期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Multi-objective Dynamic Optimal Power Flow of Wind Integrated Power Systems Considering Demand Response 被引量:7
1
作者 Rui Ma Xuan Li +2 位作者 Yang Luo Xia Wu Fei Jiang 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2019年第4期466-473,共8页
This paper studies the economic environmental energy-saving day-ahead scheduling problem of power systems considering wind generation(WG)and demand response(DR)by means of multi-objective dynamic optimal power flow(MD... This paper studies the economic environmental energy-saving day-ahead scheduling problem of power systems considering wind generation(WG)and demand response(DR)by means of multi-objective dynamic optimal power flow(MDOPF).Within the model,fuel cost,carbon emission and active power losses are taken as objectives,and an integrated dispatch modeof conventional coal-fired generation,WG and DRis utilized.The corresponding solution process to the MDOPF is based on ahybrid of a non-dominated sorting genetic algorithm-II(NSGA-II)and fuwzy satisfaction-maximizing method,where NSGA-II obtains the Pareto frontier and the fuzzy satisfaction-maximizing method is the chosen strategy.Illustrative cases of different scenarios are performed based on an IEEE 6-units\,30-nodes system,to verify the proposed model and the solution process,as well as the benefits obtained by the DR into power system. 展开更多
关键词 Demandresponse low-carbonelectricity multi-objective dynamic optimal power flow NSGA-11l wind generation
原文传递
Scheduling Framework Using Dynamic Optimal Power Flow for Battery Energy Storage Systems 被引量:6
2
作者 Fulin Fan Ivana Kockar +1 位作者 Han Xu Jingsi Li 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2022年第1期271-280,共10页
Battery energy storage systems(BESS)are instrumental in the transition to a low carbon electrical network with enhanced flexibility,however,the set objective can be accomplished only through suitable scheduling of the... Battery energy storage systems(BESS)are instrumental in the transition to a low carbon electrical network with enhanced flexibility,however,the set objective can be accomplished only through suitable scheduling of their operation.This paper develops a dynamic optimal power flow(DOPF)-based scheduling framework to optimize the day(s)-ahead operation of a grid-scale BESS aiming to mitigate the predicted limits on the renewable energy generation as well as smooth out the network demand to be supplied by conventional generators.In DOPF,all the generating units,including the ones that model the exports and imports of the BESS,across the entire network and the complete time horizon are integrated on to a single network.Subsequently,an AC-OPF is applied to dispatch their power outputs to minimize the total generation cost,while satisfying the power balance equations,and handling the unit and network constraints at each time step coupled with intertemporal constraints associated with the state of charge(SOC).Furthermore,the DOPF developed here entails the frequently applied constant current-constant voltage charging profile,which is represented in the SOC domain.Considering the practical application of a 1 MW BESS on a particular 33 kV network,the scheduling framework is designed to meet the pragmatic requirements of the optimum utilization of the available energy capacity of BESS in each cycle,while completing up to one cycle per day. 展开更多
关键词 Battery energy storage day(s)-ahead scheduling dynamic optimal power flow load smoothing renewable energy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部