In the 21st century, the deployment of ground-based Solar Photovoltaic (PV) Modules has seen exponential growth, driven by increasing demands for green, clean, and renewable energy sources. However, their usage is con...In the 21st century, the deployment of ground-based Solar Photovoltaic (PV) Modules has seen exponential growth, driven by increasing demands for green, clean, and renewable energy sources. However, their usage is constrained by certain limitations. Notably, the efficiency of solar PV modules on the ground peaks at a maximum of 25%, and there are concerns regarding their long-term reliability, with an expected lifespan of approximately 25 years without failures. This study focuses on analyzing the thermal efficiency of PV Modules. We have investigated the temperature profile of PV Modules under varying environmental conditions, such as air velocity and ambient temperature, utilizing Computational Fluid Dynamics (CFD). This analysis is crucial as the efficiency of PV Modules is significantly impacted by changes in the temperature differential relative to the environment. Furthermore, the study highlights the effect of airflow over solar panels on their temperature. It is found that a decrease in the temperature of the PV Module increases Open Circuit Voltage, underlining the importance of thermal management in optimizing solar panel performance.展开更多
Taking CPU time cost and analysis accuracy into account, dynamic explicit finite ele- ment method is adopted to optimize the forming process of autobody panels that often have large sizes and complex geometry. In this...Taking CPU time cost and analysis accuracy into account, dynamic explicit finite ele- ment method is adopted to optimize the forming process of autobody panels that often have large sizes and complex geometry. In this paper, for the sake of illustrating in detail how dynamic explicit finite element method is applied to the numerical simulation of the autobody panel forming process,an example of optimization of stamping process pain meters of an inner door panel is presented. Using dynamic explicit finite element code Ls-DYNA3D, the inner door panel has been optimized by adapting pa- rameters such as the initial blank geometry and position, blank-holder forces and the location of drawbeads, and satisfied results are obtained.展开更多
Surface contact explosion experiments have been performed for the study of dynamic response of the hard-soft-hard sandwich panel under blast loading. Experimental results have shown that there are four damage modes, i...Surface contact explosion experiments have been performed for the study of dynamic response of the hard-soft-hard sandwich panel under blast loading. Experimental results have shown that there are four damage modes, including explosion cratering, scabbing of the backside, radial cracking induced failure and circumferential cracking induced failure. It also illustrates that the foam material sandwiched in the multi-layered media has an important effect on damage patterns. The phenomena encountered have been analyzed by the calculation with ALE method. Meanwhile, the optimal analysis of foam material thickness and position in the sandwich panel were performed in terms of experimental and numerical analysis. The proper thickness proportion of the soft layer is about 2.0% to the thickness of sandwich panel and the thickness of the upper hard layer and lower hard layer is in the ratio of ? to 3 under the condition in this paper when the total thickness of soft layer remains constant.展开更多
We used simulated data to investigate both the small and large sample properties of the within-groups (WG) estimator and the first difference generalized method of moments (FD-GMM) estimator of a dynamic panel data (D...We used simulated data to investigate both the small and large sample properties of the within-groups (WG) estimator and the first difference generalized method of moments (FD-GMM) estimator of a dynamic panel data (DPD) model. The magnitude of WG and FD-GMM estimates are almost the same for square panels. WG estimator performs best for long panels such as those with time dimension as large as 50. The advantage of FD-GMM estimator however, is observed on panels that are long and wide, say with time dimension at least 25 and cross-section dimension size of at least 30. For small-sized panels, the two methods failed since their optimality was established in the context of asymptotic theory. We developed parametric bootstrap versions of WG and FD-GMM estimators. Simulation study indicates the advantages of the bootstrap methods under small sample cases on the assumption that variances of the individual effects and the disturbances are of similar magnitude. The boostrapped WG and FD-GMM estimators are optimal for small samples.展开更多
Sandwich panel is commonly used in ship and marine engineering equipment,such as side structure and superstructure deck of a ship,which is of good anti-explosion performance.This paper addresses a study on the dynamic...Sandwich panel is commonly used in ship and marine engineering equipment,such as side structure and superstructure deck of a ship,which is of good anti-explosion performance.This paper addresses a study on the dynamic response of the U-typed sandwich panel under explosion load through the numerical simulation and theoretical methods.Based on the orthotropic plate theory,the U-typed sandwich panel is simplified and transformed into a single degree of freedom(SDOF)spring system,the equivalent motion equation of the SDOF system and the expression of triangular explosion load function are established based on the SDOF theory,and the maximum response spectrum of the SDOF system is obtained.Then,the response of the equivalent SDOF system of the U-typed sandwich panel under explosion load is analyzed,and the theoretical results match well with the numerical simulation results,which verifies the accuracy of the theoretical method proposed in this paper.The theoretical method proposed in this paper could have good engineering applications for the structural anti-explosion design,and provide a reference for the evaluation of the anti-explosion performance of ship and offshore platform structures.展开更多
