期刊文献+
共找到10,840篇文章
< 1 2 250 >
每页显示 20 50 100
Suitable region of dynamic optimal interpolation for efficiently altimetry sea surface height mapping
1
作者 Jiasheng Shi Taoyong Jin 《Geodesy and Geodynamics》 EI CSCD 2024年第2期142-149,共8页
The dynamic optimal interpolation(DOI)method is a technique based on quasi-geostrophic dynamics for merging multi-satellite altimeter along-track observations to generate gridded absolute dynamic topography(ADT).Compa... The dynamic optimal interpolation(DOI)method is a technique based on quasi-geostrophic dynamics for merging multi-satellite altimeter along-track observations to generate gridded absolute dynamic topography(ADT).Compared with the linear optimal interpolation(LOI)method,the DOI method can improve the accuracy of gridded ADT locally but with low computational efficiency.Consequently,considering both computational efficiency and accuracy,the DOI method is more suitable to be used only for regional applications.In this study,we propose to evaluate the suitable region for applying the DOI method based on the correlation between the absolute value of the Jacobian operator of the geostrophic stream function and the improvement achieved by the DOI method.After verifying the LOI and DOI methods,the suitable region was investigated in three typical areas:the Gulf Stream(25°N-50°N,55°W-80°W),the Japanese Kuroshio(25°N-45°N,135°E-155°E),and the South China Sea(5°N-25°N,100°E-125°E).We propose to use the DOI method only in regions outside the equatorial region and where the absolute value of the Jacobian operator of the geostrophic stream function is higher than1×10^(-11). 展开更多
关键词 dynamic optimal interpolation Linearoptimal interpolation Satellite altimetry Sea surface height Suitable region
下载PDF
Optimal Design of the Modular Joint Drive Train for Enhancing Cobot Load Capacity and Dynamic Performance
2
作者 Peng Li Zhenguo Nie +1 位作者 Zihao Li Xinjun Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期26-40,共15页
Automation advancements prompts the extensive integration of collaborative robot(cobot)across a range of industries.Compared to the commonly used design approach of increasing the payload-to-weight ratio of cobot to e... Automation advancements prompts the extensive integration of collaborative robot(cobot)across a range of industries.Compared to the commonly used design approach of increasing the payload-to-weight ratio of cobot to enhance load capacity,equal attention should be paid to the dynamic response characteristics of cobot during the design process to make the cobot more flexible.In this paper,a new method for designing the drive train parameters of cobot is proposed.Firstly,based on the analysis of factors influencing the load capacity and dynamic response characteristics,design criteria for both aspects are established for cobot with all optimization design criteria normalized within the design domain.Secondly,with the cobot in the horizontal pose,the motor design scheme is discretized and it takes the joint motor diameter and gearbox speed ratio as optimization design variables.Finally,all the discrete values of the optimization objectives are obtained through the enumeration method and the Pareto front is used to select the optimal solution through multi-objective optimization.Base on the cobot design method proposed in this paper,a six-axis cobot is designed and compared with the commercial cobot.The result shows that the load capacity of the designed cobot in this paper reaches 8.4 kg,surpassing the 5 kg load capacity commercial cobot which is used as a benchmark.The minimum resonance frequency of the joints is 42.70 Hz. 展开更多
关键词 Multi-objective optimization Modular joint drive train design Load capacity dynamic response performance
下载PDF
Dynamics modeling and optimal control for multi-information diffusion in Social Internet of Things
3
作者 Yaguang Lin Xiaoming Wang +1 位作者 Liang Wang Pengfei Wan 《Digital Communications and Networks》 SCIE CSCD 2024年第3期655-665,共11页
As an ingenious convergence between the Internet of Things and social networks,the Social Internet of Things(SIoT)can provide effective and intelligent information services and has become one of the main platforms for... As an ingenious convergence between the Internet of Things and social networks,the Social Internet of Things(SIoT)can provide effective and intelligent information services and has become one of the main platforms for people to spread and share information.Nevertheless,SIoT is characterized by high openness and autonomy,multiple kinds of information can spread rapidly,freely and cooperatively in SIoT,which makes it challenging to accurately reveal the characteristics of the information diffusion process and effectively control its diffusion.To this end,with the aim of exploring multi-information cooperative diffusion processes in SIoT,we first develop a dynamics model for multi-information cooperative diffusion based on the system dynamics theory in this paper.Subsequently,the characteristics and laws of the dynamical evolution process of multi-information cooperative diffusion are theoretically investigated,and the diffusion trend is predicted.On this basis,to further control the multi-information cooperative diffusion process efficiently,we propose two control strategies for information diffusion with control objectives,develop an optimal control system for the multi-information cooperative diffusion process,and propose the corresponding optimal control method.The optimal solution distribution of the control strategy satisfying the control system constraints and the control budget constraints is solved using the optimal control theory.Finally,extensive simulation experiments based on real dataset from Twitter validate the correctness and effectiveness of the proposed model,strategy and method. 