Lymph node targeting is a commonly used strategy for particulate vaccines,particularly for Pickering emulsions.However,extensive research on the internal delivery mechanisms of these emulsions,especially the complex i...Lymph node targeting is a commonly used strategy for particulate vaccines,particularly for Pickering emulsions.However,extensive research on the internal delivery mechanisms of these emulsions,especially the complex intercellular interactions of deformable Pickering emulsions,has been surprisingly sparse.This gap in knowledge holds significant potential for enhancing vaccine efficacy.This study aims to address this by summarizing the process of lymph-node-targeting transport and introducing a dissipative particle dynamics simulation method to evaluate the dynamic processes within cell tissue.The transport of Pickering emulsions in skeletal muscle tissue is specifically investigated as a case study.Various factors impacting the transport process are explored,including local cellular tissue environmental factors and the properties of the Pickering emulsion itself.The simulation results primarily demonstrate that an increase in radial repulsive interaction between emulsion particles can decrease the transport efficiency.Additionally,larger intercellular gaps also diminish the transport efficiency of emulsion droplet particles due to the increased motion complexity within the intricate transport space compared to a single channel.This study sheds light on the nuanced interplay between engineered and biological systems influencing the transport dynamics of Pickering emulsions.Such insights hold valuable potential for optimizing transport processes in practical biomedical applications such as drug delivery.Importantly,the desired transport efficiency varies depending on the specific application.For instance,while a more rapid transport might be crucial for lymph-node-targeted drug delivery,certain applications requiring a slower release of active components could benefit from the reduced transport efficiency observed with increased particle repulsion or larger intercellular gaps.展开更多
In the present study,the nanofliud natural convection is investigated by the energy-conserving dissipative particle dynamics(eDPD)method,where the nanoparticles are considered at the single-particle level.The thermal ...In the present study,the nanofliud natural convection is investigated by the energy-conserving dissipative particle dynamics(eDPD)method,where the nanoparticles are considered at the single-particle level.The thermal expansion coefficientβand the viscosityμof the simulated system containing nanoparticles are calculated and found to be in close alignment with the previous simulation results.The single-particle hydrodynamics in e DPD enables simulations of nanofluid natural convection with higher Rayleigh numbers and greater nanoparticle volume fractions.Additionally,this approach is utilized to simulate the nanoparticle distribution during the enhanced heat transfer process in the nanofluid natural convection.The localized aggregation of nanoparticles enhances the heat transfer performance of the nanofluid under specific Rayleigh numbers and nanoparticles volume fractions.展开更多
Viscoelastic flows play an important role in numerous engineering fields,and the multiscale algorithms for simulating viscoelastic flows have received significant attention in order to deepen our understanding of the ...Viscoelastic flows play an important role in numerous engineering fields,and the multiscale algorithms for simulating viscoelastic flows have received significant attention in order to deepen our understanding of the nonlinear dynamic behaviors of viscoelastic fluids.However,traditional grid-based multiscale methods are confined to simple viscoelastic flows with short relaxation time,and there is a lack of uniform multiscale scheme available for coupling different solvers in the simulations of viscoelastic fluids.In this paper,a universal multiscale method coupling an improved smoothed particle hydrodynamics(SPH)and multiscale universal interface(MUI)library is presented for viscoelastic flows.The proposed multiscale method builds on an improved SPH method and leverages the MUI library to facilitate the exchange of information among different solvers in the overlapping domain.We test the capability and flexibility of the presented multiscale method to deal with complex viscoelastic flows by solving different multiscale problems of viscoelastic flows.In the first example,the simulation of a viscoelastic Poiseuille flow is carried out by two coupled improved SPH methods with different spatial resolutions.The effects of exchanging different physical quantities on the numerical results in both the upper and lower domains are also investigated as well as the absolute errors in the overlapping domain.In the second example,the complex Wannier flow with different Weissenberg numbers is further simulated by two improved SPH methods and coupling the improved SPH method and the dissipative particle dynamics(DPD)method.The numerical results show that the physical quantities for viscoelastic flows obtained by the presented multiscale method are in consistence with those obtained by a single solver in the overlapping domain.Moreover,transferring different physical quantities has an important effect on the numerical results.展开更多
The breakage of brittle particulate materials into smaller particles under compressive or impact loads can be modelled as an instantiation of the population balance integro-differential equation.In this paper,the emer...The breakage of brittle particulate materials into smaller particles under compressive or impact loads can be modelled as an instantiation of the population balance integro-differential equation.In this paper,the emerging computational science paradigm of physics-informed neural networks is studied for the first time for solving both linear and nonlinear variants of the governing dynamics.Unlike conventional methods,the proposed neural network provides rapid simulations of arbitrarily high resolution in particle size,predicting values on arbitrarily fine grids without the need for model retraining.The network is assigned a simple multi-head architecture tailored to uphold monotonicity of the modelled cumulative distribution function over particle sizes.The method is theoretically analyzed and validated against analytical results before being applied to real-world data of a batch grinding mill.The agreement between laboratory data and numerical simulation encourages the use of physics-informed neural nets for optimal planning and control of industrial comminution processes.展开更多
