Molecular dynamics (MD) simulation has become a powerful tool to investigate the structure- function relationship of proteins and other biological macromolecules at atomic resolution and biologically relevant timesc...Molecular dynamics (MD) simulation has become a powerful tool to investigate the structure- function relationship of proteins and other biological macromolecules at atomic resolution and biologically relevant timescales. MD simulations often produce massive datasets con- taining millions of snapshots describing proteins in motion. Therefore, clustering algorithms have been in high demand to be developed and applied to classify these MD snapshots and gain biological insights. There mainly exist two categories of clustering algorithms that aim to group protein conformations into clusters based on the similarity of their shape (geometric clustering) and kinetics (kinetic clustering). In this paper, we review a series of frequently used clustering algorithms applied in MD simulations, including divisive algorithms, ag- glomerative algorithms (single-linkage, complete-linkage, average-linkage, centroid-linkage and ward-linkage), center-based algorithms (K-Means, K-Medoids, K-Centers, and APM), density-based algorithms (neighbor-based, DBSCAN, density-peaks, and Robust-DB), and spectral-based algorithms (PCCA and PCCA+). In particular, differences between geomet- ric and kinetic clustering metrics will be discussed along with the performances of diflhrent clustering algorithms. We note that there does not exist a one-size-fits-all algorithm in the classification of MD datasets. For a specific application, the right choice of clustering algo- rithm should be based on the purpose of clustering, and the intrinsic properties of the MD conformational ensembles. Therefore, a main focus of our review is to describe the merits and limitations of each clustering algorithm. We expect that this review would be helpful to guide researchers to choose appropriate clustering algorithms for their own MD datasets.展开更多
The research shows that projection pursuit cluster (PPC) model is able to form a suitable index for overcom-ing the difficulties in comprehensive evaluation, which can be used to analyze complex multivariate prob-lems...The research shows that projection pursuit cluster (PPC) model is able to form a suitable index for overcom-ing the difficulties in comprehensive evaluation, which can be used to analyze complex multivariate prob-lems. The PPC model is widely used in multifactor cluster and evaluation analysis, but there are a few prob-lems needed to be solved in practice, such as cutoff radius parameter calibration. In this study, a new model-projection pursuit dynamic cluster (PPDC) model-based on projection pursuit principle is developed and used in water resources carrying capacity evaluation in China for the first time. In the PPDC model, there are two improvements compared with the PPC model, 1) a new projection index is constructed based on dynamic cluster principle, which avoids the problem of parameter calibration in the PPC model success-fully;2) the cluster results can be outputted directly according to the PPDC model, but the cluster results can be got based on the scatter points of projected characteristic values or the re-analysis for projected character-istic values in the PPC model. The results show that the PPDC model is a very effective and powerful tool in multifactor data exploratory analysis. It is a new method for water resources carrying capacity evaluation. The PPDC model and its application to water resources carrying capacity evaluation are introduced in detail in this paper.展开更多
The real problem in cluster of workstations is the changes in workstation power or number of workstations or dynmaic changes in the run time behavior of the application hamper the efficient use of resources. Dynamic l...The real problem in cluster of workstations is the changes in workstation power or number of workstations or dynmaic changes in the run time behavior of the application hamper the efficient use of resources. Dynamic load balancing is a technique for the parallel implementation of problems, which generate unpredictable workloads by migration work units from heavily loaded processor to lightly loaded processors at run time. This paper proposed an efficient load balancing method in which parallel tree computations depth first search (DFS) generates unpredictable, highly imbalance workloads and moves through different phases detectable at run time, where dynamic load balancing strategy is applicable in each phase running under the MPI(message passing interface) and Unix operating system on cluster of workstations parallel platform computing.展开更多