展开更多
关键词 Social Internet of Things Information diffusion dynamics modeling Trend prediction optimal control
下载PDF
Dynamic optimal allocation of energy storage systems integrated within photovoltaic based on a dual timescale dynamics model
4
作者 Kecun Li Zhenyu Huang +2 位作者 Youbo Liu Yaser Qudaih Junyong Liu 《Global Energy Interconnection》 EI CSCD 2024年第4期415-428,共14页
Energy storage systems(ESSs)operate as independent market participants and collaborate with photovoltaic(PV)generation units to enhance the flexible power supply capabilities of PV units.However,the dynamic variations... Energy storage systems(ESSs)operate as independent market participants and collaborate with photovoltaic(PV)generation units to enhance the flexible power supply capabilities of PV units.However,the dynamic variations in the profitability of ESSs in the electricity market are yet to be fully understood.This study introduces a dual-timescale dynamics model that integrates a spot market clearing(SMC)model into a system dynamics(SD)model to investigate the profit-aware capacity growth of ESSs and compares the profitability of independent energy storage systems(IESSs)with that of an ESS integrated within a PV(PV-ESS).Furthermore,this study aims to ascertain the optimal allocation of the PV-ESS.First,SD and SMC models were set up.Second,the SMC model simulated on an hourly timescale was incorporated into the SD model as a subsystem,a dual-timescale model was constructed.Finally,a development simulation and profitability analysis was conducted from 2022 to 2040 to reveal the dynamic optimal range of PV-ESS allocation.Additionally,negative electricity prices were considered during clearing processes.The simulation results revealed differences in profitability and capacity growth between IESS and PV-ESS,helping grid investors and policymakers to determine the boundaries of ESSs and dynamic optimal allocation of PV-ESSs. 展开更多
关键词 optimal allocation Profitability analysis PHOTOVOLTAIC Energy storage system Dual timescale dynamics model Spot market clearing
下载PDF
Transmission Dynamics and Optimal Control Strategies of a Hand-Foot-Mouth Disease Model with Treatment and Vaccination Interventions
5
作者 Jianping Wang Shenghua Zou Zhicai Guo 《Journal of Applied Mathematics and Physics》 2024年第6期2007-2019,共13页
In this article, the transmission dynamics of a Hand-Foot-Mouth disease model with treatment and vaccination interventions are studied. We calculated the basic reproduction number and proved the global stability of di... In this article, the transmission dynamics of a Hand-Foot-Mouth disease model with treatment and vaccination interventions are studied. We calculated the basic reproduction number and proved the global stability of disease-free equilibrium when R0 R0 > 1. Meanwhile, we obtained the optimal control strategies minimizing the cost of intervention and minimizing the infected person. We also give some numerical simulations to verify our theoretical results. 展开更多
关键词 Hand-Foot-Mouth Disease optimal Control Transmission dynamic Vaccination Interventions
下载PDF
An adaptive machine learning-based optimization method in the aerodynamic analysis of a finite wing under various cruise conditions
6
作者 Zilan Zhang Yu Ao +1 位作者 Shaofan Li Grace X.Gu 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第1期27-34,共8页
Conventional wing aerodynamic optimization processes can be time-consuming and imprecise due to the complexity of versatile flight missions.Plenty of existing literature has considered two-dimensional infinite airfoil... Conventional wing aerodynamic optimization processes can be time-consuming and imprecise due to the complexity of versatile flight missions.Plenty of existing literature has considered two-dimensional infinite airfoil optimization,while three-dimensional finite wing optimizations are subject to limited study because of high computational costs.Here we create an adaptive optimization methodology built upon digitized wing shape deformation and deep learning algorithms,which enable the rapid formulation of finite wing designs for specific aerodynamic performance demands under different cruise conditions.This methodology unfolds in three stages:radial basis function interpolated wing generation,collection of inputs from computational fluid dynamics simulations,and deep neural network that constructs the surrogate model for the optimal wing configuration.It has been demonstrated that the proposed methodology can significantly reduce the computational cost of numerical simulations.It also has the potential to optimize various aerial vehicles undergoing different mission environments,loading conditions,and safety requirements. 展开更多