With the advancement of oilfield extraction technology,since oil-water emulsions in waxy crude oil are prone to be deposited on the pipe wall,increasing the difficulty of crude oil extraction.In this paper,the mesosco...With the advancement of oilfield extraction technology,since oil-water emulsions in waxy crude oil are prone to be deposited on the pipe wall,increasing the difficulty of crude oil extraction.In this paper,the mesoscopic dissipative particle dynamics method is used to study themechanism of the crystallization and deposition adsorbed on thewall.The results show that in the absence of water molecules,the paraffin molecules near the substrate are deposited on themetallic surface with a horizontalmorphology,while the paraffin molecules close to the fluid side are arranged in a vertical column morphology.In the emulsified system,more water molecules will be absorbed on the metallic substrate than paraffin molecules,which obstructed the direct interaction between paraffin molecules and solid surface.Therefore,the addition of watermolecules hinders the crystallization of wax near the substrate.Perversely,on the fluid side,water molecules promote the formation of paraffin crystallization.The research in this paper reveals the crystallization mechanism of paraffin wax in oil-water emulsions in the pipeline from the microscopic scale,which provides theoretical support for improving the recovery of wax-containing crude oil and enhancing the transport efficiency.展开更多
The microphase-separating behaviors of two types of star-diblock copolymers (Ax)4(By)4 and (A^Bg)4 in thin films are studied using the simulation technique of dissipative particle dynamics. A variety of ordered ...The microphase-separating behaviors of two types of star-diblock copolymers (Ax)4(By)4 and (A^Bg)4 in thin films are studied using the simulation technique of dissipative particle dynamics. A variety of ordered mesostructures have been observed and the simulated phase diagrams show obvious symmetries for the (Ax)4(By)a films and asymmetries for the (AxBy)4 films, besides, it is easier for the (Ax)4(By)4 than for the (A^By)4 to carry out microphase separation under the same conditions, which has been recognized in bulk and can be ascribed to the structural difference between the two types of star copolymers. There are some correspondences between the mesostructures formed in the film and those formed in bulk at the same composition fraction. Decreasing the thickness of film and strengthening the A-B repulsion both help the mesostructures enhance the degree of order. Composition fraction dependences of the mean-square radius of gyration in the two types of star copolymer films are almost contrary, which can be attributed to the differences in their respective structures. These findings can provide a guide to designing novel microstructures involving star-diblock copolymers via geometrical confinement.展开更多
Mean-square bond length, root-mean-square end-to-end distance and gyration radius in diblock copolymer films have been studied by dissipative particle dynamics simulations. Results show evident linear trends of any pr...Mean-square bond length, root-mean-square end-to-end distance and gyration radius in diblock copolymer films have been studied by dissipative particle dynamics simulations. Results show evident linear trends of any property separately with the thickness of film, the interaction between particles of different types, the repulsion between particle and boundary, except for the dependence of the variations of mean-square bond length on the thickness of film, which exhibits as a wave trend. What's more, the varying trends of mean-square bond length and root-mean-square end-to-end distance can correspond to each other. The density distribution of either component in diblock copolymer film can be controlled and adjusted effectively through its interaction with boundary.展开更多
Particle Filter (PF) is a data assimilation method to solve recursive state estimation problem which does not depend on the assumption of Gaussian noise, and is able to be applied for various systems even with non-l...Particle Filter (PF) is a data assimilation method to solve recursive state estimation problem which does not depend on the assumption of Gaussian noise, and is able to be applied for various systems even with non-linear and non-Gaussian noise. However, while applying PF in dynamic systems, PF undergoes particle degeneracy, sample impoverishment, and problems of high computational complexity. Rapidly developing sensing technologies are providing highly convenient availability of real-time big traffic data from the system under study like never before. Moreover, some sensors can even receive control commands to adjust their monitoring parameters. To address these problems, a bidirectional dynamic data-driven improvement framework for PF (B3DPF) is proposed. The B3DPF enhances feedback between the simulation model and the big traffic data collected by the sensors, which means the execution strategies (sensor data management, parameters used in the weight computation, resampling) of B3DPF can be optimized based on the simulation results and the types and dimensions of traffic data injected into B3DPF can be adjusted dynamically. The first experiment indicates that the B3DPF overcomes particle degeneracy and sample impoverishment problems and accurately estimates the state at a faster speed than the normal PF. More importantly, the new method has higher accuracy for multidimensional random systems. In the rest of experiments, the proposed framework is applied to estimate the traffic state on a real road network and obtains satisfactory results. More experiments can be designed to validate the universal properties of B3DPF.展开更多
A three-dimensional model for gas-solid flow in a circulating fluidized bed(CFB) riser was developed based on computational particle fluid dynamics(CPFD).The model was used to simulate the gas-solid flow behavior ...A three-dimensional model for gas-solid flow in a circulating fluidized bed(CFB) riser was developed based on computational particle fluid dynamics(CPFD).The model was used to simulate the gas-solid flow behavior inside a circulating fluidized bed riser operating at various superficial gas velocities and solids mass fluxes in two fluidization regimes,a dilute phase transport(DPT) regime and a fast fluidization(FF) regime.The simulation results were evaluated based on comparison with experimental data of solids velocity and holdup,obtained from non-invasive automated radioactive particle tracking and gamma-ray tomography techniques,respectively.The agreement of the predicted solids velocity and holdup with experimental data validated the CPFD model for the CFB riser.The model predicted the main features of the gas-solid flows in the two regimes;the uniform dilute phase in the DPT regime,and the coexistence of the dilute phase in the upper region and the dense phase in the lower region in the FF regime.The clustering and solids back mixing in the FF regime were stronger than those in the DPT regime.展开更多