Aiming at the problem that node load is rarely considered in existing clustering routing algorithm for Wireless Sensor Networks (WSNs), a dynamic clustering routing algorithm for WSN is presented in this paper called ...Aiming at the problem that node load is rarely considered in existing clustering routing algorithm for Wireless Sensor Networks (WSNs), a dynamic clustering routing algorithm for WSN is presented in this paper called DCRCL (Dynamic Clustering Routing Considering Load). This algorithm is comprised of three phases including cluster head (CH) selection, cluster setup and inter-cluster routing. First, the CHs are selected based on residual energy and node load. Then the non-CH nodes choose a cluster by comparing the cost function of its neighbor CHs. At last, each CH communicates with base station by using multi-hop communication. The simulation results show that comparing with the existing one, the techniques life cycle and date volume of the network are increased by 30.7 percent and 29.8 percent respectively by using the proposed algorithm DCRCL.展开更多
In Wireless Sensor Networks (WSN), the lifetime of sensors is the crucial issue. Numerous schemes are proposed to augment the life time of sensors based on the wide range of parameters. In majority of the cases, the c...In Wireless Sensor Networks (WSN), the lifetime of sensors is the crucial issue. Numerous schemes are proposed to augment the life time of sensors based on the wide range of parameters. In majority of the cases, the center of attraction will be the nodes’ lifetime enhancement and routing. In the scenario of cluster based WSN, multi-hop mode of communication reduces the communication cast by increasing average delay and also increases the routing overhead. In this proposed scheme, two ideas are introduced to overcome the delay and routing overhead. To achieve the higher degree in the lifetime of the nodes, the residual energy (remaining energy) of the nodes for multi-hop node choice is taken into consideration first. Then the modification in the routing protocol is evolved (Multi-Hop Dynamic Path-Selection Algorithm—MHDP). A dynamic path updating is initiated in frequent interval based on nodes residual energy to avoid the data loss due to path extrication and also to avoid the early dying of nodes due to elevation of data forwarding. The proposed method improves network’s lifetime significantly. The diminution in the average delay and increment in the lifetime of network are also accomplished. The MHDP offers 50% delay lesser than clustering. The average residual energy is 20% higher than clustering and 10% higher than multi-hop clustering. The proposed method improves network lifetime by 40% than clustering and 30% than multi-hop clustering which is considerably much better than the preceding methods.展开更多
构建了系列球形中空结构的纳米线(NW),采用分子动力学(MD)对每个模型300个不同初始态的样本开展拉伸形变模拟。并利用基于密度的噪声应用空间聚类(density-based spatial clustering of applications with noise,DBSCAN)机器学习算法,...构建了系列球形中空结构的纳米线(NW),采用分子动力学(MD)对每个模型300个不同初始态的样本开展拉伸形变模拟。并利用基于密度的噪声应用空间聚类(density-based spatial clustering of applications with noise,DBSCAN)机器学习算法,获得了初始滑移面的位置。基于大数据统计,分析了初始滑移位置分布以及断裂位置分布两者之间的相关性。研究结果表明:当内部中空半径较小时,断裂位置分布形成于塑性形变阶段,初始滑移分布与断裂位置分布之间无显著的相关性;但是对于脆性特征明显的大中空半径的NW,高能内表面诱导产生的滑移面迅速积累,产生颈缩并导致最终的断裂。因此当内部中空结构达到一定尺寸时初始滑移位置的分布与最终断裂位置的分布之间有明确的因果关系。展开更多
为感知航班客舱保障过程各节点的动态演化机理,提出一种多马尔可夫链协同(synergy of multi-Markov chains, SMMC)的航班客舱保障过程预测方法。根据航班客舱保障的实际流程及相互约束关系,构建一种客舱保障过程节点协同的马尔可夫模型...为感知航班客舱保障过程各节点的动态演化机理,提出一种多马尔可夫链协同(synergy of multi-Markov chains, SMMC)的航班客舱保障过程预测方法。根据航班客舱保障的实际流程及相互约束关系,构建一种客舱保障过程节点协同的马尔可夫模型;基于历史数据作为样本并改进DBSCAN(density-based spatial clustering of applications with noise)聚类算法,设计面向客舱保障过程的DBSCAN-SMMC预测方法。选取国内某大型机场航班运行保障过程的实际运行数据开展仿真验证。研究结果表明,所提方法实现了各节点发生时刻的动态精准预测,其平均绝对误差的均值为0.606 min,均方根误差的均值为1.133 min,与其它方法相比平均绝对百分误差最少降低2%,拟合优度最大提升0.14,能够为机场运行精细化管理提供决策依据。展开更多
针对软刚臂系泊系统铰节点在服役过程中出现的疲劳损伤问题,提出一种基于原型监测和局部密度双向聚类算法(Bidirectional Clustering Algorithm based on Local Density,BCALoD)的疲劳寿命计算方法。采用BCALoD算法对获得的船体六自由...针对软刚臂系泊系统铰节点在服役过程中出现的疲劳损伤问题,提出一种基于原型监测和局部密度双向聚类算法(Bidirectional Clustering Algorithm based on Local Density,BCALoD)的疲劳寿命计算方法。采用BCALoD算法对获得的船体六自由度进行工况分类,运用多体动力学将运动数据转算为受力时程,将其作为铰节点疲劳寿命分析的载荷谱。采用Abaqus软件建立各铰节点有限元模型以计算热点应力,结合Miner线性疲劳累积损伤理论和雨流计数方法计算疲劳寿命。进一步分析评估基于实测数据的铰节点疲劳设计指标,指出该FPSO软刚臂上铰节点的疲劳寿命不足以支持其完成服役,且各铰节点难以统一维护和更换。本研究可为在役软刚臂系泊系统的疲劳寿命计算提供一种新的载荷处理方法,为未来海洋平台的设计提供参考。展开更多