An approximate analysis for dynamical stability of anisotropic finite panels with centrally located elliptical cutouts is presented. The analysis is divided into two parts: a plane stress analysis and a stability anal...An approximate analysis for dynamical stability of anisotropic finite panels with centrally located elliptical cutouts is presented. The analysis is divided into two parts: a plane stress analysis and a stability analysis. The plane stress distribution is determined by using Lekhnitskii's complex variable equations of plane elastostatics combined with a Laurent series approximation constructed by the conformal mapping and a boundary collocation method. Its solutions satisfy the conditions along the interior boundary and at a discrete number of points along the exterior panel ones. The stability analysis is conducted by using the differential equations which result from the Hamilton's principle and the classical plate theory. The relation of vibration frequency, load parameter and stability of panels is investigated by solving the fundamental equations using separation of variables, so as to obtain the critical loads. Finally, comparisons with documented experimental results and finite element analysis are made. Results of a parameter study are presented.展开更多
The spacecraft with multistage solar panels have nonlinear coupling between attitudes of central body and solar panels, especially the rotation of central body is considered in space. The dynamics model is based for d...The spacecraft with multistage solar panels have nonlinear coupling between attitudes of central body and solar panels, especially the rotation of central body is considered in space. The dynamics model is based for dynamics analysis and control, and the multistage solar panels means the dynamics modeling will be very complex. In this research, the Lie group variational integrator method is introduced, and the dynamics model of spacecraft with solar panels that connects together by flexible joints is built. The most obvious character of this method is that the attitudes of central body and solar panels are all described by three-dimensional attitude matrix. The dynamics models of spacecraft with one and three solar panels are established and simulated. The study shows Lie group variational integrator method avoids parameters coupling and effectively reduces difficulty of modeling. The obtained continuous dynamics model based on Lie group is a set of ordinary differential equations and equivalent with traditional dynamics model that offers a basis for the geometry control.展开更多
The finite-depth concrete panels have been widely applied in the protective structures,and its impact resistance and dynamic fracture failures,especially the scabbing/perforation limits,under high velocity projectile ...The finite-depth concrete panels have been widely applied in the protective structures,and its impact resistance and dynamic fracture failures,especially the scabbing/perforation limits,under high velocity projectile impact,are mainly concerned by protective engineers,which are numerically studied based on an improved dynamic concrete model in this study.Firstly,based on the framework of the KCC(Karagozian&Case concrete)model,a dynamic concrete model is proposed which considers an independent tensile damage model and a continued transition between dynamic tensile and compressive properties.Secondly,the strength surface,equation of state and damage parameters of the proposed model are comprehensively calibrated by a triaxial compressive test with high confinement pressure,the rationality of which is further verified based on the single element tests,e.g.,uniaxial and triaxial compression as well as uniaxial,biaxial and triaxial tension.Thirdly,a series of projectile high velocity impact tests on thin and thick concrete panels are simulated,which indicates that the projectile residual velocity and dynamic fracture failures are reproduced satisfactorily,while the KCC model underestimates both the spalling and scabbing dimensions severely.Finally,based on the validated concrete model and finite element analyses approach,the validations of the existing five empirical formulae are evaluated,in terms of the depth of penetration(DOP)and scabbing/perforation limits of concrete panel.Both the Army corps of engineers(ACE)and modified National Defense Research Committee(NDRC)formulae are recommended in the design of the protective structure to avoid scabbing failure.展开更多
The intensity of environmental regulation (ERI) affects the short-term effect of the level of green mining (GML),and which structure determines the long-term mechanism.Based on the panel data from 2001 to 2015,with th...The intensity of environmental regulation (ERI) affects the short-term effect of the level of green mining (GML),and which structure determines the long-term mechanism.Based on the panel data from 2001 to 2015,with the dynamic panel model and system GMM estimation method were employed to test the influence of heterogeneous environmental regulation on green mining and its transmission mechanism.The results show that,there is a 'U' type nonlinear relationship between the ERI and GML.The direct effect of command-control-based (CAC) and the market incentive-based (MBI) environmental regulation on green development of mining shows the characteristics of inhibition and promotion.There is a 'U' type of indirectly moderating effect between technological innovation and the energy consumption structure on the GML.The technological innovation promotes the green development of the mining industry only after pass the inflection point of MBI,while the CAC plays a significant guiding role in upgrading of the energy consumption structure.There is an inhibition and promotion effect of MBI on the GML in the southeast coastal area,and the CAC is not significantly.Meanwhile,both of the ERI shows no positive effects in the central and western inland region.展开更多
