervention of natural and artificial factors.
基金the National Natural Science Foundation of China(No.62173049)the Open Fund of the Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering(Yangtze University),YQZC202309.
文摘Conventional conductivity methods for measuring the void fraction in gas-liquid multiphase systems are typically affected by accuracy problems due to the presence of fluid flow and salinity.This study presents a novel approach for determining the void fraction based on a reciprocating dynamic conductivity probe used to measure the liquid film thickness under forced annular-flow conditions.The measurement system comprises a cyclone,a conductivity probe,a probe reciprocating device,and a data acquisition and processing system.This method ensures that the flow pattern is adjusted to a forced annular flow,thereby minimizing the influence of complex and variable gas-liquid flow patterns on the measurement results;Moreover,it determines the liquid film thickness solely according to circuit connectivity rather than specific conductivity values,thereby mitigating the impact of salinity.The reliability of the measurement system is demonstrated through laboratory experiments.The experimental results indicate that,in a range of gas phase superficial velocities 5–20 m/s and liquid phase superficial velocities 0.079–0.48 m/s,the maximum measurement deviation for the void fraction is 4.23%.
文摘Aiming to mitigate the aerodynamic lift force imbalance between pantograph strips,which exacerbates wear and affects the current collection performance of the pantograph-catenary system,a study has been conducted to support the beam deflector optimization using a combination of experimental measurements and computational fluid dynamics(CFD)simulations.The results demonstrate that the size,position,and installation orientation of the wind deflectors significantly influence the amount of force compensation.They also indicate that the front strip deflectors should be installed downwards and the rear strip deflectors upwards,thereby forming a“π”shape.Moreover,the lift force compensation provided by the wind deflectors increases with the size of the deflector.Alternative wind compensation strategies,such as control circuits,are also discussed,putting emphasis on the pros and cons of various pantograph types and wind compensation approaches.
基金supported by the National Natural Science Foundation of China(Grant Nos.62173137,52172403,62303178).
文摘Reasonable distribution of braking force is a factor for a smooth,safe,and comfortable braking of trains.A dynamic optimal allocation strategy of electric-air braking force is proposed in this paper to solve the problem of the lack of consideration of adhesion difference of train wheelsets in the existing high-speed train electric-air braking force optimal allocation strategies.In this method,the braking strategy gives priority to the use of electric braking force.The force model of a single train in the braking process is analyzed to calculate the change of adhesion between the wheel and rail of each wheelset after axle load transfer,and then the adhesion of the train is estimated in real time.Next,with the goal of maximizing the total adhesion utilization ratio of trailer/motor vehicles,a linear programming distribution function is constructed.The proportional coefficient of adhesion utilization ratio of each train and the application upper limit of braking force in the function is updated according to the change time point of wheelset adhesion.Finally,the braking force is dynamically allocated.The simulation results of Matlab/Simulink show that the proposed algorithm not only uses the different adhesion limits of each trailer to reduce the total amount of braking force undertaken by the motor vehicle,but also considers the adhesion difference of each wheelset.The strategy can effectively reduce the risk and time of motor vehicles during the braking process and improve the stability of the train braking.
文摘Based on the principle of vehicle-track coupling dynamics, SIMPACK multi-body dynamics software is used to establish a C80 wagon line-coupled multi-body dynamics model with 73 degrees of freedom. And the reasonableness of the line-coupled dynamics model is verified by using the maximum residual acceleration, the nonlinear critical speed of the wagon. The experimental results show that the established vehicle line coupling dynamics model meets the requirements of vehicle line coupling dynamics modeling.
基金Under the auspices of Fundamental Research Funds for the Central University(No.310827171012)National Natural Science Foundation of China(No.41971178+4 种基金3167054931170664)National Key Research&Development Program of China(2017YFC0504705)Open Fund of Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity(No.SKLESS201807)Key Research&Development Program of Shaanxi Province(No.2019SF-245)
文摘The change in land development intensity is an important perspective to reflect the variation in regional social and economic development and spatial differentiation.In this paper,spatial statistical analysis,Ordinary Least Squares(OLS),and Geographically weighted regression(GWR)methods are used to systematically analyse the spatial-temporal characteristics and driving forces of land development intensity for 131 spatial units in the western China from 2000 to 2015.The findings of the study are as follows:1)The land development intensity in the western China has been increasing rapidly.From 2000 to 2015,land development intensity increased by 3.4 times on average.2)The hotspot areas have shifted from central Inner Mongolia,northern Shaanxi and the Beibu Gulf of Guangxi to the Guanzhong Plain and the Chengdu-Chongqing urban agglomeration.The areas of cold spots were mainly concentrated in the Qinghai-Tibet Plateau,Yunnan,and Xinjiang.3)Investment intensity and the natural environment have always been the main drivers of land development intensity in the western China.Investment played a powerful role in promoting land development intensity,while the natural and ecological environment distinctly constrained such development.The effect of the economic factors on land development intensity in the western China has changed,which is reflected in the driving factor of construction land development shifting from economic growth in 2000 to economic structure,especially industrial structure,in 2015.
