Based on energy equilibrium,a new procedure called the Membrane Factor Method is devel- oped to analyze the dynamic plastic response of plates with deflections in the range where both bending mo- ments and membrane fo...Based on energy equilibrium,a new procedure called the Membrane Factor Method is devel- oped to analyze the dynamic plastic response of plates with deflections in the range where both bending mo- ments and membrane forces are important.The final deflection of a simply -supported circular rigid-plastic plate loaded by a uniformly distributed impulse is obtained.In comparison with other approximate solutions, the present results are found to be simpler and in better agreement with the corresponding experimental values reoorded by Florence.展开更多
Study on the dynamic response, and especially the nonlinear dynamic response of stiffened plates is complicated by their discontinuity and inhomogeneity. The finite element method (FEM) and the finite strip method are...Study on the dynamic response, and especially the nonlinear dynamic response of stiffened plates is complicated by their discontinuity and inhomogeneity. The finite element method (FEM) and the finite strip method are usually adopted in their analysis. Although many useful conclusions have been obtained, the computational cost is enormous. Based on some assumptions, the dynamic plastic response of clamped stiffened plates with large deflections was theoretically investigated herein by a singly symmetric beam model. Firstly, the deflection conditions that a plastic string must satisfy were obtained by the linearized moment-axial force interaction curve for singly symmetric cross sections and the associated plastic flow rule. Secondly, the possible motion mechanisms of the beam under different load intensity were analysed in detail. For structures with plastic deformations, a simplified method was then given that the arbitrary impact load can be replaced equivalently by a rectangular pulse. Finally, to confirm the validity of the proposed method, the dynamic plastic response of a one-way stiffened plate with four fully clamped edges was calculated. The theoretical results were in good agreement with those of FEM. It indicates that the present calculation model is easy and feasible, and the equivalent substitution of load almost has no influence on the final deflection.展开更多
This paper concerns the dynamic plastic response of a circular plate resting on fluid subjected to a uniformly distributed rectangular load pulse with finite deformation. It is assumed that the fluid is incompressible...This paper concerns the dynamic plastic response of a circular plate resting on fluid subjected to a uniformly distributed rectangular load pulse with finite deformation. It is assumed that the fluid is incompressible and inviscous, and the plate is made of rigid-plastic material and simply supported along its edge. By using the method of the Hankel integral transformation, the nonuniform fluid resistance is derived as the plate and the fluid is coupled. Finally, an analytic solution for a circular plate under a medium load is obtained according to the equations of motion of the plate with finite deformation.展开更多
The large deflection dynamic plastic response of fully clamped square plates with stiffeners under blast load is analyzed in detail in this paper. Various relevant motion patterns and criterions are presented. The for...The large deflection dynamic plastic response of fully clamped square plates with stiffeners under blast load is analyzed in detail in this paper. Various relevant motion patterns and criterions are presented. The formulas of maximum permanent deformation of the plates with stiffeners are derived. The results of calculation are compared with those of experiment in [3], with good agreement shown in most cases.展开更多
In this paper the problem of a circular beam subjected to radial impact by a rigid mass at its lip in its own plane is investigaleil on the basis of rigid-perfectly plastic assumption. The analytical solution of the p...In this paper the problem of a circular beam subjected to radial impact by a rigid mass at its lip in its own plane is investigaleil on the basis of rigid-perfectly plastic assumption. The analytical solution of the particle velocities is obtained as the junction of travelling plastic hinge location. Ky analysing the solution, some special properties oj circular beam problem are found.展开更多
The rigid, perfectly plastic dynamic response of a free-free beam subjected to impact by a projectile at any cross-section is studied. The instantaneous deformations of the beam are given through an analysis of the ...The rigid, perfectly plastic dynamic response of a free-free beam subjected to impact by a projectile at any cross-section is studied. The instantaneous deformations of the beam are given through an analysis of the complete solution for rigid plastic structures. The in?uence of some parameters such as the input energy and mass ratio on the plastic deformation, travelling plastic hinge position and energy partitioning of the beam are discussed.展开更多
A theoretical analysis is presented for the dynamic plastic behavior of a simply supported rigid, perfectly plastic circular plate in damping medium with finite-deflections subjected to a rectangular pressure pulse. A...A theoretical analysis is presented for the dynamic plastic behavior of a simply supported rigid, perfectly plastic circular plate in damping medium with finite-deflections subjected to a rectangular pressure pulse. Analytical solutions of every moving stage under both medium and high loads are developed.展开更多
基金The project supported by a fund from the National Educational Committee.
