Prediction of stability in SG(Smart Grid)is essential in maintaining consistency and reliability of power supply in grid infrastructure.Analyzing the fluctuations in power generation and consumption patterns of smart ...Prediction of stability in SG(Smart Grid)is essential in maintaining consistency and reliability of power supply in grid infrastructure.Analyzing the fluctuations in power generation and consumption patterns of smart cities assists in effectively managing continuous power supply in the grid.It also possesses a better impact on averting overloading and permitting effective energy storage.Even though many traditional techniques have predicted the consumption rate for preserving stability,enhancement is required in prediction measures with minimized loss.To overcome the complications in existing studies,this paper intends to predict stability from the smart grid stability prediction dataset using machine learning algorithms.To accomplish this,pre-processing is performed initially to handle missing values since it develops biased models when missing values are mishandled and performs feature scaling to normalize independent data features.Then,the pre-processed data are taken for training and testing.Following that,the regression process is performed using Modified PSO(Particle Swarm Optimization)optimized XGBoost Technique with dynamic inertia weight update,which analyses variables like gamma(G),reaction time(tau1–tau4),and power balance(p1–p4)for providing effective future stability in SG.Since PSO attains optimal solution by adjusting position through dynamic inertial weights,it is integrated with XGBoost due to its scalability and faster computational speed characteristics.The hyperparameters of XGBoost are fine-tuned in the training process for achieving promising outcomes on prediction.Regression results are measured through evaluation metrics such as MSE(Mean Square Error)of 0.011312781,MAE(Mean Absolute Error)of 0.008596322,and RMSE(Root Mean Square Error)of 0.010636156 and MAPE(Mean Absolute Percentage Error)value of 0.0052 which determine the efficacy of the system.展开更多
The dynamic optimal interpolation(DOI)method is a technique based on quasi-geostrophic dynamics for merging multi-satellite altimeter along-track observations to generate gridded absolute dynamic topography(ADT).Compa...The dynamic optimal interpolation(DOI)method is a technique based on quasi-geostrophic dynamics for merging multi-satellite altimeter along-track observations to generate gridded absolute dynamic topography(ADT).Compared with the linear optimal interpolation(LOI)method,the DOI method can improve the accuracy of gridded ADT locally but with low computational efficiency.Consequently,considering both computational efficiency and accuracy,the DOI method is more suitable to be used only for regional applications.In this study,we propose to evaluate the suitable region for applying the DOI method based on the correlation between the absolute value of the Jacobian operator of the geostrophic stream function and the improvement achieved by the DOI method.After verifying the LOI and DOI methods,the suitable region was investigated in three typical areas:the Gulf Stream(25°N-50°N,55°W-80°W),the Japanese Kuroshio(25°N-45°N,135°E-155°E),and the South China Sea(5°N-25°N,100°E-125°E).We propose to use the DOI method only in regions outside the equatorial region and where the absolute value of the Jacobian operator of the geostrophic stream function is higher than1×10^(-11).展开更多
Automation advancements prompts the extensive integration of collaborative robot(cobot)across a range of industries.Compared to the commonly used design approach of increasing the payload-to-weight ratio of cobot to e...Automation advancements prompts the extensive integration of collaborative robot(cobot)across a range of industries.Compared to the commonly used design approach of increasing the payload-to-weight ratio of cobot to enhance load capacity,equal attention should be paid to the dynamic response characteristics of cobot during the design process to make the cobot more flexible.In this paper,a new method for designing the drive train parameters of cobot is proposed.Firstly,based on the analysis of factors influencing the load capacity and dynamic response characteristics,design criteria for both aspects are established for cobot with all optimization design criteria normalized within the design domain.Secondly,with the cobot in the horizontal pose,the motor design scheme is discretized and it takes the joint motor diameter and gearbox speed ratio as optimization design variables.Finally,all the discrete values of the optimization objectives are obtained through the enumeration method and the Pareto front is used to select the optimal solution through multi-objective optimization.Base on the cobot design method proposed in this paper,a six-axis cobot is designed and compared with the commercial cobot.The result shows that the load capacity of the designed cobot in this paper reaches 8.4 kg,surpassing the 5 kg load capacity commercial cobot which is used as a benchmark.The minimum resonance frequency of the joints is 42.70 Hz.展开更多
As an ingenious convergence between the Internet of Things and social networks,the Social Internet of Things(SIoT)can provide effective and intelligent information services and has become one of the main platforms for...As an ingenious convergence between the Internet of Things and social networks,the Social Internet of Things(SIoT)can provide effective and intelligent information services and has become one of the main platforms for people to spread and share information.Nevertheless,SIoT is characterized by high openness and autonomy,multiple kinds of information can spread rapidly,freely and cooperatively in SIoT,which makes it challenging to accurately reveal the characteristics of the information diffusion process and effectively control its diffusion.To this end,with the aim of exploring multi-information cooperative diffusion processes in SIoT,we first develop a dynamics model for multi-information cooperative diffusion based on the system dynamics theory in this paper.Subsequently,the characteristics and laws of the dynamical evolution process of multi-information cooperative diffusion are theoretically investigated,and the diffusion trend is predicted.On this basis,to further control the multi-information cooperative diffusion process efficiently,we propose two control strategies for information diffusion with control objectives,develop an optimal control system for the multi-information cooperative diffusion process,and propose the corresponding optimal control method.The optimal solution distribution of the control strategy satisfying the control system constraints and the control budget constraints is solved using the optimal control theory.Finally,extensive simulation experiments based on real dataset from Twitter validate the correctness and effectiveness of the proposed model,strategy and method.展开更多