基金supported by Hunan Provincial Natural Science Foundation of China (Grant Nos. 10JJ2040, 11JJ3055)National Major Science and Technology Special Projects of China (Grant No.2012ZX04011-011)+1 种基金Postdoctoral Science Funded Project of China (GrantNo. 20110490261)Hunan Provincial 12th Five-year Plan Key Disciplines of China (Grant No. 2012-42)
文摘Currently, the modeling of cutting process mainly focuses on two aspects: one is the setup of the universal cutting force model that can be adapted to a broader cutting condition; the other is the setup of the exact cutting force model that can accurately reflect a true cutting process. However, there is little research on the prediction of chatter stablity in milling. Based on the generalized mathematical model of inserted cutters introduced by ENGIN, an improved geometrical, mechanical and dynamic model for the vast variety of inserted cutters widely used in engineering applications is presented, in which the average directional cutting force coefficients are obtained by means of a numerical approach, thus leading to an analytical determination of stability lobes diagram (SLD) on the axial depth of cut. A new kind of SLD on the radial depth of cut is also created to satisfy the special requirement of inserted cutter milling. The corresponding algorithms used for predicting cutting forces, vibrations, dimensional surface finish and stability lobes in inserted cutter milling under different cutting conditions are put forward. Thereafter, a dynamic simulation module of inserted cutter milling is implemented by using hybrid program of Matlab with Visual Basic. Verification tests are conducted on a vertical machine center for Aluminum alloy LC4 by using two different types of inserted cutters, and the effectiveness of the model and the algorithm is verified by the good agreement of simulation result with that of cutting tests under different cutting conditions. The proposed model can predict the cutting process accurately under a variety of cutting conditions, and a high efficient and chatter-free milling operation can be achieved by a cutting condition optimization in industry applications.
基金Projects(51605051,51975068)supported by the National Natural Science Foundation of ChinaProject(3102020HHZY030001)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Vibrations of a rotor-bearing system(RBS)can be affected by the frictional forces between the components of the inherent bearings.Thus,an in-depth investigation of the influences of the frictional moments of the bearings on the vibrations of the RBS can be helpful for understanding the vibration mechanisms in the rotating machinery.In this study,an improved dynamic model of a RBS considering different frictional force models is presented.A comparative investigation on the influences of the empirical and analytical frictional force models on the vibration characteristics of the RBS is proposed.The empirical frictional force models include Palmgren’s and SKF’s models.The analytical frictional force model considers the rolling friction caused by the radial elastic material hysteresis,slipping friction between the ball and races,viscosity friction caused by the lubricating oil,and contact friction between the ball and cage.The influences of the external load and rotational speed on the vibrations of the RBS are analyzed.The comparative results show that the analytical frictional force model can give a more reasonable method for formulating the effects of the friction forces in the bearings on the vibrations of the RBS.The results also demonstrate that the friction forces in the bearings can significantly affect the vibrations of the RBSs.
基金Project supported by the"Fan Zhou"Youth Science Fund of Beijing University of Aeronautics and Astronautics (No.20070404)
文摘Effects of unsteady deformation of a'flapping model insect wing on its aerodynamic force production are studied by solving the Navier-Stokes equations on a dynamically deforming grid. Aerodynamic forces on the flapping wing are not much affected by considerable twist, but affected by camber deformation. The effect of combined camber and twist deformation is similar to that of camber deformation. With a deformation of 6% camber and 20% twist (typical values observed for wings of many insects), lift is increased by 10% - 20% and lift-to-drag ratio by around 10% compared with the case of a rigid fiat-plate wing. As a result, the deformation can increase the maximum lift coefficient of an insect, and reduce its power requirement for flight. For example, for a hovering bumblebee with dynamically deforming wings (6% camber and 20% twist), aerodynamic power required is reduced by about 16% compared with the case of rigid wings.
基金Projects(50574091, 50774084) supported by the National Natural Science Foundation of ChinaProject(50921001) supported by the Innovative Research Group Science Foundation,ChinaProject supported by Jiangsu Scientific Researching Fund Project ("333" Project),China
文摘A new concept of banana vibrating screen which has the same effect as traditional banana vibrating screen in a new way was put forward.The dynamic model of vibrating screen was established and its working principle was analyzed when the action line of the exciting force did not act through the centroid of screen box.Moreover,the dynamic differential equations of centroid and screen surface were obtained.The motions of centroid and screen surface were simulated with actual parameters of the design example in Matlab/Simulink.The results show that not only the amplitude has a significant decrease from 9.38 to 4.10 mm,but also the throwing index and vibrating direction angle have a significant decrease from 10.49 to 4.59,and from 58.10° to 33.29°,respectively,along the screen surface,which indicates that motion characteristics of vibrating screen are consistent with those of traditional banana vibrating screen only by means of a single angle of screen surface.What's more,such banana vibrating screen of variable linear trajectory with greater processing capacity could be obtained by adjusting the relative position of force center and the centroid of screen box properly.