关键词 Aerodynamic optimization Computational fluid dynamics Radial basis function Finite wing Deep learning neural network
下载PDF
Electric Vehicle Charging Load Optimization Strategy Based on Dynamic Time-of-Use Tariff
7
作者 Shuwei Zhong Yanbo Che Shangyuan 《Energy Engineering》 EI 2024年第3期603-618,共16页
Electric vehicle(EV)is an ideal solution to resolve the carbon emission issue and the fossil fuels scarcity problem in the future.However,a large number of EVs will be concentrated on charging during the valley hours ... Electric vehicle(EV)is an ideal solution to resolve the carbon emission issue and the fossil fuels scarcity problem in the future.However,a large number of EVs will be concentrated on charging during the valley hours leading to new load peaks under the guidance of static time-of-use tariff.Therefore,this paper proposes a dynamic time-of-use tariff mechanism,which redefines the peak and valley time periods according to the predicted loads using the fuzzy C-mean(FCM)clustering algorithm,and then dynamically adjusts the peak and valley tariffs according to the actual load of each time period.Based on the proposed tariff mechanism,an EV charging optimization model with the lowest cost to the users and the lowest variance of the grid-side load as the objective function is established.Then,a weight selection principle with an equal loss rate of the two objectives is proposed to transform the multi-objective optimization problem into a single-objective optimization problem.Finally,the EV charging load optimization model under three tariff strategies is set up and solved with the mathematical solver GROUBI.The results show that the EV charging load optimization strategy based on the dynamic time-of-use tariff can better balance the benefits between charging stations and users under different numbers and proportions of EVs connected to the grid,and can effectively reduce the grid load variance and improve the grid load curve. 展开更多
关键词 dynamic time-of-use tariff peak and valley time electric vehicle multi-objective optimization
下载PDF
Optimization and Performance Analysis of Intelligent Video AI Dynamic
8
作者 Yu Xing 《Journal of Electronic Research and Application》 2024年第3期142-147,共6页
In today’s information age,video data,as an important carrier of information,is growing explosively in terms of production volume.The quick and accurate extraction of useful information from massive video data has be... In today’s information age,video data,as an important carrier of information,is growing explosively in terms of production volume.The quick and accurate extraction of useful information from massive video data has become a focus of research in the field of computer vision.AI dynamic recognition technology has become one of the key technologies to address this issue due to its powerful data processing capabilities and intelligent recognition functions.Based on this,this paper first elaborates on the development of intelligent video AI dynamic recognition technology,then proposes several optimization strategies for intelligent video AI dynamic recognition technology,and finally analyzes the performance of intelligent video AI dynamic recognition technology for reference. 展开更多
关键词 Intelligent video AI dynamic recognition Technology optimization Performance analysis
下载PDF
Recent Progress in Reinforcement Learning and Adaptive Dynamic Programming for Advanced Control Applications 被引量:2
9
作者 Ding Wang Ning Gao +2 位作者 Derong Liu Jinna Li Frank L.Lewis 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期18-36,共19页
Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and ... Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence. 展开更多
关键词 Adaptive dynamic programming(ADP) advanced control complex environment data-driven control event-triggered design intelligent control neural networks nonlinear systems optimal control reinforcement learning(RL)
下载PDF
A Dynamical System-Based Framework for Dimension Reduction
10
作者 Ryeongkyung Yoon Braxton Ostin 《Communications on Applied Mathematics and Computation》 EI 2024年第2期757-789,共33页