Energy storage systems(ESSs)operate as independent market participants and collaborate with photovoltaic(PV)generation units to enhance the flexible power supply capabilities of PV units.However,the dynamic variations...Energy storage systems(ESSs)operate as independent market participants and collaborate with photovoltaic(PV)generation units to enhance the flexible power supply capabilities of PV units.However,the dynamic variations in the profitability of ESSs in the electricity market are yet to be fully understood.This study introduces a dual-timescale dynamics model that integrates a spot market clearing(SMC)model into a system dynamics(SD)model to investigate the profit-aware capacity growth of ESSs and compares the profitability of independent energy storage systems(IESSs)with that of an ESS integrated within a PV(PV-ESS).Furthermore,this study aims to ascertain the optimal allocation of the PV-ESS.First,SD and SMC models were set up.Second,the SMC model simulated on an hourly timescale was incorporated into the SD model as a subsystem,a dual-timescale model was constructed.Finally,a development simulation and profitability analysis was conducted from 2022 to 2040 to reveal the dynamic optimal range of PV-ESS allocation.Additionally,negative electricity prices were considered during clearing processes.The simulation results revealed differences in profitability and capacity growth between IESS and PV-ESS,helping grid investors and policymakers to determine the boundaries of ESSs and dynamic optimal allocation of PV-ESSs.展开更多
In this article, the transmission dynamics of a Hand-Foot-Mouth disease model with treatment and vaccination interventions are studied. We calculated the basic reproduction number and proved the global stability of di...In this article, the transmission dynamics of a Hand-Foot-Mouth disease model with treatment and vaccination interventions are studied. We calculated the basic reproduction number and proved the global stability of disease-free equilibrium when R0 R0 > 1. Meanwhile, we obtained the optimal control strategies minimizing the cost of intervention and minimizing the infected person. We also give some numerical simulations to verify our theoretical results.展开更多
This paper introduces a novel fully distributed economic power dispatch(EPD)strategy for distribution networks,integrating dynamic tariffs.A two-layer model is proposed:the first layer comprises the physical power dis...This paper introduces a novel fully distributed economic power dispatch(EPD)strategy for distribution networks,integrating dynamic tariffs.A two-layer model is proposed:the first layer comprises the physical power distribution network,including photovoltaic(PV)sources,wind turbine(WT)generators,energy storage systems(ESS),flexible loads(FLs),and other inflexible loads.The upper layer consists of agents dedicated to communication,calculation,and control tasks.Unlike previous EPD strategies,this approach incorporates dynamic tariffs derived from voltage constraints to ensure compliance with nodal voltage constraints.Addi-tionally,a fast distributed optimization algorithm with an event-triggered communication protocol has been developed to address the EPD problem effectively.Through mathematical and simulation analyses,the proposed algorithm's efficiency and rapid conver-gence capability are demonstrated.展开更多
The current research of sandwich structures under dynamic loading mainly focus on the response characteristic of structure.The micro-topology of core layers would sufficiently influence the property of sandwich struct...The current research of sandwich structures under dynamic loading mainly focus on the response characteristic of structure.The micro-topology of core layers would sufficiently influence the property of sandwich structure.However,the micro deformation and topology mechanism of structural deformation and energy absorption are unclear.In this paper,based on the bi-directional evolutionary structural optimization method and periodic base cell(PBC)technology,a topology optimization frame work is proposed to optimize the core layer of sandwich beams.The objective of the present optimization problem is to maximize shear stiffness of PBC with a volume constraint.The effects of the volume fraction,filter radius,and initial PBC aspect ratio on the micro-topology of the core were discussed.The dynamic response process,core compression,and energy absorption capacity of the sandwich beams under blast impact loading were analyzed by the finite element method.The results demonstrated that the overpressure action stage was coupled with the core compression stage.Under the same loading and mass per unit area,the sandwich beam with a 20%volume fraction core layer had the best blast resistance.The filter radius has a slight effect on the shear stiffness and blast resistances of the sandwich beams.But increasing the filter radius could slightly improve the bending stiffness.Upon changing the initial PBC aspect ratio,there are three ways for PBC evolution:The first is to change the angle between the adjacent bars,the second is to further form holes in the bars,and the third is to combine the first two ways.However,not all three ways can improve the energy absorption capacity of the structure.Changing the aspect ratio of the PBC arbitrarily may lead to worse results.More studies are necessary for further detailed optimization.This research proposes a new topology sandwich beam structure by micro-topology optimization,which has sufficient shear stiffness.The micro mechanism of structural energy absorption is clarified,it is significant for structural energy absorption design.展开更多