Resource utilization efficiency is one of important factors influencing modern agricultural development. This paper evaluates agricultural resource utilization efficiency of Hebei Province in the Eleventh Five-Year Pl...Resource utilization efficiency is one of important factors influencing modern agricultural development. This paper evaluates agricultural resource utilization efficiency of Hebei Province in the Eleventh Five-Year Plan period by dynamic comprehensive evaluation method. Evaluation results indicate that regional disparity in agricultural resource utilization efficiency is significant, and the disparity is increasing year by year.展开更多
The paper intends to analyze economic factors that influence electricity consumption in the OECD economies. A special interest in this context is given to spillover effects of trade on electricity consumption. For thi...The paper intends to analyze economic factors that influence electricity consumption in the OECD economies. A special interest in this context is given to spillover effects of trade on electricity consumption. For this purpose, a model is constructed that using a dynamic panel study approach. The model is estimated in a GMM framework in which a dynamic procedure is conducted along the balanced growth path for electricity consumption in each economy. In advance, the long run dynamic behavior of prices, GDP, and trade induced spillover variables is determined. In a further step, the short run dynamic mechanism is pursued by estimating the partial adjustment dynamic coefficient on the target level of electricity consumption. The analysis is conducted for industrial, as well as residential electricity consumption. Alternatively, the same procedure is estimated by the application of a fixed period model. The model provides a benchmark tool for electricity policy decisions and for electricity consumption projections.展开更多
Spot weld models are widely used in finite element analysis(FEA) of automotive body in white(BIW) to predict static,dynamic,durability and other characteristics of automotive BIW.However,few researches are done on...Spot weld models are widely used in finite element analysis(FEA) of automotive body in white(BIW) to predict static,dynamic,durability and other characteristics of automotive BIW.However,few researches are done on evaluation of the validity of these spot weld models in structural dynamic analysis of BIW.To evaluate the validity and accuracy of spot weld models in structural dynamic analysis of BIW,two object functions,error function and deviation function,are introduced innovatively.Modal analysis of Two-panel and Double-hat structures,which are the dominated structures in BIW,is conducted,and the values of these two object functions are obtained.Based on the values of object functions,the validity of these spot weld models are evaluated.It is found that the area contact method(ACM2) and weld element connection(CWELD) can give more precise prediction in modal analysis of these two classical structures,thus are more applicable to structural dynamic analysis of automotive BIW.Modal analysis of a classical BIW is performed,which further confirms this evaluation.The error function and deviation function proposed in this research can give guidance on the adaptability of spot weld models in structural dynamic analysis of BIW.And this evaluation method can also be adopted in evaluation of other finite element models in static,dynamic and other kinds of analysis for automotive structures.展开更多
A retrofitting technology using precast steel reinforced concrete(PSRC) panels is developed to improve the seismic performance of old masonry buildings. The PSRC panels are built up as an external PSRC wall system s...A retrofitting technology using precast steel reinforced concrete(PSRC) panels is developed to improve the seismic performance of old masonry buildings. The PSRC panels are built up as an external PSRC wall system surrounding the existing masonry building. The PSRC walls are well connected to the existing masonry building, which provides enough confinement to effectively improve the ductility, strength, and stiffenss of old masonry structures. The PSRC panels are prefabricated in a factory, significantly reducing the situ work and associated construction time. To demonstrate the feasibility and mechanical effectivenss of the proposed retrofitting system, a full-scale five-story specimen was constructed. The retrofitting process was completed within five weeks with very limited indoor operation. The specimen was then tested in the lateral direction, which could potentially suffer sigifnicant damage in a large earthquake. The technical feasibility, construction workability, and seismic performance were thoroughly demonstrated by a full-scale specimen construction and pseudo-dynamic tests.展开更多
In order to practice the concept of‘lucid waters and lush mountains are invaluable assets’and promote the green development of agriculture,it is necessary to improve the efficiency of agricultural energy utilization...In order to practice the concept of‘lucid waters and lush mountains are invaluable assets’and promote the green development of agriculture,it is necessary to improve the efficiency of agricultural energy utilization.Based on the panel data of 28 provinces from 1995 to 2018,this paper calculated China’s agricultural energy input from two categories of direct energy and indirect energy,and used EBM(Epsilon-based Measure)mixed distance function model to measure the energy efficiency of agriculture in China.The nuclear density function and spatial autocorrelation were used to analyze the dynamic evolution of agricultural energy efficiency,and the dynamic panel model was used to analyze the influencing factors of agricultural energy efficiency.The results showed that:①From 1995 to 2018,the total agricultural energy input had increased year by year in China,with an average annual growth rate of 2%.Energy input structure changed from indirect energy-based to direct energy-based.Agricultural energy efficiency showed an evolutionary trend of‘rising-stagnating-rising rapidly’in China.The agricultural energy efficiency was generally low in China,and there was a large space for improvement in agricultural energy efficiency.