We propose a novel framework for learning a low-dimensional representation of data based on nonlinear dynamical systems,which we call the dynamical dimension reduction(DDR).In the DDR model,each point is evolved via a... We propose a novel framework for learning a low-dimensional representation of data based on nonlinear dynamical systems,which we call the dynamical dimension reduction(DDR).In the DDR model,each point is evolved via a nonlinear flow towards a lower-dimensional subspace;the projection onto the subspace gives the low-dimensional embedding.Training the model involves identifying the nonlinear flow and the subspace.Following the equation discovery method,we represent the vector field that defines the flow using a linear combination of dictionary elements,where each element is a pre-specified linear/nonlinear candidate function.A regularization term for the average total kinetic energy is also introduced and motivated by the optimal transport theory.We prove that the resulting optimization problem is well-posed and establish several properties of the DDR method.We also show how the DDR method can be trained using a gradient-based optimization method,where the gradients are computed using the adjoint method from the optimal control theory.The DDR method is implemented and compared on synthetic and example data sets to other dimension reduction methods,including the PCA,t-SNE,and Umap. 展开更多
关键词 Dimension reduction Equation discovery dynamical systems Adjoint method optimal transportation
下载PDF
A strategy for lightweight designing of a railway vehicle car body including composite material and dynamic structural optimization 被引量:2
11
作者 Alessio Cascino Enrico Meli Andrea Rindi 《Railway Engineering Science》 2023年第4期340-350,共11页
Rolling stock manufacturers are finding structural solutions to reduce power required by the vehicles,and the lightweight design of the car body represents a possible solution.Optimization processes and innovative mat... Rolling stock manufacturers are finding structural solutions to reduce power required by the vehicles,and the lightweight design of the car body represents a possible solution.Optimization processes and innovative materials can be combined in order to achieve this goal.In this framework,we propose the redesign and optimization process of the car body roof for a light rail vehicle,introducing a sandwich structure.Bonded joint was used as a fastening system.The project was carried out on a single car of a modern tram platform.This preliminary numerical work was developed in two main steps:redesign of the car body structure and optimization of the innovated system.Objective of the process was the mass reduction of the whole metallic structure,while the constraint condition was imposed on the first frequency of vibration of the system.The effect of introducing a sandwich panel within the roof assembly was evaluated,focusing on the mechanical and dynamic performances of the whole car body.A mass saving of 63%on the optimized components was achieved,corresponding to a 7.6%if compared to the complete car body shell.In addition,a positive increasing of 17.7%on the first frequency of vibration was observed.Encouraging results have been achieved in terms of weight reduction and mechanical behaviour of the innovated car body. 展开更多
关键词 Structural dynamic optimization Car body lightweight design Railway vehicle dynamics Railway car body engineering Railway vehicle design Composite materials
下载PDF
Flow Dynamics during the Hydrocarbon Exploitation for Prevention and Management of Water Venues in Oil Field: A Study Case of Crystal Field in Badila/Chad
12
作者 Issakha Tidjani Djimet Huguette Christiane Emvoutou +1 位作者 Nicodème Djiedeu Jean-Pierre Nguenang 《International Journal of Geosciences》 CAS 2024年第5期433-448,共16页
The southern part of the Lake Chad basin is under the gas and oil petroleum industry due to its hydrocarbon potential for about twenty years. This project stands out as the main challenges of the hydrocarbon productio... The southern part of the Lake Chad basin is under the gas and oil petroleum industry due to its hydrocarbon potential for about twenty years. This project stands out as the main challenges of the hydrocarbon production and the management of fluxes particularly the groundwater venues. A comprehensive study is thus conducted to develop a dynamic and analytic model for diagnosing the production performances with a particular view on the management of groundwater venues. The three main concerned reservoirs subdivided on subunits evidence their proper characteristics. The porous media, their densities, the internal flows and the water injection techniques such as water flooding were thus adopted. The oil viscosity variability within the reservoirs creates different levels of mobility between water and oil, highlighting the challenges of water management. The material balance model and the behavior of the well analysis were taken in consideration within the identified aquifer, emphasizing the importance of keeping the pressure through injection. The control of water productions, the management of the reservoir, the well strategical position and the specific completions lead to the model functioning. In addition, the CO log and the Pulsed Neutron indicate their limitations as a result of the water salinity and the porosity of the aquifer. The management of groundwater venues at Badila requires various approaches throughout the lifetime of the Crystal field such as the data acquisition and remediation actions and prevention, under a permanent monitoring of the dynamic fluxes in the reservoirs. 展开更多