The world produces vast quantities of high-dimensional multi-semantic data.However,extracting valuable information from such a large amount of high-dimensional and multi-label data is undoubtedly arduous and challengi...The world produces vast quantities of high-dimensional multi-semantic data.However,extracting valuable information from such a large amount of high-dimensional and multi-label data is undoubtedly arduous and challenging.Feature selection aims to mitigate the adverse impacts of high dimensionality in multi-label data by eliminating redundant and irrelevant features.The ant colony optimization algorithm has demonstrated encouraging outcomes in multi-label feature selection,because of its simplicity,efficiency,and similarity to reinforcement learning.Nevertheless,existing methods do not consider crucial correlation information,such as dynamic redundancy and label correlation.To tackle these concerns,the paper proposes a multi-label feature selection technique based on ant colony optimization algorithm(MFACO),focusing on dynamic redundancy and label correlation.Initially,the dynamic redundancy is assessed between the selected feature subset and potential features.Meanwhile,the ant colony optimization algorithm extracts label correlation from the label set,which is then combined into the heuristic factor as label weights.Experimental results demonstrate that our proposed strategies can effectively enhance the optimal search ability of ant colony,outperforming the other algorithms involved in the paper.展开更多
Conventional wing aerodynamic optimization processes can be time-consuming and imprecise due to the complexity of versatile flight missions.Plenty of existing literature has considered two-dimensional infinite airfoil...Conventional wing aerodynamic optimization processes can be time-consuming and imprecise due to the complexity of versatile flight missions.Plenty of existing literature has considered two-dimensional infinite airfoil optimization,while three-dimensional finite wing optimizations are subject to limited study because of high computational costs.Here we create an adaptive optimization methodology built upon digitized wing shape deformation and deep learning algorithms,which enable the rapid formulation of finite wing designs for specific aerodynamic performance demands under different cruise conditions.This methodology unfolds in three stages:radial basis function interpolated wing generation,collection of inputs from computational fluid dynamics simulations,and deep neural network that constructs the surrogate model for the optimal wing configuration.It has been demonstrated that the proposed methodology can significantly reduce the computational cost of numerical simulations.It also has the potential to optimize various aerial vehicles undergoing different mission environments,loading conditions,and safety requirements.展开更多
Electric vehicle(EV)is an ideal solution to resolve the carbon emission issue and the fossil fuels scarcity problem in the future.However,a large number of EVs will be concentrated on charging during the valley hours ...Electric vehicle(EV)is an ideal solution to resolve the carbon emission issue and the fossil fuels scarcity problem in the future.However,a large number of EVs will be concentrated on charging during the valley hours leading to new load peaks under the guidance of static time-of-use tariff.Therefore,this paper proposes a dynamic time-of-use tariff mechanism,which redefines the peak and valley time periods according to the predicted loads using the fuzzy C-mean(FCM)clustering algorithm,and then dynamically adjusts the peak and valley tariffs according to the actual load of each time period.Based on the proposed tariff mechanism,an EV charging optimization model with the lowest cost to the users and the lowest variance of the grid-side load as the objective function is established.Then,a weight selection principle with an equal loss rate of the two objectives is proposed to transform the multi-objective optimization problem into a single-objective optimization problem.Finally,the EV charging load optimization model under three tariff strategies is set up and solved with the mathematical solver GROUBI.The results show that the EV charging load optimization strategy based on the dynamic time-of-use tariff can better balance the benefits between charging stations and users under different numbers and proportions of EVs connected to the grid,and can effectively reduce the grid load variance and improve the grid load curve.展开更多
In today’s information age,video data,as an important carrier of information,is growing explosively in terms of production volume.The quick and accurate extraction of useful information from massive video data has be...In today’s information age,video data,as an important carrier of information,is growing explosively in terms of production volume.The quick and accurate extraction of useful information from massive video data has become a focus of research in the field of computer vision.AI dynamic recognition technology has become one of the key technologies to address this issue due to its powerful data processing capabilities and intelligent recognition functions.Based on this,this paper first elaborates on the development of intelligent video AI dynamic recognition technology,then proposes several optimization strategies for intelligent video AI dynamic recognition technology,and finally analyzes the performance of intelligent video AI dynamic recognition technology for reference.展开更多
A controller which is locally optimal near the origin and globally inverse optimal for the nonlinear system is proposed for path following of over actuated marine crafts with actuator dynamics. The motivation is the e...A controller which is locally optimal near the origin and globally inverse optimal for the nonlinear system is proposed for path following of over actuated marine crafts with actuator dynamics. The motivation is the existence of undesired signals sent to the actuators, which can result in bad behavior in path following. To attenuate the oscillation of the control signal and obtain smooth thrust outputs, the actuator dynamics are added into the ship maneuvering model. Instead of modifying the Line-of-Sight (LOS) guidance law, this proposed controller can easily adjust the vessel speed to minimize the large cross-track error caused by the high vessel speed when it is turning. Numerical simulations demonstrate the validity of this proposed controller.展开更多