②From 1995 to 2018,the average annual growth rate of agricultural energy efficiency in the eastern,central and western regions was 2.7%,1.9%and 1.4%respectively.In 2018,the agricultural energy efficiency in the eastern,central and western regions was 0.81,0.71 and 0.59 respectively.The gap between regions was expanding rapidly,and the agricultural energy efficiency in the central and western regions needed to be improved.③From 1995 to 2018,the agricultural energy efficiency of each province was polarized and the absolute gap was widened.There was obvious improvement in agricultural energy efficiency in Guangdong,Shandong,Jiangxi,Jiangsu,Liaoning and Tianjin,while the agricultural energy efficiency of Xinjiang,Guizhou,Zhejiang,Shanghai,and Inner Mongolia deteriorated.④From 1995 to 2018,there was no global spatial correlation of China’s agricultural energy efficiency.However,local‘high-high’concentration gradually appeared in the eastern region since 2010.⑤The first lag of energy efficiency had a significant positive impact on agricultural energy efficiency,and agricultural energy efficiency improvement had a time lag.The level of human capital,per capita net income of farmers and the level of urbanizaton had a significant positive impact on agricultural energy efficiency.The disaster rate,the level of development of secondary and tertiary industries,and the level of opening up had a significant negative impact on agricultural energy efficiency.In the implementation of the strategy of rural revitalization,we should focus on the central and western regions,take the cultivation of professional farmers as the key,focus on improving agricultural production conditions,enhance the level of cooperation between regions,exert the leading role of the secondary and tertiary industries,and enhance the ability of agricultural disaster prevention and mitigation.展开更多
This paper aims at studying the dynamic mechanism of urban expansion and its role. Based on the economic model of urban spatial structure and applying panel data in Shandong Province, the paper concludes. Economic gro...This paper aims at studying the dynamic mechanism of urban expansion and its role. Based on the economic model of urban spatial structure and applying panel data in Shandong Province, the paper concludes. Economic growth and transition of economic structure have played the most powerful role in urban expansion. An increase in population helps the core to extend. Increasing agricultural productivity can provide a countervailing force. An increase in transportation costs will limit urban expan- sion. An increase in the marginal productivity of land in housing production will increase urban expansion. Fiscal and taxation policies also have encouraged the extensive shift of cultivated land into build-up area. This paper also suggests that if high rate increasing GDP is needed, the urban core will continue to expand. The government should take measures to improve the rapid growth of the city.展开更多
The paper starts with a brief overview to the necessity of sheet metal forming simulation and the complexity of automobile panel forming, then leads to finite element analysis (FEA) which is a powerful simulation too...The paper starts with a brief overview to the necessity of sheet metal forming simulation and the complexity of automobile panel forming, then leads to finite element analysis (FEA) which is a powerful simulation tool for analyzing complex three-dimensional sheet metal forming problems. The theory and features of the dynamic explicit finite element methods are introduced and the available various commercial finite element method codes used for sheet metal forming simulation in the world are discussed,and the civil and international status quo of automobile panel simulation as well. The front door outer panel of one certain new automobile is regarded as one example that the dynamic explicit FEM code Dynaform is used for the simulation of the front door outer panel forming process. Process defects such as ruptures are predicted. The improving methods can be given according to the simulation results. Foreground of sheet metal forming simulation is outlined.展开更多
A simulation method is proposed to predict the motion artifacts of plasma display panels (PDPs). The method simulates the behavior of the human vision system when perceiving moving objects. The simulation is based o...A simulation method is proposed to predict the motion artifacts of plasma display panels (PDPs). The method simulates the behavior of the human vision system when perceiving moving objects. The simulation is based on the measured temporal light properties of the display for each gray level and each phosphor. Both the effect of subfield arrangement and phosphor decay are involved. A novel algorithm is proposed to improve the calculation speed. The simulation model manages to predict the appearance of the motion image perceived by a human with a still image. The results are validated by a set of perceptual evaluation experiments. This rapid and accurate prediction of motion artifacts enables objective characterization of the PDP performance in this aspect.展开更多
A precise dynamic model for towing and removing a defunct satellite with solar panels in orbit using a tethered net often has low computational efficiency owing to the complex contact and collision between the net and...A precise dynamic model for towing and removing a defunct satellite with solar panels in orbit using a tethered net often has low computational efficiency owing to the complex contact and collision between the net and panels,which is not conducive to research.To solve this problem,a“single main tether–multiple subtether”bifurcation structure with beads was employed as the tethered net model.This study investigated the dynamics of tethered defunct satellites with solar panels,particularly the behavior of the attitude of the tethered satellite,oscillation of the main tether,and vibration of solar panels under different conditions.The results showed that different attachment configurations of the subtethers and the flexibility of the main tether have an evident impact on the dynamic characteristics of the system.展开更多