关键词 Groundwater Venues Analytic and dynamic Model Water Flooding optimization of Production
下载PDF
The Application of Thermomechanical Dynamics (TMD) to Thermoelectric Energy Generation by Employing a Low Temperature Stirling Engine
13
作者 Hiroshi Uechi Lisa Uechi Schun T. Uechi 《Journal of Applied Mathematics and Physics》 2024年第9期3185-3207,共23页
A thermoelectric generation Stirling engine (TEG-Stirling engine) is discussed by employing a low temperature Stirling engine and the dissipative equation of motion derived from the method of thermomechanical dynamics... A thermoelectric generation Stirling engine (TEG-Stirling engine) is discussed by employing a low temperature Stirling engine and the dissipative equation of motion derived from the method of thermomechanical dynamics (TMD). The results and mechanism of axial flux electromagnetic induction (AF-EMI) are applied to a low temperature Stirling engine, resulting in a TEG-Stirling engine. The method of TMD produced thermodynamically consistent and time-dependent physical quantities for the first time, such as internal energy ℰ(t), thermodynamic work Wth(t), the total entropy (heat dissipation) Qd(t)and measure or temperature of a nonequilibrium state T˜(t). The TMD analysis produced a lightweight mechanical system of TEG-Stirling engine which derives electric power from waste heat of temperature (40˚CT100˚C) by a thermoelectric conversion method. An optimal low rotational speed about 30θ′(t)/(2π)60(rpm) is found, applicable to devices for sustainable, clean energy technologies. The stability of a thermal state and angular rotations of TEG-Stirling engine are specifically shown by employing properties of nonequilibrium temperature T˜(t), which is also applied to study optimal fuel-injection and combustion timings of heat engines. 展开更多
关键词 Thermoelectric Generation Stirling Engine (TEG-Stirling Engine) Thermomechanical dynamics (TMD) Time-Dependent Nonequilibrium Temperature Stability of Heat Engines in a Thermal State optimal Fuel-Injection and Combustion Timings
下载PDF
Modified Differential Evolution Algorithm for Solving Dynamic Optimization with Existence of Infeasible Environments
14
作者 Mohamed A.Meselhi Saber M.Elsayed +1 位作者 Daryl L.Essam Ruhul A.Sarker 《Computers, Materials & Continua》 SCIE EI 2023年第1期1-17,共17页
Dynamic constrained optimization is a challenging research topic in which the objective function and/or constraints change over time.In such problems,it is commonly assumed that all problem instances are feasible.In r... Dynamic constrained optimization is a challenging research topic in which the objective function and/or constraints change over time.In such problems,it is commonly assumed that all problem instances are feasible.In reality some instances can be infeasible due to various practical issues,such as a sudden change in resource requirements or a big change in the availability of resources.Decision-makers have to determine whether a particular instance is feasible or not,as infeasible instances cannot be solved as there are no solutions to implement.In this case,locating the nearest feasible solution would be valuable information for the decision-makers.In this paper,a differential evolution algorithm is proposed for solving dynamic constrained problems that learns from past environments and transfers important knowledge from them to use in solving the current instance and includes a mechanism for suggesting a good feasible solution when an instance is infeasible.To judge the performance of the proposed algorithm,13 well-known dynamic test problems were solved.The results indicate that the proposed algorithm outperforms existing recent algorithms with a margin of 79.40%over all the environments and it can also find a good,but infeasible solution,when an instance is infeasible. 展开更多
关键词 dynamic optimization constrained optimization DISRUPTION differential evolution
下载PDF
TopSTO:a 115-line code for topology optimization of structures under stationary stochastic dynamic loading
15
作者 Sebastian Pozo Fernando Gomez +2 位作者 Thomas Golecki Juan Carrion Billie F.Spencer Jr. 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第4期1081-1100,共20页
The use of topology optimization in structural design under dynamic excitation is becoming more prevalent in the literature.While many such applications utilize frequency or time domain formulations,relatively few con... The use of topology optimization in structural design under dynamic excitation is becoming more prevalent in the literature.While many such applications utilize frequency or time domain formulations,relatively few consider stochastic dynamic excitations.This paper presents an efficient and compact code called TopSTO for structural topology optimization considering stationary stochastic dynamic loading using a method derived from random vibration theory.The theory,described in conjunction with the implementation in the provided code,is illustrated for a seismically excited building.This work demonstrates the efficiency of the approach in terms of both the computational resources and minimal amount of code required.This code is intended to serve as a baseline for understanding the theory and implementation of this topology optimization approach and as a foundation for additional applications and developments. 展开更多
