期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A 12-bit compact column-parallel SAR ADC with dynamic power control technique for high-speed CMOS image sensors 被引量:2
1
作者 李全良 刘力源 +2 位作者 韩烨 曹中祥 吴南健 《Journal of Semiconductors》 EI CAS CSCD 2014年第10期132-139,共8页
This paper presents a 12-bit column-parallel successive approximation register analog-to-digital con- verter (SAR ADC) for high-speed CMOS image sensors. A segmented binary-weighted switched capacitor digital- to-an... This paper presents a 12-bit column-parallel successive approximation register analog-to-digital con- verter (SAR ADC) for high-speed CMOS image sensors. A segmented binary-weighted switched capacitor digital- to-analog converter (CDAC) and a staggered structure MOM unit capacitor is used to reduce the ADC area and to make its layout fit double pixel pitches. An electrical field shielding layout method is proposed to eliminate the parasitic capacitance on the top plate of the unit capacitor. A dynamic power control technique is proposed to reduce the power consumption of a single channel during readout. An off-chip foreground digital calibration is adopted to compensate for the nonlinearity due to the mismatch of unit capacitors among the CDAC. The prototype SAR ADC is fabricated in a 0.18 μm 1P5M CIS process. A single SAR ADC occupies 20 × 2020μm2. Sampling at 833 kS/s, the measured differential nonlinearity, integral nonlinearity and effective number of bits of SAR ADC with calibration are 0.9/-1 LSB, 1/-1.1 LSB and 11.24 bits, respectively; the power consumption is only 0.26 mW under a 1.8-W supply and decreases linearly as the frame rate decreases. 展开更多
关键词 column-parallel successive approximation register analog-to-digital converter binary-weighted ca- pacitor digital-to-analog converter (CDAC) segmented CDAC dynamic power control comparator noise foreground digital calibration
原文传递
Dynamic Power Dissipation Control Method for Real-Time Processors Based on Hardware Multithreading
2
作者 罗新强 齐悦 +1 位作者 王磊 王沁 《China Communications》 SCIE CSCD 2013年第5期156-166,共11页
In order to eliminate the energy waste caused by the traditional static hardware multithreaded processor used in real-time embedded system working in the low workload situation, the energy efficiency of the hardware m... In order to eliminate the energy waste caused by the traditional static hardware multithreaded processor used in real-time embedded system working in the low workload situation, the energy efficiency of the hardware multithread is discussed and a novel dynamic multithreaded architecture is proposed. The proposed architecture saves the energy wasted by removing idle threads without manipulation on the original architecture, fulfills a seamless switching mechanism which protects active threads and avoids pipeline stall during power mode switching. The report of an implemented dynamic multithreaded processor with 45 nm process from synthesis tool indicates that the area of dynamic multithreaded architecture is only 2.27% higher than the static one in achieving dynamic power dissipation, and consumes 1.3% more power in the same peak performance. 展开更多
关键词 dynamic power dissipation control real-time processor hardware multithread low power design energy efficiency
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部