Dent resistance of automobile body panels is an important property for automobile design and manufacture, but the study on this aspect is not still profound. This study is to summarize the testing methods and physical...Dent resistance of automobile body panels is an important property for automobile design and manufacture, but the study on this aspect is not still profound. This study is to summarize the testing methods and physical significations of static and dynamic dent resistance of automobile body panels combined with the author's study, and to analyze the dent behaviors in the round. Several influence factors on dent resistance are expatiated including the mechanical properties of materials, stress states after forming, bake hardening ability, modulus, methods of testing, and structure of specimens and so on. The automotive lightweight and application of high strength steel sheets and aluminum alloys sheets are analyzed, and the significance of testing of dent resistance, especially for dynamic dent resistance of auto-panels, and the finite element simulation analysis are emphasized. To explain the physical phenomenon of dent behaviors, the latest and concerned study results are also discussed. According to this study, a dent resistance test and evaluation standard of Society of Automotive Engineers of China for automotive body panel is presented and is being carried out, and an industry conference is hold to discuss the working-out of the standard, a primary schedule of this standard is confirmed now. The study can guide the further testing and study of dent resistant of auto-panels.展开更多
文摘In the 21st century, the deployment of ground-based Solar Photovoltaic (PV) Modules has seen exponential growth, driven by increasing demands for green, clean, and renewable energy sources. However, their usage is constrained by certain limitations. Notably, the efficiency of solar PV modules on the ground peaks at a maximum of 25%, and there are concerns regarding their long-term reliability, with an expected lifespan of approximately 25 years without failures. This study focuses on analyzing the thermal efficiency of PV Modules. We have investigated the temperature profile of PV Modules under varying environmental conditions, such as air velocity and ambient temperature, utilizing Computational Fluid Dynamics (CFD). This analysis is crucial as the efficiency of PV Modules is significantly impacted by changes in the temperature differential relative to the environment. Furthermore, the study highlights the effect of airflow over solar panels on their temperature. It is found that a decrease in the temperature of the PV Module increases Open Circuit Voltage, underlining the importance of thermal management in optimizing solar panel performance.
文摘Taking CPU time cost and analysis accuracy into account, dynamic explicit finite ele- ment method is adopted to optimize the forming process of autobody panels that often have large sizes and complex geometry. In this paper, for the sake of illustrating in detail how dynamic explicit finite element method is applied to the numerical simulation of the autobody panel forming process,an example of optimization of stamping process pain meters of an inner door panel is presented. Using dynamic explicit finite element code Ls-DYNA3D, the inner door panel has been optimized by adapting pa- rameters such as the initial blank geometry and position, blank-holder forces and the location of drawbeads, and satisfied results are obtained.
文摘Surface contact explosion experiments have been performed for the study of dynamic response of the hard-soft-hard sandwich panel under blast loading. Experimental results have shown that there are four damage modes, including explosion cratering, scabbing of the backside, radial cracking induced failure and circumferential cracking induced failure. It also illustrates that the foam material sandwiched in the multi-layered media has an important effect on damage patterns. The phenomena encountered have been analyzed by the calculation with ALE method. Meanwhile, the optimal analysis of foam material thickness and position in the sandwich panel were performed in terms of experimental and numerical analysis. The proper thickness proportion of the soft layer is about 2.0% to the thickness of sandwich panel and the thickness of the upper hard layer and lower hard layer is in the ratio of ? to 3 under the condition in this paper when the total thickness of soft layer remains constant.
文摘We used simulated data to investigate both the small and large sample properties of the within-groups (WG) estimator and the first difference generalized method of moments (FD-GMM) estimator of a dynamic panel data (DPD) model. The magnitude of WG and FD-GMM estimates are almost the same for square panels. WG estimator performs best for long panels such as those with time dimension as large as 50. The advantage of FD-GMM estimator however, is observed on panels that are long and wide, say with time dimension at least 25 and cross-section dimension size of at least 30. For small-sized panels, the two methods failed since their optimality was established in the context of asymptotic theory. We developed parametric bootstrap versions of WG and FD-GMM estimators. Simulation study indicates the advantages of the bootstrap methods under small sample cases on the assumption that variances of the individual effects and the disturbances are of similar magnitude. The boostrapped WG and FD-GMM estimators are optimal for small samples.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51779110 and 51809122)the Natural Science Foundation of Jiangsu Province(Grant No.BK20191461)the Six Talent Peaks Project in Jiangsu Province(Grant No.KTHY-064).
