Structural Health Monitoring(SHM)systems have become a crucial tool for the operational management of long tunnels.For immersed tunnels exposed to both traffic loads and the effects of the marine environment,efficient...Structural Health Monitoring(SHM)systems have become a crucial tool for the operational management of long tunnels.For immersed tunnels exposed to both traffic loads and the effects of the marine environment,efficiently identifying abnormal conditions from the extensive unannotated SHM data presents a significant challenge.This study proposed amodel-based approach for anomaly detection and conducted validation and comparative analysis of two distinct temporal predictive models using SHM data from a real immersed tunnel.Firstly,a dynamic predictive model-based anomaly detectionmethod is proposed,which utilizes a rolling time window for modeling to achieve dynamic prediction.Leveraging the assumption of temporal data similarity,an interval prediction value deviation was employed to determine the abnormality of the data.Subsequently,dynamic predictive models were constructed based on the Autoregressive Integrated Moving Average(ARIMA)and Long Short-Term Memory(LSTM)models.The hyperparameters of these models were optimized and selected using monitoring data from the immersed tunnel,yielding viable static and dynamic predictive models.Finally,the models were applied within the same segment of SHM data,to validate the effectiveness of the anomaly detection approach based on dynamic predictive modeling.A detailed comparative analysis discusses the discrepancies in temporal anomaly detection between the ARIMA-and LSTM-based models.The results demonstrated that the dynamic predictive modelbased anomaly detection approach was effective for dealing with unannotated SHM data.In a comparison between ARIMA and LSTM,it was found that ARIMA demonstrated higher modeling efficiency,rendering it suitable for short-term predictions.In contrast,the LSTM model exhibited greater capacity to capture long-term performance trends and enhanced early warning capabilities,thereby resulting in superior overall performance.展开更多
Dynamic recrystallization (DRX) behavior in β phase region for the burn resistant titanium alloy Ti?25V?15Cr?0.2Si was investigated with a compression test in the temperature range of 950?1100 °C and the strain ...Dynamic recrystallization (DRX) behavior in β phase region for the burn resistant titanium alloy Ti?25V?15Cr?0.2Si was investigated with a compression test in the temperature range of 950?1100 °C and the strain rate of 0.001?1 s?1. The results show that deformation mechanism of this alloy in hot deformation is dominated by DRX, and new grains of DRX are evolved by bulging nucleation mechanism as a predominant mechanism. DRX occurs more easily with the decrease of strain rate and the increase of deformation temperature. Grain refinement is achieved due to DRX during the hot deformation at strain rate range of 0.01?0.1 s?1 and temperature range of 950?1050 °C. DRX grain coarsening is observed for the alloy deformed at the higher temperatures of 1100 °C and the lower strain rates of 0.001 s?1. Finally, in order to determine the recrystallized fraction and DRX grain size under different deformation conditions, the prediction models of recrystallization kinetics and recrystallized grain sizes were established.展开更多
The control problems associated with vehicle height adjustment of electronically controlled air suspension (ECAS) still pose theoretical challenges for researchers, which manifest themselves in the publications on t...The control problems associated with vehicle height adjustment of electronically controlled air suspension (ECAS) still pose theoretical challenges for researchers, which manifest themselves in the publications on this subject over the last years. This paper deals with modeling and control of a vehicle height adjustment system for ECAS, which is an example of a hybrid dynamical system due to the coexistence and coupling of continuous variables and discrete events. A mixed logical dynamical (MLD) modeling approach is chosen for capturing enough details of the vehicle height adjustment process. The hybrid dynamic model is constructed on the basis of some assumptions and piecewise linear approximation for components nonlinearities. Then, the on-off statuses of solenoid valves and the piecewise approximation process are described by propositional logic, and the hybrid system is transformed into the set of linear mixed-integer equalities and inequalities, denoted as MLD model, automatically by HYSDEL. Using this model, a hybrid model predictive controller (HMPC) is tuned based on online mixed-integer quadratic optimization (MIQP). Two different scenarios are considered in the simulation, whose results verify the height adjustment effectiveness of the proposed approach. Explicit solutions of the controller are computed to control the vehicle height adjustment system in realtime using an offline multi-parametric programming technology (MPT), thus convert the controller into an equivalent explicit piecewise affine form. Finally, bench experiments for vehicle height lifting, holding and lowering procedures are conducted, which demonstrate that the HMPC can adjust the vehicle height by controlling the on-off statuses of solenoid valves directly. This research proposes a new modeling and control method for vehicle height adjustment of ECAS, which leads to a closed-loop system with favorable dynamical properties.展开更多