In order to resolve grid distortions in finite element method(FEM), the meshless numerical method which is called general particle dynamics(GPD) was presented to simulate the large deformation and failure of geomateri...In order to resolve grid distortions in finite element method(FEM), the meshless numerical method which is called general particle dynamics(GPD) was presented to simulate the large deformation and failure of geomaterials. The Mohr-Coulomb strength criterion was implemented into the code to describe the elasto-brittle behaviours of geomaterials while the solid-structure(reinforcing pile) interaction was simulated as an elasto-brittle material. The Weibull statistical approach was applied to describing the heterogeneity of geomaterials. As an application of general particle dynamics to slopes, the interaction between the slopes and the reinforcing pile was modelled. The contact between the geomaterials and the reinforcing pile was modelled by using the coupling condition associated with a Lennard-Jones repulsive force. The safety factor, corresponding to the minimum shear strength reduction factor "R", was obtained, and the slip surface of the slope was determined. The numerical results are in good agreement with those obtained from limit equilibrium method and finite element method. It indicates that the proposed geomaterial-structure interaction algorithm works well in the GPD framework.展开更多
A two-dimensional non-selfsimilar initial value problem for adhesion particle dynamics with two pieces of constant states separated by a circular ring is considered. By using the generalized characteristic method and ...A two-dimensional non-selfsimilar initial value problem for adhesion particle dynamics with two pieces of constant states separated by a circular ring is considered. By using the generalized characteristic method and the generalized Rankine-Hugoniot relation, which is a system of ordinary equations, the global solution which includes delta-shock waves and vacuum is constructed.展开更多
Flow through arrays of micropillar embedded inside microfluidic chip systems is important for various microfluidic devices. It is critical to accurately predict the mass flow rate through pillar arrays based on the pi...Flow through arrays of micropillar embedded inside microfluidic chip systems is important for various microfluidic devices. It is critical to accurately predict the mass flow rate through pillar arrays based on the pillar design. This work presents a dissipative particle dynamics (DPD) model to simulate a problem of flow across periodic arrays of circular micropillar and investigates the permeability of two types of micropillar arrays. The flow fields including horizontal and vertical velocity fields, the number density field, and the streamline of the flow are analyzed. The predicted solid volumes by the presented DPD simulation of both types of arrays are quite close to the actual counterparts. These quantitative agreements show usefulness and effectiveness of the DPD model in simulating arrays of micropillar. By comparing two types of micropillar arrangement patterns, we find that the arrangement pattern of micropillar does not have significant influence on the permeability of the array.展开更多
The adsorption dynamics for phenol in aqueous solution of the adsorbent based on polystyrene was studied. In order to distinguish with the Boyd quasi-homogeneous model of the inner structure of ion-exchanger, the part...The adsorption dynamics for phenol in aqueous solution of the adsorbent based on polystyrene was studied. In order to distinguish with the Boyd quasi-homogeneous model of the inner structure of ion-exchanger, the particle diffusion model including surface diffusion model and pore diffusion model was suggested which is suitable to the macroporous adsorbent. The diffusiondetermination step of the adsorption process was established and the effective diffusion coefficient was also determined. The influence of surface diffusion and pore diffusion on the particle diffusion rate was investigated qualitatively. All of these were very important to improve the structure of the macroporous adsorbent in order to improve the mass-transfer rate.展开更多
Seawater samples were collected around Prydz Bay in summer of 2014,dissolved and particulate^(210)Po and^(210)Pb were measured to reveal the disequilibrium characteristics and particle dynamics.Our results show that t...Seawater samples were collected around Prydz Bay in summer of 2014,dissolved and particulate^(210)Po and^(210)Pb were measured to reveal the disequilibrium characteristics and particle dynamics.Our results show that the distribution of^(210)Po and^(210)Po/^(210)Pb activity ratio in the upper water is mainly affected by biological absorption or particle adsorption.An abnormal excess of^(210)Po relative to^(210)Pb was observed in the surface water at stations P1-2 and P2-2,which is likely to be the horizontal transport of water mass with high DPo/DPb)_(A.R.)and TPo/TPb)_(A.R.).In this study,the removal of particulate^(210)Po is mainly controlled by the scavenging of dissolved^(210)Po and the two have a linear positive correlation with the salinity,a negative linear correlation with the content of dissolved oxygen and a reciprocal relationship with the content of POC.The export flux of POC at 100 m is estimated to be 1.8-4.4 mmol·m^(−2)·d^(−1)(avg.2.9 mmol·m^(−2)·d^(−1))based on^(210)Po/^(210)Pb disequilibria,with the highest value in the shelf,which is consistent with the distribution of biological productivity.展开更多
Dynamic load imposed on the bridge by mov- ing vehicle depends on several bridge-vehicle parameters with various uncertainties. In the present paper, particle filter technique based on conditional probability has been...Dynamic load imposed on the bridge by mov- ing vehicle depends on several bridge-vehicle parameters with various uncertainties. In the present paper, particle filter technique based on conditional probability has been used to identify vehicle mass, suspension stiffness, and damping including tyre parameters from simulated bridge accelerations at different locations. A closed-form expres- sion is derived to generate independent response samples for the idealized bridge-vehicle coupled system consider- ing spatially non-homogeneous pavement unevenness. Thereafter, it is interfaced with the iterative process of particle filtering algorithm. The generated response sam- ples are contaminated by adding artificial noise in order to reflect field condition. The mean acceleration time history is utilized in particle filtering technique. The vehicle- imposed dynamic load is reconstructed with the identified parameters and compared with the simulated results. The present identification technique is examined in the presence of different levels of artificial noise with bridge response simulated at different locations. The effect of vehicle velocity, bridge surface roughness, and choice of prior probability density parameters on the efficiency of the method is discussed.展开更多