A design and optimization approach of dynamic and control performance for a two-DOF planar manipulator was proposed.After the kinematic and dynamic analysis,several advantages of the mechanism were illustrated,which m...A design and optimization approach of dynamic and control performance for a two-DOF planar manipulator was proposed.After the kinematic and dynamic analysis,several advantages of the mechanism were illustrated,which made it possible to obtain good dynamic and control performances just through mechanism optimization.Based on the idea of design for control(DFC),a novel kind of multi-objective optimization model was proposed.There were three optimization objectives:the index of inertia,the index describing the dynamic coupling effects and the global condition number.Other indexes to characterize the designing requirements such as the velocity of end-effector,the workspace size,and the first mode natural frequency were regarded as the constraints.The cross-section area and length of the linkages were chosen as the design variables.NSGA-II algorithm was introduced to solve this complex multi-objective optimization problem.Additional criteria from engineering experience were incorporated into the selecting of final parameters among the obtained Pareto solution sets.Finally,experiments were performed to validate the linear dynamic structure and control performances of the optimized mechanisms.A new expression for measuring the dynamic coupling degree with clear physical meaning was proposed.The results show that the optimized mechanism has an approximate decoupled dynamics structure,and each active joint can be regarded as a linear SISO system.The control performances of the linear and nonlinear controllers were also compared.It can be concluded that the optimized mechanism can achieve good control performance only using a linear controller.展开更多
A new theory on the construction of optimal truncated Low-Dimensional Dynamical Systems (LDDSs) with different physical meanings has been developed, The physical properties of the optimal bases are reflected in the us...A new theory on the construction of optimal truncated Low-Dimensional Dynamical Systems (LDDSs) with different physical meanings has been developed, The physical properties of the optimal bases are reflected in the user-defined optimal conditions, Through the analysis of linear and nonlinear examples, it is shown that the LDDSs constructed by using the Proper Orthogonal Decomposition (POD) method are not the optimum. After comparing the errors of LDDSs based on the new theory POD and Fourier methods, it is concluded that the LDDSs based on the new theory are optimally truncated and catch the desired physical properties of the systems.展开更多
In this paper, a dynamic generation scheduling model is formulated, aiming at minimizing the costs of power generation and taking into account the constraints of thermal power units and spinning reserve in wind power ...In this paper, a dynamic generation scheduling model is formulated, aiming at minimizing the costs of power generation and taking into account the constraints of thermal power units and spinning reserve in wind power integrated systems. A dynamic solving method blended with particle swarm optimization algorithm is proposed. In this method, the solution space of the states of unit commitment is created and will be updated when the status of unit commitment changes in a period to meet the spinning reserve demand. The thermal unit operation constrains are inspected in adjacent time intervals to ensure all the states in the solution space effective. The particle swarm algorithm is applied in the procedure to optimize the load distribution of each unit commitment state. A case study in a simulation system is finally given to verify the feasibility and effectiveness of this dynamic optimization algorithm.展开更多
This paper studies the problem of optimal parallel tracking control for continuous-time general nonlinear systems.Unlike existing optimal state feedback control,the control input of the optimal parallel control is int...This paper studies the problem of optimal parallel tracking control for continuous-time general nonlinear systems.Unlike existing optimal state feedback control,the control input of the optimal parallel control is introduced into the feedback system.However,due to the introduction of control input into the feedback system,the optimal state feedback control methods can not be applied directly.To address this problem,an augmented system and an augmented performance index function are proposed firstly.Thus,the general nonlinear system is transformed into an affine nonlinear system.The difference between the optimal parallel control and the optimal state feedback control is analyzed theoretically.It is proven that the optimal parallel control with the augmented performance index function can be seen as the suboptimal state feedback control with the traditional performance index function.Moreover,an adaptive dynamic programming(ADP)technique is utilized to implement the optimal parallel tracking control using a critic neural network(NN)to approximate the value function online.The stability analysis of the closed-loop system is performed using the Lyapunov theory,and the tracking error and NN weights errors are uniformly ultimately bounded(UUB).Also,the optimal parallel controller guarantees the continuity of the control input under the circumstance that there are finite jump discontinuities in the reference signals.Finally,the effectiveness of the developed optimal parallel control method is verified in two cases.展开更多
This paper investigates the dynamic design methodology of mountain bikes with rear suspension. Firstly, a multi-rigid body dynamic model of rider and mountain bike coupled system is constructed. The rider model includ...This paper investigates the dynamic design methodology of mountain bikes with rear suspension. Firstly, a multi-rigid body dynamic model of rider and mountain bike coupled system is constructed. The rider model includes 19 skeletons, 18 joints and 118 main muscles. Secondly, to validate the feasibility of the model, an experiment test is designed to reflect the real cycling status. Finally, aiming at enhancing the performance of the rider vibration comfort, the scale parameters of rear suspension are optimized with computer simulation and uniform design. The mathematical model in the vibration performance and the design variables is constructed with regression analysis. The result shows that when the length of side link is 90 mm, the length of connected rod is 336.115 1 mm and the included angle between absorber and side link is 60°, the mountain bike has better vibration comfort. This study and relevant conclusions are of practical importance to the design of the mountain bike's rear suspension system.展开更多
An optimal harvesting problem for linear age-dependent population dynamics is investigated.By Mazur's Theorem,the existence of solutions of the optimal control problem (OH) is demonstrated.The first order necessar...An optimal harvesting problem for linear age-dependent population dynamics is investigated.By Mazur's Theorem,the existence of solutions of the optimal control problem (OH) is demonstrated.The first order necessary conditions of optimality for problem (OH) is obtained by the conception of normal cone. Finally,under suitable assumptions,the uniqueness of solutions of the optimal control problem (OH) is given.The results extend some known criteria.展开更多