关键词 topology optimization stochastic dynamics MATLAB PYTHON
下载PDF
A Smooth Bidirectional Evolutionary Structural Optimization of Vibrational Structures for Natural Frequency and Dynamic Compliance
16
作者 Xiaoyan Teng Qiang Li Xudong Jiang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第6期2479-2496,共18页
A smooth bidirectional evolutionary structural optimization(SBESO),as a bidirectional version of SESO is proposed to solve the topological optimization of vibrating continuum structures for natural frequencies and dyn... A smooth bidirectional evolutionary structural optimization(SBESO),as a bidirectional version of SESO is proposed to solve the topological optimization of vibrating continuum structures for natural frequencies and dynamic compliance under the transient load.A weighted function is introduced to regulate the mass and stiffness matrix of an element,which has the inefficient element gradually removed from the design domain as if it were undergoing damage.Aiming at maximizing the natural frequency of a structure,the frequency optimization formulation is proposed using the SBESO technique.The effects of various weight functions including constant,linear and sine functions on structural optimization are compared.With the equivalent static load(ESL)method,the dynamic stiffness optimization of a structure is formulated by the SBESO technique.Numerical examples show that compared with the classic BESO method,the SBESO method can efficiently suppress the excessive element deletion by adjusting the element deletion rate and weight function.It is also found that the proposed SBESO technique can obtain an efficient configuration and smooth boundary and demonstrate the advantages over the classic BESO technique. 展开更多
关键词 Topology optimization smooth bi-directional evolutionary structural optimization(SBESO) eigenfrequency optimization dynamic stiffness optimization
下载PDF
WiFi6 Dynamic Channel Optimization Method for Fault Tolerance in Power Communication Network
17
作者 Hong Zhu Lisha Gao +2 位作者 Lei Wei Guangchang Yang Sujie Shao 《Computers, Materials & Continua》 SCIE EI 2023年第6期5501-5519,共19页
As the scale of power networks has expanded,the demand for multi-service transmission has gradually increased.The emergence of WiFi6 has improved the transmission efficiency and resource utilization of wireless networ... As the scale of power networks has expanded,the demand for multi-service transmission has gradually increased.The emergence of WiFi6 has improved the transmission efficiency and resource utilization of wireless networks.However,it still cannot cope with situations such as wireless access point(AP)failure.To solve this problem,this paper combines orthogonal fre-quency division multiple access(OFDMA)technology and dynamic channel optimization technology to design a fault-tolerant WiFi6 dynamic resource optimization method for achieving high quality wireless services in a wirelessly covered network even when an AP fails.First,under the premise of AP layout with strong coverage over the whole area,a faulty AP determination method based on beacon frames(BF)is designed.Then,the maximum signal-to-interference ratio(SINR)is used as the principle to select AP reconnection for the affected users.Finally,this paper designs a dynamic access selection model(DASM)for service frames of power Internet of Things(IoTs)and a schedul-ing access optimization model(SAO-MF)based on multi-frame transmission,which enables access optimization for differentiated services.For the above mechanisms,a heuristic resource allocation algorithm is proposed in SAO-MF.Simulation results show that the method can reduce the delay by 15%and improve the throughput by 55%,ensuring high-quality communication in power wireless networks. 展开更多
关键词 WiFi6 OFDMA fault tolerance dynamic channel optimization cross-slot scheduling access
下载PDF
A Scheme Library-Based Ant Colony Optimization with 2-Opt Local Search for Dynamic Traveling Salesman Problem
18
作者 Chuan Wang Ruoyu Zhu +4 位作者 Yi Jiang Weili Liu Sang-Woon Jeon Lin Sun Hua Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第5期1209-1228,共20页