The phase behaviours of a lamellar diblock copolymer/nanorod composite under steady shear are investigated using dissipative particle dynamics. We consider a wide range of nanorod concentrations, where the nanorods ea...The phase behaviours of a lamellar diblock copolymer/nanorod composite under steady shear are investigated using dissipative particle dynamics. We consider a wide range of nanorod concentrations, where the nanorods each have a preferential affinity to one of the blocks. Our results suggest that shear not only aligns the orientations of the diblock eopolymer templates and nanorods towards flow direction, but also regulates the distribution of the nanorods within the polymer matrix. Meanwhile, the shear-induced reorientation and morphology transitions of the systems also significantly depend on the nanorod concentration. At certain nanorod concentrations, the competitions between shearinduced polymer thinning and nanorods dispersion behaviours determine the phase behaviours of the composites. For high nanorod concentrations, no morphology transition is observed, but reorientation is present, in which the sheared nanorods are arranged into hexagonal packing arrays. Additionally, the orientation behaviour of nanorods is determined directly by the applied shear, also interfered with by the shear-stretched copolymer molecules.展开更多
Metal-enriched minerals have been widely observed near hydrothermal vent fields.However,the dynamics of particulate metals influenced by hydrothermal activities is poorly constrained.Here,radioactive 234Th in both dis...Metal-enriched minerals have been widely observed near hydrothermal vent fields.However,the dynamics of particulate metals influenced by hydrothermal activities is poorly constrained.Here,radioactive 234Th in both dissolved and particulate phases were used to examine the kinetics of particle-reactive metal adsorption,removal,and residence in a newly found hydrothermal plume over the Southwest Indian Ridge.The results showed a relatively low value on ^(234)Th/^(238)U ratios(i.e.,0.73-0.88)compared to the deep oceans,indicating an enhanced adsorption of particle-reactive metals onto particulate matter in the plume.Based on the 234Th-238U disequilibria,the adsorption and sinking rate constants of 234Th averaged(0.009±0.001)d^(-1) and(0.113±0.024)d^(-1) in the hydrothermal plume,corresponding to the residence times of(115±19)d and(16±5)d for dissolved and particulate 234Th,respectively.This timescale allows vent-discharged particle-reactive metals to disperse hundreds to thousands of miles away.Thus,hydrothermal activities might influence the metal distribution in deep ocean over a very large scope.Also,a high sinking flux of(36.2±5.4)B q/(m^(2)·d)for 234Th was observed for the plume,suggesting an enrichment of metal in particles deposited close to the vent.The enhancement of particle sinking could also benefit the transport of organic carbon and nitrogen and fuel the benthic ecosystems under the plume regimes.Thus,hydrothermal plumes may have an impact on both the elemental geochemistry and/or ecosystem to the deep oceans interior than previous expectation.展开更多
The implementation of solid-fluid boundary condition has been a major challenge for dissipative particle dynamics(DPD)method.Current implementations of boundary conditions usually try to approach a uniform density dis...The implementation of solid-fluid boundary condition has been a major challenge for dissipative particle dynamics(DPD)method.Current implementations of boundary conditions usually try to approach a uniform density distribution and a velocity profile close to analytical solution.The density oscillations and slip velocity are intentionally eliminated,and different wall properties disappear in the same analytical solution.This paper develops a new wall model that combines image and frozen particles and a new strategy to emphasize different wall properties especially wettabilities.The strategy first studies the realistic wall-fluid system by molecular dynamics(MD)simulation depending on physical parameters.Then,a DPD simulation is used to match the density and velocity profiles with the new wall model.The obtained DPD parameters can simulate the systems with the same wall and fluid materials.With this method,a simulation of the Poiseuille flow of liquid argon with copper walls is presented.Other walls with super-hydrophilic,hydrophilic,and hydrophobic wettabilities are also simulated.The limitations of the analytical solution and the effect of the wall-fluid interaction are discussed.The results show that the method suggested in this paper can simulate the mesoscale behavior of the microchannel flow related to realistic systems.展开更多
We calculate current correlation functions (CCFs) of dissipative particle dy- namics (DPD) and compare them with results of molecular dynamics (MD) and solutions of linearized hydrodynamic equations. In particul...We calculate current correlation functions (CCFs) of dissipative particle dy- namics (DPD) and compare them with results of molecular dynamics (MD) and solutions of linearized hydrodynamic equations. In particular, we consider three versions of DPD, the empirical/classical DPD, coarse-grained (CG) DPD with radial-direction interactions only and full (radial, transversal, and rotational) interactions between particles. To fa- cilitate quantitative discussions, we consider specifically a star-polymer melt system at a moderate density. For bonded molecules, it is straightforward to define the CG variables and to further derive CG force fields for DPD within the framework of the Mori-Zwanzig formalism. For both transversal and longitudinal current correlation functions (TCCFs and LCCFs), we observe that results of MD, DPD, and hydrodynamic solutions agree with each other at the continuum limit. Below the continuum limit to certain length scales, results of MD deviate significantly from hydrodynamic solutions, whereas results of both empirical and CG DPD resemble those of MD. This indicates that the DPD method with Markovian force laws possibly has a larger applicability than the continuum description of a Newtonian fluid. This is worth being explored further to represent gen- eralized hydrodynamics.展开更多
It was investigated that the domain growth processes of spinodal decomposition with different quenching depth in two and three dimensional binary immiscible fluids by using parallel dissipative particle dynamics simul...It was investigated that the domain growth processes of spinodal decomposition with different quenching depth in two and three dimensional binary immiscible fluids by using parallel dissipative particle dynamics simulations. In two dimensions, the dynamic scaling exponent 1/2 for coalescence and 2/3 for inertial regimes in the shallow quench and strong finite size effects in the cases of deep quenching were obtained. In three dimensions, it was used that the diffusive regime with exponent n=l/3 in the shallow quench and the inertial hydrodynamic regime with n=2/3 for different quenches. The viscous effects are not clearly reflected, showing n=1/2 in both shallow and deep quenches in this time period, due to the soft nature of interaction potential adopted in dissipative particle dynamics.展开更多
基金supported by the National Natural Science Foundation of China(22373104 and 22293024)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(21821005)+1 种基金supported by the National Key Research and Development Program of China(2021YFE020527)support by the Distinguished Young Scholars of the National Natural Science Foundation of China(T2222022).