The dynamic analysis and optimal design of reactive extraction are challenging due to high nonlinearity of model equations and tough decision of judging criteria. In this work, a dynamic rate-based method is developed...The dynamic analysis and optimal design of reactive extraction are challenging due to high nonlinearity of model equations and tough decision of judging criteria. In this work, a dynamic rate-based method is developed on g PROMS platform to get easy access to the solutions of reactive extraction with phase splitting. Based on rigorous criteria, dynamic analysis from initial state to final equilibrium(e.g., evolution of phase composition, mass transfer rate and reaction rate) and optimal design of operating conditions(e.g., extractant dosage and feed molar ratio) are achieved. To illustrate the method, the esterification of n-hexyl acetate is taken as an example. The approach proves to be reliable in the analysis and optimization of the exemplified system, which provides instructive reference for further process design and simulation of reactive extraction.展开更多
基金Prince Sattam bin Abdulaziz University project number(PSAU/2023/R/1445)。
文摘Prediction of stability in SG(Smart Grid)is essential in maintaining consistency and reliability of power supply in grid infrastructure.Analyzing the fluctuations in power generation and consumption patterns of smart cities assists in effectively managing continuous power supply in the grid.It also possesses a better impact on averting overloading and permitting effective energy storage.Even though many traditional techniques have predicted the consumption rate for preserving stability,enhancement is required in prediction measures with minimized loss.To overcome the complications in existing studies,this paper intends to predict stability from the smart grid stability prediction dataset using machine learning algorithms.To accomplish this,pre-processing is performed initially to handle missing values since it develops biased models when missing values are mishandled and performs feature scaling to normalize independent data features.Then,the pre-processed data are taken for training and testing.Following that,the regression process is performed using Modified PSO(Particle Swarm Optimization)optimized XGBoost Technique with dynamic inertia weight update,which analyses variables like gamma(G),reaction time(tau1–tau4),and power balance(p1–p4)for providing effective future stability in SG.Since PSO attains optimal solution by adjusting position through dynamic inertial weights,it is integrated with XGBoost due to its scalability and faster computational speed characteristics.The hyperparameters of XGBoost are fine-tuned in the training process for achieving promising outcomes on prediction.Regression results are measured through evaluation metrics such as MSE(Mean Square Error)of 0.011312781,MAE(Mean Absolute Error)of 0.008596322,and RMSE(Root Mean Square Error)of 0.010636156 and MAPE(Mean Absolute Percentage Error)value of 0.0052 which determine the efficacy of the system.
基金supported by National Natural Science Foundation of China under Grants 42192531 and 42192534the Special Fund of Hubei Luojia Laboratory(China)under Grant 220100001the Natural Science Foundation of Hubei Province for Distinguished Young Scholars(China)under Grant 2022CFA090。
文摘The dynamic optimal interpolation(DOI)method is a technique based on quasi-geostrophic dynamics for merging multi-satellite altimeter along-track observations to generate gridded absolute dynamic topography(ADT).Compared with the linear optimal interpolation(LOI)method,the DOI method can improve the accuracy of gridded ADT locally but with low computational efficiency.Consequently,considering both computational efficiency and accuracy,the DOI method is more suitable to be used only for regional applications.In this study,we propose to evaluate the suitable region for applying the DOI method based on the correlation between the absolute value of the Jacobian operator of the geostrophic stream function and the improvement achieved by the DOI method.After verifying the LOI and DOI methods,the suitable region was investigated in three typical areas:the Gulf Stream(25°N-50°N,55°W-80°W),the Japanese Kuroshio(25°N-45°N,135°E-155°E),and the South China Sea(5°N-25°N,100°E-125°E).We propose to use the DOI method only in regions outside the equatorial region and where the absolute value of the Jacobian operator of the geostrophic stream function is higher than1×10^(-11).
基金Supported by National Key Research and Development Program of China (Grant Nos.2022YFB4703000,2019YFB1309900)。
文摘Automation advancements prompts the extensive integration of collaborative robot(cobot)across a range of industries.Compared to the commonly used design approach of increasing the payload-to-weight ratio of cobot to enhance load capacity,equal attention should be paid to the dynamic response characteristics of cobot during the design process to make the cobot more flexible.In this paper,a new method for designing the drive train parameters of cobot is proposed.Firstly,based on the analysis of factors influencing the load capacity and dynamic response characteristics,design criteria for both aspects are established for cobot with all optimization design criteria normalized within the design domain.Secondly,with the cobot in the horizontal pose,the motor design scheme is discretized and it takes the joint motor diameter and gearbox speed ratio as optimization design variables.Finally,all the discrete values of the optimization objectives are obtained through the enumeration method and the Pareto front is used to select the optimal solution through multi-objective optimization.Base on the cobot design method proposed in this paper,a six-axis cobot is designed and compared with the commercial cobot.The result shows that the load capacity of the designed cobot in this paper reaches 8.4 kg,surpassing the 5 kg load capacity commercial cobot which is used as a benchmark.The minimum resonance frequency of the joints is 42.70 Hz.
基金supported by the National Natural Science Foundation of China(Grant Nos.62102240,62071283)the China Postdoctoral Science Foundation(Grant No.2020M683421)the Key R&D Program of Shaanxi Province(Grant No.2020ZDLGY10-05).