文摘Based on energy equilibrium,a new procedure called the Membrane Factor Method is devel- oped to analyze the dynamic plastic response of plates with deflections in the range where both bending mo- ments and membrane forces are important.The final deflection of a simply -supported circular rigid-plastic plate loaded by a uniformly distributed impulse is obtained.In comparison with other approximate solutions, the present results are found to be simpler and in better agreement with the corresponding experimental values reoorded by Florence.
文摘Study on the dynamic response, and especially the nonlinear dynamic response of stiffened plates is complicated by their discontinuity and inhomogeneity. The finite element method (FEM) and the finite strip method are usually adopted in their analysis. Although many useful conclusions have been obtained, the computational cost is enormous. Based on some assumptions, the dynamic plastic response of clamped stiffened plates with large deflections was theoretically investigated herein by a singly symmetric beam model. Firstly, the deflection conditions that a plastic string must satisfy were obtained by the linearized moment-axial force interaction curve for singly symmetric cross sections and the associated plastic flow rule. Secondly, the possible motion mechanisms of the beam under different load intensity were analysed in detail. For structures with plastic deformations, a simplified method was then given that the arbitrary impact load can be replaced equivalently by a rectangular pulse. Finally, to confirm the validity of the proposed method, the dynamic plastic response of a one-way stiffened plate with four fully clamped edges was calculated. The theoretical results were in good agreement with those of FEM. It indicates that the present calculation model is easy and feasible, and the equivalent substitution of load almost has no influence on the final deflection.
文摘This paper concerns the dynamic plastic response of a circular plate resting on fluid subjected to a uniformly distributed rectangular load pulse with finite deformation. It is assumed that the fluid is incompressible and inviscous, and the plate is made of rigid-plastic material and simply supported along its edge. By using the method of the Hankel integral transformation, the nonuniform fluid resistance is derived as the plate and the fluid is coupled. Finally, an analytic solution for a circular plate under a medium load is obtained according to the equations of motion of the plate with finite deformation.
文摘The large deflection dynamic plastic response of fully clamped square plates with stiffeners under blast load is analyzed in detail in this paper. Various relevant motion patterns and criterions are presented. The formulas of maximum permanent deformation of the plates with stiffeners are derived. The results of calculation are compared with those of experiment in [3], with good agreement shown in most cases.
文摘In this paper the problem of a circular beam subjected to radial impact by a rigid mass at its lip in its own plane is investigaleil on the basis of rigid-perfectly plastic assumption. The analytical solution of the particle velocities is obtained as the junction of travelling plastic hinge location. Ky analysing the solution, some special properties oj circular beam problem are found.
基金Project supported by the National Natural Science Foundation of China (No.10272011).
文摘The rigid, perfectly plastic dynamic response of a free-free beam subjected to impact by a projectile at any cross-section is studied. The instantaneous deformations of the beam are given through an analysis of the complete solution for rigid plastic structures. The in?uence of some parameters such as the input energy and mass ratio on the plastic deformation, travelling plastic hinge position and energy partitioning of the beam are discussed.
文摘A theoretical analysis is presented for the dynamic plastic behavior of a simply supported rigid, perfectly plastic circular plate in damping medium with finite-deflections subjected to a rectangular pressure pulse. Analytical solutions of every moving stage under both medium and high loads are developed.