文摘Lymph node targeting is a commonly used strategy for particulate vaccines,particularly for Pickering emulsions.However,extensive research on the internal delivery mechanisms of these emulsions,especially the complex intercellular interactions of deformable Pickering emulsions,has been surprisingly sparse.This gap in knowledge holds significant potential for enhancing vaccine efficacy.This study aims to address this by summarizing the process of lymph-node-targeting transport and introducing a dissipative particle dynamics simulation method to evaluate the dynamic processes within cell tissue.The transport of Pickering emulsions in skeletal muscle tissue is specifically investigated as a case study.Various factors impacting the transport process are explored,including local cellular tissue environmental factors and the properties of the Pickering emulsion itself.The simulation results primarily demonstrate that an increase in radial repulsive interaction between emulsion particles can decrease the transport efficiency.Additionally,larger intercellular gaps also diminish the transport efficiency of emulsion droplet particles due to the increased motion complexity within the intricate transport space compared to a single channel.This study sheds light on the nuanced interplay between engineered and biological systems influencing the transport dynamics of Pickering emulsions.Such insights hold valuable potential for optimizing transport processes in practical biomedical applications such as drug delivery.Importantly,the desired transport efficiency varies depending on the specific application.For instance,while a more rapid transport might be crucial for lymph-node-targeted drug delivery,certain applications requiring a slower release of active components could benefit from the reduced transport efficiency observed with increased particle repulsion or larger intercellular gaps.
基金Project supported by the National Natural Science Foundation of China(Nos.11872283 and 2002212)the Sailing Program of Shanghai,China(No.20YF1432800)。
文摘In the present study,the nanofliud natural convection is investigated by the energy-conserving dissipative particle dynamics(eDPD)method,where the nanoparticles are considered at the single-particle level.The thermal expansion coefficientβand the viscosityμof the simulated system containing nanoparticles are calculated and found to be in close alignment with the previous simulation results.The single-particle hydrodynamics in e DPD enables simulations of nanofluid natural convection with higher Rayleigh numbers and greater nanoparticle volume fractions.Additionally,this approach is utilized to simulate the nanoparticle distribution during the enhanced heat transfer process in the nanofluid natural convection.The localized aggregation of nanoparticles enhances the heat transfer performance of the nanofluid under specific Rayleigh numbers and nanoparticles volume fractions.
基金Project supported by the National Natural Science Foundation of China(No.52109068)the Water Conservancy Technology Project of Jiangsu Province of China(No.2022060)。
文摘Viscoelastic flows play an important role in numerous engineering fields,and the multiscale algorithms for simulating viscoelastic flows have received significant attention in order to deepen our understanding of the nonlinear dynamic behaviors of viscoelastic fluids.However,traditional grid-based multiscale methods are confined to simple viscoelastic flows with short relaxation time,and there is a lack of uniform multiscale scheme available for coupling different solvers in the simulations of viscoelastic fluids.In this paper,a universal multiscale method coupling an improved smoothed particle hydrodynamics(SPH)and multiscale universal interface(MUI)library is presented for viscoelastic flows.The proposed multiscale method builds on an improved SPH method and leverages the MUI library to facilitate the exchange of information among different solvers in the overlapping domain.We test the capability and flexibility of the presented multiscale method to deal with complex viscoelastic flows by solving different multiscale problems of viscoelastic flows.In the first example,the simulation of a viscoelastic Poiseuille flow is carried out by two coupled improved SPH methods with different spatial resolutions.The effects of exchanging different physical quantities on the numerical results in both the upper and lower domains are also investigated as well as the absolute errors in the overlapping domain.In the second example,the complex Wannier flow with different Weissenberg numbers is further simulated by two improved SPH methods and coupling the improved SPH method and the dissipative particle dynamics(DPD)method.The numerical results show that the physical quantities for viscoelastic flows obtained by the presented multiscale method are in consistence with those obtained by a single solver in the overlapping domain.Moreover,transferring different physical quantities has an important effect on the numerical results.
基金supported in part by the Ramanujan Fellowship from the Science and Engineering Research Board,Government of India(Grant No.RJF/2022/000115)。
文摘The breakage of brittle particulate materials into smaller particles under compressive or impact loads can be modelled as an instantiation of the population balance integro-differential equation.In this paper,the emerging computational science paradigm of physics-informed neural networks is studied for the first time for solving both linear and nonlinear variants of the governing dynamics.Unlike conventional methods,the proposed neural network provides rapid simulations of arbitrarily high resolution in particle size,predicting values on arbitrarily fine grids without the need for model retraining.The network is assigned a simple multi-head architecture tailored to uphold monotonicity of the modelled cumulative distribution function over particle sizes.The method is theoretically analyzed and validated against analytical results before being applied to real-world data of a batch grinding mill.The agreement between laboratory data and numerical simulation encourages the use of physics-informed neural nets for optimal planning and control of industrial comminution processes.