文摘As an ingenious convergence between the Internet of Things and social networks,the Social Internet of Things(SIoT)can provide effective and intelligent information services and has become one of the main platforms for people to spread and share information.Nevertheless,SIoT is characterized by high openness and autonomy,multiple kinds of information can spread rapidly,freely and cooperatively in SIoT,which makes it challenging to accurately reveal the characteristics of the information diffusion process and effectively control its diffusion.To this end,with the aim of exploring multi-information cooperative diffusion processes in SIoT,we first develop a dynamics model for multi-information cooperative diffusion based on the system dynamics theory in this paper.Subsequently,the characteristics and laws of the dynamical evolution process of multi-information cooperative diffusion are theoretically investigated,and the diffusion trend is predicted.On this basis,to further control the multi-information cooperative diffusion process efficiently,we propose two control strategies for information diffusion with control objectives,develop an optimal control system for the multi-information cooperative diffusion process,and propose the corresponding optimal control method.The optimal solution distribution of the control strategy satisfying the control system constraints and the control budget constraints is solved using the optimal control theory.Finally,extensive simulation experiments based on real dataset from Twitter validate the correctness and effectiveness of the proposed model,strategy and method.
基金supported by National Natural Science Foundation of China(U2066209)。
文摘Energy storage systems(ESSs)operate as independent market participants and collaborate with photovoltaic(PV)generation units to enhance the flexible power supply capabilities of PV units.However,the dynamic variations in the profitability of ESSs in the electricity market are yet to be fully understood.This study introduces a dual-timescale dynamics model that integrates a spot market clearing(SMC)model into a system dynamics(SD)model to investigate the profit-aware capacity growth of ESSs and compares the profitability of independent energy storage systems(IESSs)with that of an ESS integrated within a PV(PV-ESS).Furthermore,this study aims to ascertain the optimal allocation of the PV-ESS.First,SD and SMC models were set up.Second,the SMC model simulated on an hourly timescale was incorporated into the SD model as a subsystem,a dual-timescale model was constructed.Finally,a development simulation and profitability analysis was conducted from 2022 to 2040 to reveal the dynamic optimal range of PV-ESS allocation.Additionally,negative electricity prices were considered during clearing processes.The simulation results revealed differences in profitability and capacity growth between IESS and PV-ESS,helping grid investors and policymakers to determine the boundaries of ESSs and dynamic optimal allocation of PV-ESSs.
文摘In this article, the transmission dynamics of a Hand-Foot-Mouth disease model with treatment and vaccination interventions are studied. We calculated the basic reproduction number and proved the global stability of disease-free equilibrium when R0 R0 > 1. Meanwhile, we obtained the optimal control strategies minimizing the cost of intervention and minimizing the infected person. We also give some numerical simulations to verify our theoretical results.
文摘This paper introduces a novel fully distributed economic power dispatch(EPD)strategy for distribution networks,integrating dynamic tariffs.A two-layer model is proposed:the first layer comprises the physical power distribution network,including photovoltaic(PV)sources,wind turbine(WT)generators,energy storage systems(ESS),flexible loads(FLs),and other inflexible loads.The upper layer consists of agents dedicated to communication,calculation,and control tasks.Unlike previous EPD strategies,this approach incorporates dynamic tariffs derived from voltage constraints to ensure compliance with nodal voltage constraints.Addi-tionally,a fast distributed optimization algorithm with an event-triggered communication protocol has been developed to address the EPD problem effectively.Through mathematical and simulation analyses,the proposed algorithm's efficiency and rapid conver-gence capability are demonstrated.
基金Supported by National Natural Science Foundation of China (Grant Nos.12072219,12202303,12272254)Shanxi Provincial Excellent Talents Science and Technology Innovation Project of China (Grant No.201805D211033)。
文摘The current research of sandwich structures under dynamic loading mainly focus on the response characteristic of structure.The micro-topology of core layers would sufficiently influence the property of sandwich structure.However,the micro deformation and topology mechanism of structural deformation and energy absorption are unclear.In this paper,based on the bi-directional evolutionary structural optimization method and periodic base cell(PBC)technology,a topology optimization frame work is proposed to optimize the core layer of sandwich beams.The objective of the present optimization problem is to maximize shear stiffness of PBC with a volume constraint.The effects of the volume fraction,filter radius,and initial PBC aspect ratio on the micro-topology of the core were discussed.The dynamic response process,core compression,and energy absorption capacity of the sandwich beams under blast impact loading were analyzed by the finite element method.The results demonstrated that the overpressure action stage was coupled with the core compression stage.Under the same loading and mass per unit area,the sandwich beam with a 20%volume fraction core layer had the best blast resistance.The filter radius has a slight effect on the shear stiffness and blast resistances of the sandwich beams.But increasing the filter radius could slightly improve the bending stiffness.Upon changing the initial PBC aspect ratio,there are three ways for PBC evolution:The first is to change the angle between the adjacent bars,the second is to further form holes in the bars,and the third is to combine the first two ways.However,not all three ways can improve the energy absorption capacity of the structure.Changing the aspect ratio of the PBC arbitrarily may lead to worse results.More studies are necessary for further detailed optimization.This research proposes a new topology sandwich beam structure by micro-topology optimization,which has sufficient shear stiffness.The micro mechanism of structural energy absorption is clarified,it is significant for structural energy absorption design.
基金supported by National Natural Science Foundation of China(Grant Nos.62376089,62302153,62302154,62202147)the key Research and Development Program of Hubei Province,China(Grant No.2023BEB024).