The dynamic traveling salesman problem(DTSP)is significant in logistics distribution in real-world applications in smart cities,but it is uncertain and difficult to solve.This paper proposes a scheme library-based ant... The dynamic traveling salesman problem(DTSP)is significant in logistics distribution in real-world applications in smart cities,but it is uncertain and difficult to solve.This paper proposes a scheme library-based ant colony optimization(ACO)with a two-optimization(2-opt)strategy to solve the DTSP efficiently.The work is novel and contributes to three aspects:problemmodel,optimization framework,and algorithmdesign.Firstly,in the problem model,traditional DTSP models often consider the change of travel distance between two nodes over time,while this paper focuses on a special DTSP model in that the node locations change dynamically over time.Secondly,in the optimization framework,the ACO algorithm is carried out in an offline optimization and online application framework to efficiently reuse the historical information to help fast respond to the dynamic environment.The framework of offline optimization and online application is proposed due to the fact that the environmental change inDTSPis caused by the change of node location,and therefore the newenvironment is somehowsimilar to certain previous environments.This way,in the offline optimization,the solutions for possible environmental changes are optimized in advance,and are stored in a mode scheme library.In the online application,when an environmental change is detected,the candidate solutions stored in the mode scheme library are reused via ACO to improve search efficiency and reduce computational complexity.Thirdly,in the algorithm design,the ACO cooperates with the 2-opt strategy to enhance search efficiency.To evaluate the performance of ACO with 2-opt,we design two challenging DTSP cases with up to 200 and 1379 nodes and compare them with other ACO and genetic algorithms.The experimental results show that ACO with 2-opt can solve the DTSPs effectively. 展开更多
关键词 dynamic traveling salesman problem(DTSP) offline optimization and online application ant colony optimization(ACO) two-optimization(2-opt)strategy
下载PDF
Inverse Optimal Control for Speed-varying Path Following of Marine Vessels with Actuator Dynamics 被引量:3
19
作者 Yang Qu Haixiang Xu +2 位作者 Wenzhao Yu Hui Feng Xin Han 《Journal of Marine Science and Application》 CSCD 2017年第2期225-236,共12页
A controller which is locally optimal near the origin and globally inverse optimal for the nonlinear system is proposed for path following of over actuated marine crafts with actuator dynamics. The motivation is the e... A controller which is locally optimal near the origin and globally inverse optimal for the nonlinear system is proposed for path following of over actuated marine crafts with actuator dynamics. The motivation is the existence of undesired signals sent to the actuators, which can result in bad behavior in path following. To attenuate the oscillation of the control signal and obtain smooth thrust outputs, the actuator dynamics are added into the ship maneuvering model. Instead of modifying the Line-of-Sight (LOS) guidance law, this proposed controller can easily adjust the vessel speed to minimize the large cross-track error caused by the high vessel speed when it is turning. Numerical simulations demonstrate the validity of this proposed controller. 展开更多
关键词 path following LINE-OF-SIGHT guidance optimal control BACKSTEPPING actuator dynamics
下载PDF
Optimal design of dynamic and control performance for planar manipulator 被引量:6
20
作者 YOU Wei KONG Min-xiu +1 位作者 SUN Li-ning DU Zhi-jiang 《Journal of Central South University》 SCIE EI CAS 2012年第1期108-116,共9页
A design and optimization approach of dynamic and control performance for a two-DOF planar manipulator was proposed.After the kinematic and dynamic analysis,several advantages of the mechanism were illustrated,which m... A design and optimization approach of dynamic and control performance for a two-DOF planar manipulator was proposed.After the kinematic and dynamic analysis,several advantages of the mechanism were illustrated,which made it possible to obtain good dynamic and control performances just through mechanism optimization.Based on the idea of design for control(DFC),a novel kind of multi-objective optimization model was proposed.There were three optimization objectives:the index of inertia,the index describing the dynamic coupling effects and the global condition number.Other indexes to characterize the designing requirements such as the velocity of end-effector,the workspace size,and the first mode natural frequency were regarded as the constraints.The cross-section area and length of the linkages were chosen as the design variables.NSGA-II algorithm was introduced to solve this complex multi-objective optimization problem.Additional criteria from engineering experience were incorporated into the selecting of final parameters among the obtained Pareto solution sets.Finally,experiments were performed to validate the linear dynamic structure and control performances of the optimized mechanisms.A new expression for measuring the dynamic coupling degree with clear physical meaning was proposed.The results show that the optimized mechanism has an approximate decoupled dynamics structure,and each active joint can be regarded as a linear SISO system.The control performances of the linear and nonlinear controllers were also compared.It can be concluded that the optimized mechanism can achieve good control performance only using a linear controller. 展开更多
关键词 mechanism optimization dynamic optimization design for control multi-objective optimization
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部