基金sponsored by Natural Science Foundation of Xinjiang Uygur Autonomous Region,Grant No.2023D01C197Performance Incentive Guidance Project of Chongqing Scientific Research Institutions(cstc2022jxjl20016).
文摘With the advancement of oilfield extraction technology,since oil-water emulsions in waxy crude oil are prone to be deposited on the pipe wall,increasing the difficulty of crude oil extraction.In this paper,the mesoscopic dissipative particle dynamics method is used to study themechanism of the crystallization and deposition adsorbed on thewall.The results show that in the absence of water molecules,the paraffin molecules near the substrate are deposited on themetallic surface with a horizontalmorphology,while the paraffin molecules close to the fluid side are arranged in a vertical column morphology.In the emulsified system,more water molecules will be absorbed on the metallic substrate than paraffin molecules,which obstructed the direct interaction between paraffin molecules and solid surface.Therefore,the addition of watermolecules hinders the crystallization of wax near the substrate.Perversely,on the fluid side,water molecules promote the formation of paraffin crystallization.The research in this paper reveals the crystallization mechanism of paraffin wax in oil-water emulsions in the pipeline from the microscopic scale,which provides theoretical support for improving the recovery of wax-containing crude oil and enhancing the transport efficiency.
文摘The microphase-separating behaviors of two types of star-diblock copolymers (Ax)4(By)4 and (A^Bg)4 in thin films are studied using the simulation technique of dissipative particle dynamics. A variety of ordered mesostructures have been observed and the simulated phase diagrams show obvious symmetries for the (Ax)4(By)a films and asymmetries for the (AxBy)4 films, besides, it is easier for the (Ax)4(By)4 than for the (A^By)4 to carry out microphase separation under the same conditions, which has been recognized in bulk and can be ascribed to the structural difference between the two types of star copolymers. There are some correspondences between the mesostructures formed in the film and those formed in bulk at the same composition fraction. Decreasing the thickness of film and strengthening the A-B repulsion both help the mesostructures enhance the degree of order. Composition fraction dependences of the mean-square radius of gyration in the two types of star copolymer films are almost contrary, which can be attributed to the differences in their respective structures. These findings can provide a guide to designing novel microstructures involving star-diblock copolymers via geometrical confinement.
文摘Mean-square bond length, root-mean-square end-to-end distance and gyration radius in diblock copolymer films have been studied by dissipative particle dynamics simulations. Results show evident linear trends of any property separately with the thickness of film, the interaction between particles of different types, the repulsion between particle and boundary, except for the dependence of the variations of mean-square bond length on the thickness of film, which exhibits as a wave trend. What's more, the varying trends of mean-square bond length and root-mean-square end-to-end distance can correspond to each other. The density distribution of either component in diblock copolymer film can be controlled and adjusted effectively through its interaction with boundary.
基金supported by the State Basic Scientific Research of National Defense (No. c0420110005)13th Five-Year Key Basic Research Project (No. JCKY2016206B001)the Six talent peaks project in Jiangsu Province (No. XXRJ-004)
文摘Particle Filter (PF) is a data assimilation method to solve recursive state estimation problem which does not depend on the assumption of Gaussian noise, and is able to be applied for various systems even with non-linear and non-Gaussian noise. However, while applying PF in dynamic systems, PF undergoes particle degeneracy, sample impoverishment, and problems of high computational complexity. Rapidly developing sensing technologies are providing highly convenient availability of real-time big traffic data from the system under study like never before. Moreover, some sensors can even receive control commands to adjust their monitoring parameters. To address these problems, a bidirectional dynamic data-driven improvement framework for PF (B3DPF) is proposed. The B3DPF enhances feedback between the simulation model and the big traffic data collected by the sensors, which means the execution strategies (sensor data management, parameters used in the weight computation, resampling) of B3DPF can be optimized based on the simulation results and the types and dimensions of traffic data injected into B3DPF can be adjusted dynamically. The first experiment indicates that the B3DPF overcomes particle degeneracy and sample impoverishment problems and accurately estimates the state at a faster speed than the normal PF. More importantly, the new method has higher accuracy for multidimensional random systems. In the rest of experiments, the proposed framework is applied to estimate the traffic state on a real road network and obtains satisfactory results. More experiments can be designed to validate the universal properties of B3DPF.
基金support by the National Basic Research Program (Grant No. 2010CB226906,and 2012CB215000)
文摘A three-dimensional model for gas-solid flow in a circulating fluidized bed(CFB) riser was developed based on computational particle fluid dynamics(CPFD).The model was used to simulate the gas-solid flow behavior inside a circulating fluidized bed riser operating at various superficial gas velocities and solids mass fluxes in two fluidization regimes,a dilute phase transport(DPT) regime and a fast fluidization(FF) regime.The simulation results were evaluated based on comparison with experimental data of solids velocity and holdup,obtained from non-invasive automated radioactive particle tracking and gamma-ray tomography techniques,respectively.The agreement of the predicted solids velocity and holdup with experimental data validated the CPFD model for the CFB riser.The model predicted the main features of the gas-solid flows in the two regimes;the uniform dilute phase in the DPT regime,and the coexistence of the dilute phase in the upper region and the dense phase in the lower region in the FF regime.The clustering and solids back mixing in the FF regime were stronger than those in the DPT regime.