Bubble size distribution is the basic apparent performance and obvious characteristics in the air dense medium fluidized bed (ADMFB). The approaches of numerical simulation and experimental verification were combined ...Bubble size distribution is the basic apparent performance and obvious characteristics in the air dense medium fluidized bed (ADMFB). The approaches of numerical simulation and experimental verification were combined to conduct the further research on the bubble generation and movement behavior. The results show that ADMFB could display favorable expanded characteristics after steady fluidization. With different particle size distributions of magnetite powder as medium solids, we selected an appropriate prediction model for the mean bubble diameter in ADMFB. The comparison results indicate that the mean bubble diameters along the bed heights are 35 mm < D b < 66 mm and 40 mm < D b < 69 mm with the magnetite powder of 0.3 mm+0.15mm and 0.15mm+0.074mm, respectively. The prediction model provides good agreements with the experimental and simulation data. Based on the optimal operating gas velocity distribution, the mixture of magnetite powder and <1mm fine coal as medium solids were utilized to carry out the separation experiment on 6-50mm raw coal. The results show that an optimal separation density d P of 1.73g/cm 3 with a probable error E of 0.07g/cm 3 and a recovery efficiency of 99.97% is achieved, which indicates good separation performance by applying ADMFB.展开更多
We propose a new functional single index model, which called dynamic single-index model for functional data, or DSIM, to efficiently perform non-linear and dynamic relationships between functional predictor and functi...We propose a new functional single index model, which called dynamic single-index model for functional data, or DSIM, to efficiently perform non-linear and dynamic relationships between functional predictor and functional response. The proposed model naturally allows for some curvature not captured by the ordinary functional linear model. By using the proposed two-step estimating algorithm, we develop the estimates for both the link function and the regression coefficient function, and then provide predictions of new response trajectories. Besides the asymptotic properties for the estimates of the unknown functions, we also establish the consistency of the predictions of new response trajectories under mild conditions. Finally, we show through extensive simulation studies and a real data example that the proposed DSIM can highly outperform existed functional regression methods in most settings.展开更多
基金supported by the Research and Development Center of Transport Industry of New Generation of Artificial Intelligence Technology(Grant No.202202H)the National Key R&D Program of China(Grant No.2019YFB1600702)the National Natural Science Foundation of China(Grant Nos.51978600&51808336).
文摘Structural Health Monitoring(SHM)systems have become a crucial tool for the operational management of long tunnels.For immersed tunnels exposed to both traffic loads and the effects of the marine environment,efficiently identifying abnormal conditions from the extensive unannotated SHM data presents a significant challenge.This study proposed amodel-based approach for anomaly detection and conducted validation and comparative analysis of two distinct temporal predictive models using SHM data from a real immersed tunnel.Firstly,a dynamic predictive model-based anomaly detectionmethod is proposed,which utilizes a rolling time window for modeling to achieve dynamic prediction.Leveraging the assumption of temporal data similarity,an interval prediction value deviation was employed to determine the abnormality of the data.Subsequently,dynamic predictive models were constructed based on the Autoregressive Integrated Moving Average(ARIMA)and Long Short-Term Memory(LSTM)models.The hyperparameters of these models were optimized and selected using monitoring data from the immersed tunnel,yielding viable static and dynamic predictive models.Finally,the models were applied within the same segment of SHM data,to validate the effectiveness of the anomaly detection approach based on dynamic predictive modeling.A detailed comparative analysis discusses the discrepancies in temporal anomaly detection between the ARIMA-and LSTM-based models.The results demonstrated that the dynamic predictive modelbased anomaly detection approach was effective for dealing with unannotated SHM data.In a comparison between ARIMA and LSTM,it was found that ARIMA demonstrated higher modeling efficiency,rendering it suitable for short-term predictions.In contrast,the LSTM model exhibited greater capacity to capture long-term performance trends and enhanced early warning capabilities,thereby resulting in superior overall performance.