文摘The world produces vast quantities of high-dimensional multi-semantic data.However,extracting valuable information from such a large amount of high-dimensional and multi-label data is undoubtedly arduous and challenging.Feature selection aims to mitigate the adverse impacts of high dimensionality in multi-label data by eliminating redundant and irrelevant features.The ant colony optimization algorithm has demonstrated encouraging outcomes in multi-label feature selection,because of its simplicity,efficiency,and similarity to reinforcement learning.Nevertheless,existing methods do not consider crucial correlation information,such as dynamic redundancy and label correlation.To tackle these concerns,the paper proposes a multi-label feature selection technique based on ant colony optimization algorithm(MFACO),focusing on dynamic redundancy and label correlation.Initially,the dynamic redundancy is assessed between the selected feature subset and potential features.Meanwhile,the ant colony optimization algorithm extracts label correlation from the label set,which is then combined into the heuristic factor as label weights.Experimental results demonstrate that our proposed strategies can effectively enhance the optimal search ability of ant colony,outperforming the other algorithms involved in the paper.
基金supported by CITRIS and the Banatao Institute,Air Force Office of Scientific Research(Grant No.FA9550-22-1-0420)National Science Foundation(Grant No.ACI-1548562).
文摘Conventional wing aerodynamic optimization processes can be time-consuming and imprecise due to the complexity of versatile flight missions.Plenty of existing literature has considered two-dimensional infinite airfoil optimization,while three-dimensional finite wing optimizations are subject to limited study because of high computational costs.Here we create an adaptive optimization methodology built upon digitized wing shape deformation and deep learning algorithms,which enable the rapid formulation of finite wing designs for specific aerodynamic performance demands under different cruise conditions.This methodology unfolds in three stages:radial basis function interpolated wing generation,collection of inputs from computational fluid dynamics simulations,and deep neural network that constructs the surrogate model for the optimal wing configuration.It has been demonstrated that the proposed methodology can significantly reduce the computational cost of numerical simulations.It also has the potential to optimize various aerial vehicles undergoing different mission environments,loading conditions,and safety requirements.
基金Key R&D Program of Tianjin,China(No.20YFYSGX00060).
文摘Electric vehicle(EV)is an ideal solution to resolve the carbon emission issue and the fossil fuels scarcity problem in the future.However,a large number of EVs will be concentrated on charging during the valley hours leading to new load peaks under the guidance of static time-of-use tariff.Therefore,this paper proposes a dynamic time-of-use tariff mechanism,which redefines the peak and valley time periods according to the predicted loads using the fuzzy C-mean(FCM)clustering algorithm,and then dynamically adjusts the peak and valley tariffs according to the actual load of each time period.Based on the proposed tariff mechanism,an EV charging optimization model with the lowest cost to the users and the lowest variance of the grid-side load as the objective function is established.Then,a weight selection principle with an equal loss rate of the two objectives is proposed to transform the multi-objective optimization problem into a single-objective optimization problem.Finally,the EV charging load optimization model under three tariff strategies is set up and solved with the mathematical solver GROUBI.The results show that the EV charging load optimization strategy based on the dynamic time-of-use tariff can better balance the benefits between charging stations and users under different numbers and proportions of EVs connected to the grid,and can effectively reduce the grid load variance and improve the grid load curve.
文摘In today’s information age,video data,as an important carrier of information,is growing explosively in terms of production volume.The quick and accurate extraction of useful information from massive video data has become a focus of research in the field of computer vision.AI dynamic recognition technology has become one of the key technologies to address this issue due to its powerful data processing capabilities and intelligent recognition functions.Based on this,this paper first elaborates on the development of intelligent video AI dynamic recognition technology,then proposes several optimization strategies for intelligent video AI dynamic recognition technology,and finally analyzes the performance of intelligent video AI dynamic recognition technology for reference.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 61301279, 51479158 and the Fundamental Research Funds for the Central Universities under Grant No. WUT: 163102006
文摘A controller which is locally optimal near the origin and globally inverse optimal for the nonlinear system is proposed for path following of over actuated marine crafts with actuator dynamics. The motivation is the existence of undesired signals sent to the actuators, which can result in bad behavior in path following. To attenuate the oscillation of the control signal and obtain smooth thrust outputs, the actuator dynamics are added into the ship maneuvering model. Instead of modifying the Line-of-Sight (LOS) guidance law, this proposed controller can easily adjust the vessel speed to minimize the large cross-track error caused by the high vessel speed when it is turning. Numerical simulations demonstrate the validity of this proposed controller.
基金Project(2009AA04Z216) supported in part by the National High Technology Research and Development Program of ChinaProject(2009ZX04013-011) supported by the National Science and Technology Major Program of ChinaProject(20092302120068) supported by the Doctoral Program of Higher Education of China
文摘A design and optimization approach of dynamic and control performance for a two-DOF planar manipulator was proposed.After the kinematic and dynamic analysis,several advantages of the mechanism were illustrated,which made it possible to obtain good dynamic and control performances just through mechanism optimization.Based on the idea of design for control(DFC),a novel kind of multi-objective optimization model was proposed.There were three optimization objectives:the index of inertia,the index describing the dynamic coupling effects and the global condition number.Other indexes to characterize the designing requirements such as the velocity of end-effector,the workspace size,and the first mode natural frequency were regarded as the constraints.The cross-section area and length of the linkages were chosen as the design variables.NSGA-II algorithm was introduced to solve this complex multi-objective optimization problem.Additional criteria from engineering experience were incorporated into the selecting of final parameters among the obtained Pareto solution sets.Finally,experiments were performed to validate the linear dynamic structure and control performances of the optimized mechanisms.A new expression for measuring the dynamic coupling degree with clear physical meaning was proposed.The results show that the optimized mechanism has an approximate decoupled dynamics structure,and each active joint can be regarded as a linear SISO system.The control performances of the linear and nonlinear controllers were also compared.It can be concluded that the optimized mechanism can achieve good control performance only using a linear controller.