基金Projects(51325903,51279218)supported by the National Natural Science Foundation of ChinaProject(cstc2013kjrcljrccj0001)supported by the Natural Science Foundation Project of CQ CSTC,ChinaProject(20130191110037)supported by Research fund by the Doctoral Program of Higher Education of China
文摘In order to resolve grid distortions in finite element method(FEM), the meshless numerical method which is called general particle dynamics(GPD) was presented to simulate the large deformation and failure of geomaterials. The Mohr-Coulomb strength criterion was implemented into the code to describe the elasto-brittle behaviours of geomaterials while the solid-structure(reinforcing pile) interaction was simulated as an elasto-brittle material. The Weibull statistical approach was applied to describing the heterogeneity of geomaterials. As an application of general particle dynamics to slopes, the interaction between the slopes and the reinforcing pile was modelled. The contact between the geomaterials and the reinforcing pile was modelled by using the coupling condition associated with a Lennard-Jones repulsive force. The safety factor, corresponding to the minimum shear strength reduction factor "R", was obtained, and the slip surface of the slope was determined. The numerical results are in good agreement with those obtained from limit equilibrium method and finite element method. It indicates that the proposed geomaterial-structure interaction algorithm works well in the GPD framework.
基金the National Natural Science Foundation of China(No.10671120)
文摘A two-dimensional non-selfsimilar initial value problem for adhesion particle dynamics with two pieces of constant states separated by a circular ring is considered. By using the generalized characteristic method and the generalized Rankine-Hugoniot relation, which is a system of ordinary equations, the global solution which includes delta-shock waves and vacuum is constructed.
基金Project supported by the National Natural Science Foundation of China(Nos.31370953,10942004,and 91230203)
文摘Flow through arrays of micropillar embedded inside microfluidic chip systems is important for various microfluidic devices. It is critical to accurately predict the mass flow rate through pillar arrays based on the pillar design. This work presents a dissipative particle dynamics (DPD) model to simulate a problem of flow across periodic arrays of circular micropillar and investigates the permeability of two types of micropillar arrays. The flow fields including horizontal and vertical velocity fields, the number density field, and the streamline of the flow are analyzed. The predicted solid volumes by the presented DPD simulation of both types of arrays are quite close to the actual counterparts. These quantitative agreements show usefulness and effectiveness of the DPD model in simulating arrays of micropillar. By comparing two types of micropillar arrangement patterns, we find that the arrangement pattern of micropillar does not have significant influence on the permeability of the array.
文摘The adsorption dynamics for phenol in aqueous solution of the adsorbent based on polystyrene was studied. In order to distinguish with the Boyd quasi-homogeneous model of the inner structure of ion-exchanger, the particle diffusion model including surface diffusion model and pore diffusion model was suggested which is suitable to the macroporous adsorbent. The diffusiondetermination step of the adsorption process was established and the effective diffusion coefficient was also determined. The influence of surface diffusion and pore diffusion on the particle diffusion rate was investigated qualitatively. All of these were very important to improve the structure of the macroporous adsorbent in order to improve the mass-transfer rate.
基金financially supported by National Polar Special Program “Impact and Response of Antarctic Seas to Climate Change” (Grant nos. IRASCC 01-01-02C, 02-01-01)supported by National Natural Science Foundation of China (Grant no. 41721005)the program funded by China Ocean Mineral Resources R & D Association (Grant no. DY135-13-E2-03)。
文摘Seawater samples were collected around Prydz Bay in summer of 2014,dissolved and particulate^(210)Po and^(210)Pb were measured to reveal the disequilibrium characteristics and particle dynamics.Our results show that the distribution of^(210)Po and^(210)Po/^(210)Pb activity ratio in the upper water is mainly affected by biological absorption or particle adsorption.An abnormal excess of^(210)Po relative to^(210)Pb was observed in the surface water at stations P1-2 and P2-2,which is likely to be the horizontal transport of water mass with high DPo/DPb)_(A.R.)and TPo/TPb)_(A.R.).In this study,the removal of particulate^(210)Po is mainly controlled by the scavenging of dissolved^(210)Po and the two have a linear positive correlation with the salinity,a negative linear correlation with the content of dissolved oxygen and a reciprocal relationship with the content of POC.The export flux of POC at 100 m is estimated to be 1.8-4.4 mmol·m^(−2)·d^(−1)(avg.2.9 mmol·m^(−2)·d^(−1))based on^(210)Po/^(210)Pb disequilibria,with the highest value in the shelf,which is consistent with the distribution of biological productivity.
文摘Dynamic load imposed on the bridge by mov- ing vehicle depends on several bridge-vehicle parameters with various uncertainties. In the present paper, particle filter technique based on conditional probability has been used to identify vehicle mass, suspension stiffness, and damping including tyre parameters from simulated bridge accelerations at different locations. A closed-form expres- sion is derived to generate independent response samples for the idealized bridge-vehicle coupled system consider- ing spatially non-homogeneous pavement unevenness. Thereafter, it is interfaced with the iterative process of particle filtering algorithm. The generated response sam- ples are contaminated by adding artificial noise in order to reflect field condition. The mean acceleration time history is utilized in particle filtering technique. The vehicle- imposed dynamic load is reconstructed with the identified parameters and compared with the simulated results. The present identification technique is examined in the presence of different levels of artificial noise with bridge response simulated at different locations. The effect of vehicle velocity, bridge surface roughness, and choice of prior probability density parameters on the efficiency of the method is discussed.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 21074096 and 21104060)
文摘The phase behaviours of a lamellar diblock copolymer/nanorod composite under steady shear are investigated using dissipative particle dynamics. We consider a wide range of nanorod concentrations, where the nanorods each have a preferential affinity to one of the blocks. Our results suggest that shear not only aligns the orientations of the diblock eopolymer templates and nanorods towards flow direction, but also regulates the distribution of the nanorods within the polymer matrix. Meanwhile, the shear-induced reorientation and morphology transitions of the systems also significantly depend on the nanorod concentration. At certain nanorod concentrations, the competitions between shearinduced polymer thinning and nanorods dispersion behaviours determine the phase behaviours of the composites. For high nanorod concentrations, no morphology transition is observed, but reorientation is present, in which the sheared nanorods are arranged into hexagonal packing arrays. Additionally, the orientation behaviour of nanorods is determined directly by the applied shear, also interfered with by the shear-stretched copolymer molecules.