基金Projects(51261020,51164030)supported by the National Natural Science Foundation of ChinaProject(GF201401007)supported by the Open Fund of National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology,China
文摘Dynamic recrystallization (DRX) behavior in β phase region for the burn resistant titanium alloy Ti?25V?15Cr?0.2Si was investigated with a compression test in the temperature range of 950?1100 °C and the strain rate of 0.001?1 s?1. The results show that deformation mechanism of this alloy in hot deformation is dominated by DRX, and new grains of DRX are evolved by bulging nucleation mechanism as a predominant mechanism. DRX occurs more easily with the decrease of strain rate and the increase of deformation temperature. Grain refinement is achieved due to DRX during the hot deformation at strain rate range of 0.01?0.1 s?1 and temperature range of 950?1050 °C. DRX grain coarsening is observed for the alloy deformed at the higher temperatures of 1100 °C and the lower strain rates of 0.001 s?1. Finally, in order to determine the recrystallized fraction and DRX grain size under different deformation conditions, the prediction models of recrystallization kinetics and recrystallized grain sizes were established.
基金Supported by National Natural Science Foundation of China(Grant No.51375212)Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions of China+1 种基金Research Fund for the Doctoral Program of Higher Education of China(Grant No.20133227130001)China Postdoctoral Science Foundation(Grant No.2014M551518)
文摘The control problems associated with vehicle height adjustment of electronically controlled air suspension (ECAS) still pose theoretical challenges for researchers, which manifest themselves in the publications on this subject over the last years. This paper deals with modeling and control of a vehicle height adjustment system for ECAS, which is an example of a hybrid dynamical system due to the coexistence and coupling of continuous variables and discrete events. A mixed logical dynamical (MLD) modeling approach is chosen for capturing enough details of the vehicle height adjustment process. The hybrid dynamic model is constructed on the basis of some assumptions and piecewise linear approximation for components nonlinearities. Then, the on-off statuses of solenoid valves and the piecewise approximation process are described by propositional logic, and the hybrid system is transformed into the set of linear mixed-integer equalities and inequalities, denoted as MLD model, automatically by HYSDEL. Using this model, a hybrid model predictive controller (HMPC) is tuned based on online mixed-integer quadratic optimization (MIQP). Two different scenarios are considered in the simulation, whose results verify the height adjustment effectiveness of the proposed approach. Explicit solutions of the controller are computed to control the vehicle height adjustment system in realtime using an offline multi-parametric programming technology (MPT), thus convert the controller into an equivalent explicit piecewise affine form. Finally, bench experiments for vehicle height lifting, holding and lowering procedures are conducted, which demonstrate that the HMPC can adjust the vehicle height by controlling the on-off statuses of solenoid valves directly. This research proposes a new modeling and control method for vehicle height adjustment of ECAS, which leads to a closed-loop system with favorable dynamical properties.
基金financially supported by the National Natural Science Foundation of China (Nos. 51221462, 51134022,51174203 and 51074156)the National Basic Research Program of China (No. 2012CB214904)China Postdoctoral Science Foundation (No. 2013M531430)
文摘Bubble size distribution is the basic apparent performance and obvious characteristics in the air dense medium fluidized bed (ADMFB). The approaches of numerical simulation and experimental verification were combined to conduct the further research on the bubble generation and movement behavior. The results show that ADMFB could display favorable expanded characteristics after steady fluidization. With different particle size distributions of magnetite powder as medium solids, we selected an appropriate prediction model for the mean bubble diameter in ADMFB. The comparison results indicate that the mean bubble diameters along the bed heights are 35 mm < D b < 66 mm and 40 mm < D b < 69 mm with the magnetite powder of 0.3 mm+0.15mm and 0.15mm+0.074mm, respectively. The prediction model provides good agreements with the experimental and simulation data. Based on the optimal operating gas velocity distribution, the mixture of magnetite powder and <1mm fine coal as medium solids were utilized to carry out the separation experiment on 6-50mm raw coal. The results show that an optimal separation density d P of 1.73g/cm 3 with a probable error E of 0.07g/cm 3 and a recovery efficiency of 99.97% is achieved, which indicates good separation performance by applying ADMFB.
基金supported by National Natural Science Foundation of China (Grant No. 11271080)
文摘We propose a new functional single index model, which called dynamic single-index model for functional data, or DSIM, to efficiently perform non-linear and dynamic relationships between functional predictor and functional response. The proposed model naturally allows for some curvature not captured by the ordinary functional linear model. By using the proposed two-step estimating algorithm, we develop the estimates for both the link function and the regression coefficient function, and then provide predictions of new response trajectories. Besides the asymptotic properties for the estimates of the unknown functions, we also establish the consistency of the predictions of new response trajectories under mild conditions. Finally, we show through extensive simulation studies and a real data example that the proposed DSIM can highly outperform existed functional regression methods in most settings.