基金supported by Shenzhen Science and Technology Innovation Committee(JCYJ20170413173837121)the Hong Kong Research Grant Council(HKUST C6009-15G,14203915,16302214,16304215,16318816,and AoE/P-705/16)+2 种基金King Abdullah University of Science and Technology(KAUST) Office of Sponsored Research(OSR)(OSR-2016-CRG5-3007)Guangzhou Science Technology and Innovation Commission(201704030116)Innovation and Technology Commission(ITCPD/17-9and ITC-CNERC14SC01)
文摘Molecular dynamics (MD) simulation has become a powerful tool to investigate the structure- function relationship of proteins and other biological macromolecules at atomic resolution and biologically relevant timescales. MD simulations often produce massive datasets con- taining millions of snapshots describing proteins in motion. Therefore, clustering algorithms have been in high demand to be developed and applied to classify these MD snapshots and gain biological insights. There mainly exist two categories of clustering algorithms that aim to group protein conformations into clusters based on the similarity of their shape (geometric clustering) and kinetics (kinetic clustering). In this paper, we review a series of frequently used clustering algorithms applied in MD simulations, including divisive algorithms, ag- glomerative algorithms (single-linkage, complete-linkage, average-linkage, centroid-linkage and ward-linkage), center-based algorithms (K-Means, K-Medoids, K-Centers, and APM), density-based algorithms (neighbor-based, DBSCAN, density-peaks, and Robust-DB), and spectral-based algorithms (PCCA and PCCA+). In particular, differences between geomet- ric and kinetic clustering metrics will be discussed along with the performances of diflhrent clustering algorithms. We note that there does not exist a one-size-fits-all algorithm in the classification of MD datasets. For a specific application, the right choice of clustering algo- rithm should be based on the purpose of clustering, and the intrinsic properties of the MD conformational ensembles. Therefore, a main focus of our review is to describe the merits and limitations of each clustering algorithm. We expect that this review would be helpful to guide researchers to choose appropriate clustering algorithms for their own MD datasets.
文摘The research shows that projection pursuit cluster (PPC) model is able to form a suitable index for overcom-ing the difficulties in comprehensive evaluation, which can be used to analyze complex multivariate prob-lems. The PPC model is widely used in multifactor cluster and evaluation analysis, but there are a few prob-lems needed to be solved in practice, such as cutoff radius parameter calibration. In this study, a new model-projection pursuit dynamic cluster (PPDC) model-based on projection pursuit principle is developed and used in water resources carrying capacity evaluation in China for the first time. In the PPDC model, there are two improvements compared with the PPC model, 1) a new projection index is constructed based on dynamic cluster principle, which avoids the problem of parameter calibration in the PPC model success-fully;2) the cluster results can be outputted directly according to the PPDC model, but the cluster results can be got based on the scatter points of projected characteristic values or the re-analysis for projected character-istic values in the PPC model. The results show that the PPDC model is a very effective and powerful tool in multifactor data exploratory analysis. It is a new method for water resources carrying capacity evaluation. The PPDC model and its application to water resources carrying capacity evaluation are introduced in detail in this paper.
基金Natural Science Foundation of China (No.60 173 0 3 1)
文摘The real problem in cluster of workstations is the changes in workstation power or number of workstations or dynmaic changes in the run time behavior of the application hamper the efficient use of resources. Dynamic load balancing is a technique for the parallel implementation of problems, which generate unpredictable workloads by migration work units from heavily loaded processor to lightly loaded processors at run time. This paper proposed an efficient load balancing method in which parallel tree computations depth first search (DFS) generates unpredictable, highly imbalance workloads and moves through different phases detectable at run time, where dynamic load balancing strategy is applicable in each phase running under the MPI(message passing interface) and Unix operating system on cluster of workstations parallel platform computing.