文摘Sandwich panel is commonly used in ship and marine engineering equipment,such as side structure and superstructure deck of a ship,which is of good anti-explosion performance.This paper addresses a study on the dynamic response of the U-typed sandwich panel under explosion load through the numerical simulation and theoretical methods.Based on the orthotropic plate theory,the U-typed sandwich panel is simplified and transformed into a single degree of freedom(SDOF)spring system,the equivalent motion equation of the SDOF system and the expression of triangular explosion load function are established based on the SDOF theory,and the maximum response spectrum of the SDOF system is obtained.Then,the response of the equivalent SDOF system of the U-typed sandwich panel under explosion load is analyzed,and the theoretical results match well with the numerical simulation results,which verifies the accuracy of the theoretical method proposed in this paper.The theoretical method proposed in this paper could have good engineering applications for the structural anti-explosion design,and provide a reference for the evaluation of the anti-explosion performance of ship and offshore platform structures.
文摘An approximate analysis for dynamical stability of anisotropic finite panels with centrally located elliptical cutouts is presented. The analysis is divided into two parts: a plane stress analysis and a stability analysis. The plane stress distribution is determined by using Lekhnitskii's complex variable equations of plane elastostatics combined with a Laurent series approximation constructed by the conformal mapping and a boundary collocation method. Its solutions satisfy the conditions along the interior boundary and at a discrete number of points along the exterior panel ones. The stability analysis is conducted by using the differential equations which result from the Hamilton's principle and the classical plate theory. The relation of vibration frequency, load parameter and stability of panels is investigated by solving the fundamental equations using separation of variables, so as to obtain the critical loads. Finally, comparisons with documented experimental results and finite element analysis are made. Results of a parameter study are presented.
基金the financial support from the National Natural Science Foundation of China (Grants 11732005 and 11472058)
文摘The spacecraft with multistage solar panels have nonlinear coupling between attitudes of central body and solar panels, especially the rotation of central body is considered in space. The dynamics model is based for dynamics analysis and control, and the multistage solar panels means the dynamics modeling will be very complex. In this research, the Lie group variational integrator method is introduced, and the dynamics model of spacecraft with solar panels that connects together by flexible joints is built. The most obvious character of this method is that the attitudes of central body and solar panels are all described by three-dimensional attitude matrix. The dynamics models of spacecraft with one and three solar panels are established and simulated. The study shows Lie group variational integrator method avoids parameters coupling and effectively reduces difficulty of modeling. The obtained continuous dynamics model based on Lie group is a set of ordinary differential equations and equivalent with traditional dynamics model that offers a basis for the geometry control.
基金supported by the National Natural Science Foundation of China(Grant No.52208500)。
文摘The finite-depth concrete panels have been widely applied in the protective structures,and its impact resistance and dynamic fracture failures,especially the scabbing/perforation limits,under high velocity projectile impact,are mainly concerned by protective engineers,which are numerically studied based on an improved dynamic concrete model in this study.Firstly,based on the framework of the KCC(Karagozian&Case concrete)model,a dynamic concrete model is proposed which considers an independent tensile damage model and a continued transition between dynamic tensile and compressive properties.Secondly,the strength surface,equation of state and damage parameters of the proposed model are comprehensively calibrated by a triaxial compressive test with high confinement pressure,the rationality of which is further verified based on the single element tests,e.g.,uniaxial and triaxial compression as well as uniaxial,biaxial and triaxial tension.Thirdly,a series of projectile high velocity impact tests on thin and thick concrete panels are simulated,which indicates that the projectile residual velocity and dynamic fracture failures are reproduced satisfactorily,while the KCC model underestimates both the spalling and scabbing dimensions severely.Finally,based on the validated concrete model and finite element analyses approach,the validations of the existing five empirical formulae are evaluated,in terms of the depth of penetration(DOP)and scabbing/perforation limits of concrete panel.Both the Army corps of engineers(ACE)and modified National Defense Research Committee(NDRC)formulae are recommended in the design of the protective structure to avoid scabbing failure.
文摘The intensity of environmental regulation (ERI) affects the short-term effect of the level of green mining (GML),and which structure determines the long-term mechanism.Based on the panel data from 2001 to 2015,with the dynamic panel model and system GMM estimation method were employed to test the influence of heterogeneous environmental regulation on green mining and its transmission mechanism.The results show that,there is a 'U' type nonlinear relationship between the ERI and GML.The direct effect of command-control-based (CAC) and the market incentive-based (MBI) environmental regulation on green development of mining shows the characteristics of inhibition and promotion.There is a 'U' type of indirectly moderating effect between technological innovation and the energy consumption structure on the GML.The technological innovation promotes the green development of the mining industry only after pass the inflection point of MBI,while the CAC plays a significant guiding role in upgrading of the energy consumption structure.There is an inhibition and promotion effect of MBI on the GML in the southeast coastal area,and the CAC is not significantly.Meanwhile,both of the ERI shows no positive effects in the central and western inland region.
基金Supported by Hebei Province Philosophy and Social Science Planning Project in 2011(201102002)
文摘Resource utilization efficiency is one of important factors influencing modern agricultural development. This paper evaluates agricultural resource utilization efficiency of Hebei Province in the Eleventh Five-Year Plan period by dynamic comprehensive evaluation method. Evaluation results indicate that regional disparity in agricultural resource utilization efficiency is significant, and the disparity is increasing year by year.