基金supported jointly by the National Natural Science Foundation of China and Korea Scienceand Engineering Foundation(Grant No.50811140341)
文摘A test rig is built to model the dynamic response of submarine pipelines with an underwater shaking table in the State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, China. Model tests are carried out to consider the effects of exciting wave directions and types. Based on the experimental results, two hydrodynamic force models derived from Morisen equation and Wake model are presented respectively. By use of hydrodynamic force models suitable for free spanning submarine pipelines under earthquakes, diseretized equations of motion are obtained and finite element models are established to analyze dynamic response of free spanning submarine pipeline subjected to multi-support seismic excitations. The comparison of numerical results with experimental results shows that the improved Morison and Wake hydrodynamic force models could satisfactorily predict dynamic response on the free spanning submarine pipelines subjected to earthquakes.
基金the National Natural Science Foundation of China(No.U1730112).
文摘Force chains based mesoscale simulation is conducted to investigate the response behavior of aluminumpolytetrafluoroethylene(Al-PTFE)granular composites under a low-velocity impact.A two-dimensional model followed the randomly normal distribution of real Al particles size is developed.The dynamic compressive process of Al-PTFE composites with varied Al mass fraction is simulated and validated against the experiments.The results indicate that,force chains behavior governed by the number and the size of agglomerated Al particles,significantly affects the impact response of the material.The failure mode of the material evolves from shear failure of matrix to debonding failure of particles with increasing density.A high crack area of the material is critical mechanism to arouse the initiation reaction.The damage maintained by force chains during large plastic strain builds up more local stresses concentration to enhance a possible reaction performance.In addition,simulation is performed with identical mass fraction but various Al size distribution to explore the effects of size centralization and dispersion on the mechanical properties of materials.It is found that smaller sized Al particle of composites are more preferred than its bulky material in ultimate strength.Increasing dispersed degree is facilitated to create stable force chains in samples with comparable particle number.The simulation studies provide further insights into the plastic deformation,failure mechanism,and possible energy release capacity for Al-PTFE composites,which is helpful for further design and application of reactive materials.
基金The Key Project of Chinese Academy of Sciences(No.KZCX1-SW-19)
文摘By establishing the interpreting elements, and applying supervised classification, the sandy desertific- ation was interpreted and the desertified land areas of the counties in the western Jilin Province in 1986 and in 2000 were obtained. Taking Tongyu and Qian’an as examples, the natural driving forces and man-made driving forces were analyzed. The paper comes the conclusions that the material sources and the warming and dry climate are the internal causes of potential land desertification; the irrational human activities, such as destroying forest and reclaiming the grassland, are the external causes of potential land desertification; while more rational human activities, such as planting trees and restoring grassland can reverse the land desertification. Furthermore, the countermeasures and suggestions for the development of agriculture and animal husbandry in the western Jilin Province are put forward.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60927005)the 2012 Innovation Foundation of BUAA for PhD Graduatesthe Fundamental Research Funds for the Central Universities,China (Grant No. YWF-10-01-A17)
文摘The parametric dynamic stability of resonant beams with various parameters under periodic axial force is studied. It is assumed that the theoretical formulations are based on Euler-Bernoulli beam theory. The governing equations of motion are derived by using the Rayleigh-Ritz method and transformed into Mathieu equations, which are formed to determine the stability criterion and stability regions for parametricallyexcited linear resonant beams. An improved stability criterion is obtained using periodic Lyapunov functions. The boundary points on the stable regions are determined by using a small parameter perturbation method. Numerical results and discussion are presented to highlight the effects of beam length, axial force and damped coefficient on the stability criterion and stability regions. While some stability rules are easy to anticipate, we draw some conclusions: with the increase of damped coefficient, stable regions arise; with the decrease of beam length, the conditions of the damped coefficient arise instead. These conclusions can provide a reference for the robust design of parametricallyexcited linear resonant sensors.
文摘In order to study the dynamic performance of seismically isolated bridges under the most unfavorable loads in the longitudinal direction, a dynamic equation for vehicle braking in the longitudinal direction is established. A four or five- order Runge-Kutta method is adopted to obtain the time-history response of a wheel set under braking force. The quadratic discretization method is then used to transform this time-history into a braking and bending force time-history of a structural fixed node, and a dynamic response analysis of the seismically isolated bridge under the vehicle's braking force is carried out using ANSYS, a universal finite element analysis software. According to the results, seismic isolation design results in a more rational distribution of braking force among piers; the influence of the initial braking velocity on the vehicle braking force is negligible; the location where the first wheel set leaves the bridge is the most unfavorable parking location; a seismic isolation bridge bearing constructed according to typical design methods enters into a yield stage under the braking force, while the shearing force at the bottom of the pier declines as the isolation period is extended; the design requirements can be met when the yield displacement of the seismic isolation bearing is less than 5 mm and the yield strength is greater than the braking force.