基金The National Natural Science Foundation of China under contract Nos 41721005,41476061China Ocean Mineral Resources R&D Association Programs under contract Nos DY135-E2-2-03,DY125-22-QY-17the Fundamental Research Funds for the Central Universities under contract No.20720190102。
文摘Metal-enriched minerals have been widely observed near hydrothermal vent fields.However,the dynamics of particulate metals influenced by hydrothermal activities is poorly constrained.Here,radioactive 234Th in both dissolved and particulate phases were used to examine the kinetics of particle-reactive metal adsorption,removal,and residence in a newly found hydrothermal plume over the Southwest Indian Ridge.The results showed a relatively low value on ^(234)Th/^(238)U ratios(i.e.,0.73-0.88)compared to the deep oceans,indicating an enhanced adsorption of particle-reactive metals onto particulate matter in the plume.Based on the 234Th-238U disequilibria,the adsorption and sinking rate constants of 234Th averaged(0.009±0.001)d^(-1) and(0.113±0.024)d^(-1) in the hydrothermal plume,corresponding to the residence times of(115±19)d and(16±5)d for dissolved and particulate 234Th,respectively.This timescale allows vent-discharged particle-reactive metals to disperse hundreds to thousands of miles away.Thus,hydrothermal activities might influence the metal distribution in deep ocean over a very large scope.Also,a high sinking flux of(36.2±5.4)B q/(m^(2)·d)for 234Th was observed for the plume,suggesting an enrichment of metal in particles deposited close to the vent.The enhancement of particle sinking could also benefit the transport of organic carbon and nitrogen and fuel the benthic ecosystems under the plume regimes.Thus,hydrothermal plumes may have an impact on both the elemental geochemistry and/or ecosystem to the deep oceans interior than previous expectation.
文摘The implementation of solid-fluid boundary condition has been a major challenge for dissipative particle dynamics(DPD)method.Current implementations of boundary conditions usually try to approach a uniform density distribution and a velocity profile close to analytical solution.The density oscillations and slip velocity are intentionally eliminated,and different wall properties disappear in the same analytical solution.This paper develops a new wall model that combines image and frozen particles and a new strategy to emphasize different wall properties especially wettabilities.The strategy first studies the realistic wall-fluid system by molecular dynamics(MD)simulation depending on physical parameters.Then,a DPD simulation is used to match the density and velocity profiles with the new wall model.The obtained DPD parameters can simulate the systems with the same wall and fluid materials.With this method,a simulation of the Poiseuille flow of liquid argon with copper walls is presented.Other walls with super-hydrophilic,hydrophilic,and hydrophobic wettabilities are also simulated.The limitations of the analytical solution and the effect of the wall-fluid interaction are discussed.The results show that the method suggested in this paper can simulate the mesoscale behavior of the microchannel flow related to realistic systems.
基金funding support of the U.S.Army Research Laboratory with Cooperative Agreement No.W911NF-12-2-0023
文摘We calculate current correlation functions (CCFs) of dissipative particle dy- namics (DPD) and compare them with results of molecular dynamics (MD) and solutions of linearized hydrodynamic equations. In particular, we consider three versions of DPD, the empirical/classical DPD, coarse-grained (CG) DPD with radial-direction interactions only and full (radial, transversal, and rotational) interactions between particles. To fa- cilitate quantitative discussions, we consider specifically a star-polymer melt system at a moderate density. For bonded molecules, it is straightforward to define the CG variables and to further derive CG force fields for DPD within the framework of the Mori-Zwanzig formalism. For both transversal and longitudinal current correlation functions (TCCFs and LCCFs), we observe that results of MD, DPD, and hydrodynamic solutions agree with each other at the continuum limit. Below the continuum limit to certain length scales, results of MD deviate significantly from hydrodynamic solutions, whereas results of both empirical and CG DPD resemble those of MD. This indicates that the DPD method with Markovian force laws possibly has a larger applicability than the continuum description of a Newtonian fluid. This is worth being explored further to represent gen- eralized hydrodynamics.
基金This work was supported by the National Natural Science Foundation of China (No.20774036) and the Fok Ying Tung Education Foundation (No.114018).
文摘It was investigated that the domain growth processes of spinodal decomposition with different quenching depth in two and three dimensional binary immiscible fluids by using parallel dissipative particle dynamics simulations. In two dimensions, the dynamic scaling exponent 1/2 for coalescence and 2/3 for inertial regimes in the shallow quench and strong finite size effects in the cases of deep quenching were obtained. In three dimensions, it was used that the diffusive regime with exponent n=l/3 in the shallow quench and the inertial hydrodynamic regime with n=2/3 for different quenches. The viscous effects are not clearly reflected, showing n=1/2 in both shallow and deep quenches in this time period, due to the soft nature of interaction potential adopted in dissipative particle dynamics.