基金The project supported by the National Natural Science Foundation of ChinaLNM,Institute of Mechanics,CAS
文摘A new theory on the construction of optimal truncated Low-Dimensional Dynamical Systems (LDDSs) with different physical meanings has been developed, The physical properties of the optimal bases are reflected in the user-defined optimal conditions, Through the analysis of linear and nonlinear examples, it is shown that the LDDSs constructed by using the Proper Orthogonal Decomposition (POD) method are not the optimum. After comparing the errors of LDDSs based on the new theory POD and Fourier methods, it is concluded that the LDDSs based on the new theory are optimally truncated and catch the desired physical properties of the systems.
文摘In this paper, a dynamic generation scheduling model is formulated, aiming at minimizing the costs of power generation and taking into account the constraints of thermal power units and spinning reserve in wind power integrated systems. A dynamic solving method blended with particle swarm optimization algorithm is proposed. In this method, the solution space of the states of unit commitment is created and will be updated when the status of unit commitment changes in a period to meet the spinning reserve demand. The thermal unit operation constrains are inspected in adjacent time intervals to ensure all the states in the solution space effective. The particle swarm algorithm is applied in the procedure to optimize the load distribution of each unit commitment state. A case study in a simulation system is finally given to verify the feasibility and effectiveness of this dynamic optimization algorithm.
基金supported in part by the National Key Reseanch and Development Program of China(2018AAA0101502,2018YFB1702300)in part by the National Natural Science Foundation of China(61722312,61533019,U1811463,61533017)in part by the Intel Collaborative Research Institute for Intelligent and Automated Connected Vehicles。
文摘This paper studies the problem of optimal parallel tracking control for continuous-time general nonlinear systems.Unlike existing optimal state feedback control,the control input of the optimal parallel control is introduced into the feedback system.However,due to the introduction of control input into the feedback system,the optimal state feedback control methods can not be applied directly.To address this problem,an augmented system and an augmented performance index function are proposed firstly.Thus,the general nonlinear system is transformed into an affine nonlinear system.The difference between the optimal parallel control and the optimal state feedback control is analyzed theoretically.It is proven that the optimal parallel control with the augmented performance index function can be seen as the suboptimal state feedback control with the traditional performance index function.Moreover,an adaptive dynamic programming(ADP)technique is utilized to implement the optimal parallel tracking control using a critic neural network(NN)to approximate the value function online.The stability analysis of the closed-loop system is performed using the Lyapunov theory,and the tracking error and NN weights errors are uniformly ultimately bounded(UUB).Also,the optimal parallel controller guarantees the continuity of the control input under the circumstance that there are finite jump discontinuities in the reference signals.Finally,the effectiveness of the developed optimal parallel control method is verified in two cases.
基金supported by Tianjin Municipal Science and Technology Development Project of China (Grant No. 043186211)Tianjin Municipal Key Laboratory of Advanced Manufacturing Technology and Equipment of Tianjin University of China
文摘This paper investigates the dynamic design methodology of mountain bikes with rear suspension. Firstly, a multi-rigid body dynamic model of rider and mountain bike coupled system is constructed. The rider model includes 19 skeletons, 18 joints and 118 main muscles. Secondly, to validate the feasibility of the model, an experiment test is designed to reflect the real cycling status. Finally, aiming at enhancing the performance of the rider vibration comfort, the scale parameters of rear suspension are optimized with computer simulation and uniform design. The mathematical model in the vibration performance and the design variables is constructed with regression analysis. The result shows that when the length of side link is 90 mm, the length of connected rod is 336.115 1 mm and the included angle between absorber and side link is 60°, the mountain bike has better vibration comfort. This study and relevant conclusions are of practical importance to the design of the mountain bike's rear suspension system.
基金Supported by the National Natural Science Foundation of China( 1 9971 0 66)
文摘An optimal harvesting problem for linear age-dependent population dynamics is investigated.By Mazur's Theorem,the existence of solutions of the optimal control problem (OH) is demonstrated.The first order necessary conditions of optimality for problem (OH) is obtained by the conception of normal cone. Finally,under suitable assumptions,the uniqueness of solutions of the optimal control problem (OH) is given.The results extend some known criteria.
基金Supported by the National Natural Science Foundation of China(21776074,21576081,2181101120).
文摘The dynamic analysis and optimal design of reactive extraction are challenging due to high nonlinearity of model equations and tough decision of judging criteria. In this work, a dynamic rate-based method is developed on g PROMS platform to get easy access to the solutions of reactive extraction with phase splitting. Based on rigorous criteria, dynamic analysis from initial state to final equilibrium(e.g., evolution of phase composition, mass transfer rate and reaction rate) and optimal design of operating conditions(e.g., extractant dosage and feed molar ratio) are achieved. To illustrate the method, the esterification of n-hexyl acetate is taken as an example. The approach proves to be reliable in the analysis and optimization of the exemplified system, which provides instructive reference for further process design and simulation of reactive extraction.