Floods are both risks and resources. Floodwater utilization is an important part of flood management. Considering the rising shortage of water resources, serious water pollution, and undersupply of electric power, it...Floods are both risks and resources. Floodwater utilization is an important part of flood management. Considering the rising shortage of water resources, serious water pollution, and undersupply of electric power, it’s imperative to strengthen flood management. In light of the hydrological characteristics of the Three Gorges Project (TGP) on the Yangtze River in P. R. China, we investigated the necessity and feasibility of TGP floodwater utilization, proprosed dynamic control of limited water level during flood season of the reservoir and basin-wide integrated floodwater management as strategies, and identified problems that might occur in practice.展开更多
Flood control forecast operation mode is one of the main ways for determining the upper bound of dynamic control of flood limited water level during flood season. The floodwater utilization rate can be effectively inc...Flood control forecast operation mode is one of the main ways for determining the upper bound of dynamic control of flood limited water level during flood season. The floodwater utilization rate can be effectively increased by using flood forecast information and flood control forecast operation mode. In this paper, Dahuofang Reservoir is selected as a case study. At first, the distribution pattern and the bound of forecast error which is a key source of risk are analyzed. Then, based on the definition of flood risk, the risk of dynamic control of reservoir flood limited water level within different flood forecast error bounds is studied. The results show that, the dynamic control of reservoir flood limited water level with flood forecast information can increase the floodwater utilization rate without increasing flood control risk effectively and it is feasible in practice.展开更多
Full operation of the Three Gorges Dam(TGD) reduces flood risk of the middle and lower parts of the Yangtze River Basin. However,Dongting Lake, which is located in the Yangtze River Basin, is still at high risk for po...Full operation of the Three Gorges Dam(TGD) reduces flood risk of the middle and lower parts of the Yangtze River Basin. However,Dongting Lake, which is located in the Yangtze River Basin, is still at high risk for potentially severe flooding in the future. The effects of the TGD on flood processes were investigated using a hydrodynamic model. The 1998 and 2010 flood events before and after the operation of the TGD, respectively, were analyzed. The numerical results show that the operation of the TGD changes flood processes, including the timing and magnitude of flood peaks in Dongting Lake. The TGD can effectively reduce the flood level in Dongting Lake, which is mainly caused by the flood water from the upper reach of the Yangtze River. This is not the case, however, for floods mainly induced by flood water from four main rivers in the catchment. In view of this, a comprehensive strategy for flood management in Dongting Lake is required. Non-engineering measures, such as warning systems and combined operation of the TGD and other reservoirs in the catchment, as well as traditional engineering measures, should be further improved. Meanwhile, a sustainable philosophy for flood control, including natural flood management and lake restoration, is recommended to reduce the flood risk.展开更多
Dynamic control of reservoir limited water level is important to reservoir flood control operation.A reasonable limited water level can best utilize flood water resources in addition to flood control.This paper is a t...Dynamic control of reservoir limited water level is important to reservoir flood control operation.A reasonable limited water level can best utilize flood water resources in addition to flood control.This paper is a trial application of the fuzzy information entropy matter-element evaluation method(FIEMEM) as an optimal selection of dynamic control of limited water level.In this method,compound matter elements are established first,followed by establishment of an evaluation model and choice of the optimal scheme on the basis of fuzzy information entropy.In determining weights,a combined weighting method in game theory is adopted to combine experiential weights and mathematical weights so as to eliminate one-sidedness of the single weighting method.Finally,the feasibility of this optimization method is verified by citing dynamic control of Biliuhe reservoir limited water level as an example.展开更多
基金Funded by National Key Technologies R&D Program (2008BAB29B09)Open Foundation of State Key Laboratory of Water Resources and Hydropower Engineering Science (2007C017)China Postdoctoral Science Foundation (20080440956)
文摘Floods are both risks and resources. Floodwater utilization is an important part of flood management. Considering the rising shortage of water resources, serious water pollution, and undersupply of electric power, it’s imperative to strengthen flood management. In light of the hydrological characteristics of the Three Gorges Project (TGP) on the Yangtze River in P. R. China, we investigated the necessity and feasibility of TGP floodwater utilization, proprosed dynamic control of limited water level during flood season of the reservoir and basin-wide integrated floodwater management as strategies, and identified problems that might occur in practice.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51079015, 50979011)
文摘Flood control forecast operation mode is one of the main ways for determining the upper bound of dynamic control of flood limited water level during flood season. The floodwater utilization rate can be effectively increased by using flood forecast information and flood control forecast operation mode. In this paper, Dahuofang Reservoir is selected as a case study. At first, the distribution pattern and the bound of forecast error which is a key source of risk are analyzed. Then, based on the definition of flood risk, the risk of dynamic control of reservoir flood limited water level within different flood forecast error bounds is studied. The results show that, the dynamic control of reservoir flood limited water level with flood forecast information can increase the floodwater utilization rate without increasing flood control risk effectively and it is feasible in practice.
基金supported by the National Basic Research Program of China(973 Program,Grant No.2012CB417000)
文摘Full operation of the Three Gorges Dam(TGD) reduces flood risk of the middle and lower parts of the Yangtze River Basin. However,Dongting Lake, which is located in the Yangtze River Basin, is still at high risk for potentially severe flooding in the future. The effects of the TGD on flood processes were investigated using a hydrodynamic model. The 1998 and 2010 flood events before and after the operation of the TGD, respectively, were analyzed. The numerical results show that the operation of the TGD changes flood processes, including the timing and magnitude of flood peaks in Dongting Lake. The TGD can effectively reduce the flood level in Dongting Lake, which is mainly caused by the flood water from the upper reach of the Yangtze River. This is not the case, however, for floods mainly induced by flood water from four main rivers in the catchment. In view of this, a comprehensive strategy for flood management in Dongting Lake is required. Non-engineering measures, such as warning systems and combined operation of the TGD and other reservoirs in the catchment, as well as traditional engineering measures, should be further improved. Meanwhile, a sustainable philosophy for flood control, including natural flood management and lake restoration, is recommended to reduce the flood risk.
基金supported by the Nonprofit Sector Specific Research of Ministry of Water Resources (Grant No. 200701015)
文摘Dynamic control of reservoir limited water level is important to reservoir flood control operation.A reasonable limited water level can best utilize flood water resources in addition to flood control.This paper is a trial application of the fuzzy information entropy matter-element evaluation method(FIEMEM) as an optimal selection of dynamic control of limited water level.In this method,compound matter elements are established first,followed by establishment of an evaluation model and choice of the optimal scheme on the basis of fuzzy information entropy.In determining weights,a combined weighting method in game theory is adopted to combine experiential weights and mathematical weights so as to eliminate one-sidedness of the single weighting method.Finally,the feasibility of this optimization method is verified by citing dynamic control of Biliuhe reservoir limited water level as an example.