文摘Aiming at the problem that node load is rarely considered in existing clustering routing algorithm for Wireless Sensor Networks (WSNs), a dynamic clustering routing algorithm for WSN is presented in this paper called DCRCL (Dynamic Clustering Routing Considering Load). This algorithm is comprised of three phases including cluster head (CH) selection, cluster setup and inter-cluster routing. First, the CHs are selected based on residual energy and node load. Then the non-CH nodes choose a cluster by comparing the cost function of its neighbor CHs. At last, each CH communicates with base station by using multi-hop communication. The simulation results show that comparing with the existing one, the techniques life cycle and date volume of the network are increased by 30.7 percent and 29.8 percent respectively by using the proposed algorithm DCRCL.
文摘In Wireless Sensor Networks (WSN), the lifetime of sensors is the crucial issue. Numerous schemes are proposed to augment the life time of sensors based on the wide range of parameters. In majority of the cases, the center of attraction will be the nodes’ lifetime enhancement and routing. In the scenario of cluster based WSN, multi-hop mode of communication reduces the communication cast by increasing average delay and also increases the routing overhead. In this proposed scheme, two ideas are introduced to overcome the delay and routing overhead. To achieve the higher degree in the lifetime of the nodes, the residual energy (remaining energy) of the nodes for multi-hop node choice is taken into consideration first. Then the modification in the routing protocol is evolved (Multi-Hop Dynamic Path-Selection Algorithm—MHDP). A dynamic path updating is initiated in frequent interval based on nodes residual energy to avoid the data loss due to path extrication and also to avoid the early dying of nodes due to elevation of data forwarding. The proposed method improves network’s lifetime significantly. The diminution in the average delay and increment in the lifetime of network are also accomplished. The MHDP offers 50% delay lesser than clustering. The average residual energy is 20% higher than clustering and 10% higher than multi-hop clustering. The proposed method improves network lifetime by 40% than clustering and 30% than multi-hop clustering which is considerably much better than the preceding methods.
文摘构建了系列球形中空结构的纳米线(NW),采用分子动力学(MD)对每个模型300个不同初始态的样本开展拉伸形变模拟。并利用基于密度的噪声应用空间聚类(density-based spatial clustering of applications with noise,DBSCAN)机器学习算法,获得了初始滑移面的位置。基于大数据统计,分析了初始滑移位置分布以及断裂位置分布两者之间的相关性。研究结果表明:当内部中空半径较小时,断裂位置分布形成于塑性形变阶段,初始滑移分布与断裂位置分布之间无显著的相关性;但是对于脆性特征明显的大中空半径的NW,高能内表面诱导产生的滑移面迅速积累,产生颈缩并导致最终的断裂。因此当内部中空结构达到一定尺寸时初始滑移位置的分布与最终断裂位置的分布之间有明确的因果关系。
文摘为感知航班客舱保障过程各节点的动态演化机理,提出一种多马尔可夫链协同(synergy of multi-Markov chains, SMMC)的航班客舱保障过程预测方法。根据航班客舱保障的实际流程及相互约束关系,构建一种客舱保障过程节点协同的马尔可夫模型;基于历史数据作为样本并改进DBSCAN(density-based spatial clustering of applications with noise)聚类算法,设计面向客舱保障过程的DBSCAN-SMMC预测方法。选取国内某大型机场航班运行保障过程的实际运行数据开展仿真验证。研究结果表明,所提方法实现了各节点发生时刻的动态精准预测,其平均绝对误差的均值为0.606 min,均方根误差的均值为1.133 min,与其它方法相比平均绝对百分误差最少降低2%,拟合优度最大提升0.14,能够为机场运行精细化管理提供决策依据。
文摘针对软刚臂系泊系统铰节点在服役过程中出现的疲劳损伤问题,提出一种基于原型监测和局部密度双向聚类算法(Bidirectional Clustering Algorithm based on Local Density,BCALoD)的疲劳寿命计算方法。采用BCALoD算法对获得的船体六自由度进行工况分类,运用多体动力学将运动数据转算为受力时程,将其作为铰节点疲劳寿命分析的载荷谱。采用Abaqus软件建立各铰节点有限元模型以计算热点应力,结合Miner线性疲劳累积损伤理论和雨流计数方法计算疲劳寿命。进一步分析评估基于实测数据的铰节点疲劳设计指标,指出该FPSO软刚臂上铰节点的疲劳寿命不足以支持其完成服役,且各铰节点难以统一维护和更换。本研究可为在役软刚臂系泊系统的疲劳寿命计算提供一种新的载荷处理方法,为未来海洋平台的设计提供参考。