文摘The paper intends to analyze economic factors that influence electricity consumption in the OECD economies. A special interest in this context is given to spillover effects of trade on electricity consumption. For this purpose, a model is constructed that using a dynamic panel study approach. The model is estimated in a GMM framework in which a dynamic procedure is conducted along the balanced growth path for electricity consumption in each economy. In advance, the long run dynamic behavior of prices, GDP, and trade induced spillover variables is determined. In a further step, the short run dynamic mechanism is pursued by estimating the partial adjustment dynamic coefficient on the target level of electricity consumption. The analysis is conducted for industrial, as well as residential electricity consumption. Alternatively, the same procedure is estimated by the application of a fixed period model. The model provides a benchmark tool for electricity policy decisions and for electricity consumption projections.
基金supported by National Natural Science Foundation of China(Grant No.10772060)Heilongjiang Provincial Natural Science Foundation with Excellent Young Investigators of China(GrantNo.JC2006-13)
文摘Spot weld models are widely used in finite element analysis(FEA) of automotive body in white(BIW) to predict static,dynamic,durability and other characteristics of automotive BIW.However,few researches are done on evaluation of the validity of these spot weld models in structural dynamic analysis of BIW.To evaluate the validity and accuracy of spot weld models in structural dynamic analysis of BIW,two object functions,error function and deviation function,are introduced innovatively.Modal analysis of Two-panel and Double-hat structures,which are the dominated structures in BIW,is conducted,and the values of these two object functions are obtained.Based on the values of object functions,the validity of these spot weld models are evaluated.It is found that the area contact method(ACM2) and weld element connection(CWELD) can give more precise prediction in modal analysis of these two classical structures,thus are more applicable to structural dynamic analysis of automotive BIW.Modal analysis of a classical BIW is performed,which further confirms this evaluation.The error function and deviation function proposed in this research can give guidance on the adaptability of spot weld models in structural dynamic analysis of BIW.And this evaluation method can also be adopted in evaluation of other finite element models in static,dynamic and other kinds of analysis for automotive structures.
基金Scientific Research Fund of Institute of Engineering Mechanics,CEA under Grant No.2016A06International Science & Technology Cooperation Program of China under Grant No.2014DFA70950National Natural Science Foundation of China under Grant Nos.51378478,51161120360
文摘A retrofitting technology using precast steel reinforced concrete(PSRC) panels is developed to improve the seismic performance of old masonry buildings. The PSRC panels are built up as an external PSRC wall system surrounding the existing masonry building. The PSRC walls are well connected to the existing masonry building, which provides enough confinement to effectively improve the ductility, strength, and stiffenss of old masonry structures. The PSRC panels are prefabricated in a factory, significantly reducing the situ work and associated construction time. To demonstrate the feasibility and mechanical effectivenss of the proposed retrofitting system, a full-scale five-story specimen was constructed. The retrofitting process was completed within five weeks with very limited indoor operation. The specimen was then tested in the lateral direction, which could potentially suffer sigifnicant damage in a large earthquake. The technical feasibility, construction workability, and seismic performance were thoroughly demonstrated by a full-scale specimen construction and pseudo-dynamic tests.
文摘In order to practice the concept of‘lucid waters and lush mountains are invaluable assets’and promote the green development of agriculture,it is necessary to improve the efficiency of agricultural energy utilization.Based on the panel data of 28 provinces from 1995 to 2018,this paper calculated China’s agricultural energy input from two categories of direct energy and indirect energy,and used EBM(Epsilon-based Measure)mixed distance function model to measure the energy efficiency of agriculture in China.The nuclear density function and spatial autocorrelation were used to analyze the dynamic evolution of agricultural energy efficiency,and the dynamic panel model was used to analyze the influencing factors of agricultural energy efficiency.The results showed that:①From 1995 to 2018,the total agricultural energy input had increased year by year in China,with an average annual growth rate of 2%.Energy input structure changed from indirect energy-based to direct energy-based.Agricultural energy efficiency showed an evolutionary trend of‘rising-stagnating-rising rapidly’in China.The agricultural energy efficiency was generally low in China,and there was a large space for improvement in agricultural energy efficiency.②From 1995 to 2018,the average annual growth rate of agricultural energy efficiency in the eastern,central and western regions was 2.7%,1.9%and 1.4%respectively.In 2018,the agricultural energy efficiency in the eastern,central and western regions was 0.81,0.71 and 0.59 respectively.The gap between regions was expanding rapidly,and the agricultural energy efficiency in the central and western regions needed to be improved.③From 1995 to 2018,the agricultural energy efficiency of each province was polarized and the absolute gap was widened.There was obvious improvement in agricultural energy efficiency in Guangdong,Shandong,Jiangxi,Jiangsu,Liaoning and Tianjin,while the agricultural energy efficiency of Xinjiang,Guizhou,Zhejiang,Shanghai,and Inner Mongolia deteriorated.④From 1995 to 2018,there was no global spatial correlation of China’s agricultural energy efficiency.However,local‘high-high’concentration gradually appeared in the eastern region since 2010.⑤The first lag of energy efficiency had a significant positive impact on agricultural energy efficiency,and agricultural energy efficiency improvement had a time lag.The level of human capital,per capita net income of farmers and the level of urbanizaton had a significant positive impact on agricultural energy efficiency.The disaster rate,the level of development of secondary and tertiary industries,and the level of opening up had a significant negative impact on agricultural energy efficiency.In the implementation of the strategy of rural revitalization,we should focus on the central and western regions,take the cultivation of professional farmers as the key,focus on improving agricultural production conditions,enhance the level of cooperation between regions,exert the leading role of the secondary and tertiary industries,and enhance the ability of agricultural disaster prevention and mitigation.
文摘This paper aims at studying the dynamic mechanism of urban expansion and its role. Based on the economic model of urban spatial structure and applying panel data in Shandong Province, the paper concludes. Economic growth and transition of economic structure have played the most powerful role in urban expansion. An increase in population helps the core to extend. Increasing agricultural productivity can provide a countervailing force. An increase in transportation costs will limit urban expan- sion. An increase in the marginal productivity of land in housing production will increase urban expansion. Fiscal and taxation policies also have encouraged the extensive shift of cultivated land into build-up area. This paper also suggests that if high rate increasing GDP is needed, the urban core will continue to expand. The government should take measures to improve the rapid growth of the city.
文摘The paper starts with a brief overview to the necessity of sheet metal forming simulation and the complexity of automobile panel forming, then leads to finite element analysis (FEA) which is a powerful simulation tool for analyzing complex three-dimensional sheet metal forming problems. The theory and features of the dynamic explicit finite element methods are introduced and the available various commercial finite element method codes used for sheet metal forming simulation in the world are discussed,and the civil and international status quo of automobile panel simulation as well. The front door outer panel of one certain new automobile is regarded as one example that the dynamic explicit FEM code Dynaform is used for the simulation of the front door outer panel forming process. Process defects such as ruptures are predicted. The improving methods can be given according to the simulation results. Foreground of sheet metal forming simulation is outlined.
文摘A simulation method is proposed to predict the motion artifacts of plasma display panels (PDPs). The method simulates the behavior of the human vision system when perceiving moving objects. The simulation is based on the measured temporal light properties of the display for each gray level and each phosphor. Both the effect of subfield arrangement and phosphor decay are involved. A novel algorithm is proposed to improve the calculation speed. The simulation model manages to predict the appearance of the motion image perceived by a human with a still image. The results are validated by a set of perceptual evaluation experiments. This rapid and accurate prediction of motion artifacts enables objective characterization of the PDP performance in this aspect.
文摘A precise dynamic model for towing and removing a defunct satellite with solar panels in orbit using a tethered net often has low computational efficiency owing to the complex contact and collision between the net and panels,which is not conducive to research.To solve this problem,a“single main tether–multiple subtether”bifurcation structure with beads was employed as the tethered net model.This study investigated the dynamics of tethered defunct satellites with solar panels,particularly the behavior of the attitude of the tethered satellite,oscillation of the main tether,and vibration of solar panels under different conditions.The results showed that different attachment configurations of the subtethers and the flexibility of the main tether have an evident impact on the dynamic characteristics of the system.
基金supported by National Hi-tech Research and Development Program of China(863 Program, Grant No. 2007AA03z551)Chongqing Municipal Technology Project of China (Grant No. 2007AA4008-4-4)
文摘Dent resistance of automobile body panels is an important property for automobile design and manufacture, but the study on this aspect is not still profound. This study is to summarize the testing methods and physical significations of static and dynamic dent resistance of automobile body panels combined with the author's study, and to analyze the dent behaviors in the round. Several influence factors on dent resistance are expatiated including the mechanical properties of materials, stress states after forming, bake hardening ability, modulus, methods of testing, and structure of specimens and so on. The automotive lightweight and application of high strength steel sheets and aluminum alloys sheets are analyzed, and the significance of testing of dent resistance, especially for dynamic dent resistance of auto-panels, and the finite element simulation analysis are emphasized. To explain the physical phenomenon of dent behaviors, the latest and concerned study results are also discussed. According to this study, a dent resistance test and evaluation standard of Society of Automotive Engineers of China for automotive body panel is presented and is being carried out, and an industry conference is hold to discuss the working-out of the standard, a primary schedule of this standard is confirmed now. The study can guide the further testing and study of dent resistant of auto-panels.