Principal component analysis (PCA) is a useful tool in process fault detection, but offers little support on fault isolation. In this article, structured residual with strong isolation property is introduced. Althou...Principal component analysis (PCA) is a useful tool in process fault detection, but offers little support on fault isolation. In this article, structured residual with strong isolation property is introduced. Although it is easy to get the residual by transformation matrix in static process, unfortunately, it becomes hard in dynamic process under control loop. Therefore, partial dynamic PCA(PDPCA) is proposed to obtain structured residual and enhance the isolation ability of dynamic process monitoring, and a compound statistic is introduced to resolve the problem resulting from independent variables in every variable subset. Simulations on continuous stirred tank reactor (CSTR) show the effectiveness of the proposed method.展开更多
In this paper, our previous work on Principal Component Analysis (PCA) based fault detection method is extended to the dynamic monitoring and detection of loss-of-main in power systems using wide-area synchrophasor me...In this paper, our previous work on Principal Component Analysis (PCA) based fault detection method is extended to the dynamic monitoring and detection of loss-of-main in power systems using wide-area synchrophasor measurements. In the previous work, a static PCA model was built and verified to be capable of detecting and extracting system faulty events;however the false alarm rate is high. To address this problem, this paper uses a well-known ‘time lag shift’ method to include dynamic behavior of the PCA model based on the synchronized measurements from Phasor Measurement Units (PMU), which is named as the Dynamic Principal Component Analysis (DPCA). Compared with the static PCA approach as well as the traditional passive mechanisms of loss-of-main detection, the proposed DPCA procedure describes how the synchrophasors are linearly auto- and cross-correlated, based on conducting the singular value decomposition on the augmented time lagged synchrophasor matrix. Similar to the static PCA method, two statistics, namely T2 and Q with confidence limits are calculated to form intuitive charts for engineers or operators to monitor the loss-of-main situation in real time. The effectiveness of the proposed methodology is evaluated on the loss-of-main monitoring of a real system, where the historic data are recorded from PMUs installed in several locations in the UK/Ireland power system.展开更多
Dynamic variation of water quality in Meiliang Bay and part of West Taihu Lake has been analysed based on data from 1991 to 1992. Principal Component Analysis is used to reveal the mutual relationships of various fact...Dynamic variation of water quality in Meiliang Bay and part of West Taihu Lake has been analysed based on data from 1991 to 1992. Principal Component Analysis is used to reveal the mutual relationships of various factors. It is shown that there existis an obvious spatial and temporal variation in the main factors of water quality. Annual values of TP, CON, TN, Chl-a and conductivity decrease evidently from inner Meiliang Bay to the outer from north to south. TP and TN fluctuate seasonally with much higher value in winter. This is particularly true for the mouth of Liangxi River. In addition, the Chl-1 has a synchronous variation with water temperature, although being lagged a little, and closely relates to TP and TN. Finally, the results from Principal Component Analysis show that TP, TN, SS (or SD), water temperature and Chl-a are the most influential factors to water qualuty in this area, and both suspensions and algae can contribute to transparency to Taihu Lake.展开更多
The main research motive is to analysis and to veiny the inherent nonlinear character of MPEG-4 video. The power spectral density estimation of the video trafiic describes its 1/f^β and periodic characteristics.The p...The main research motive is to analysis and to veiny the inherent nonlinear character of MPEG-4 video. The power spectral density estimation of the video trafiic describes its 1/f^β and periodic characteristics.The priraeipal compohems analysis of the reconstructed space dimension shows only several principal components can be the representation of all dimensions. The correlation dimension analysis proves its fractal characteristic. To accurately compute the largest Lyapunov exponent, the video traffic is divided into many parts.So the largest Lyapunov exponent spectrum is separately calculated using the small data sets method. The largest Lyapunov exponent spectrum shows there exists abundant nonlinear chaos in MPEG-4 video traffic. The conclusion can be made that MPEG-4 video traffic have complex nonlinear be havior and can be characterized by its power spectral density,principal components, correlation dimension and the largest Lyapunov exponent besides its common statistics.展开更多
Chemoreceptor TlpB(Tlp=transducer-like protein), which has been demonstrated to respond to pH sensing function, is crucial for the survival ofHelicobacterpylori(H, pylori) in host stomach. Urea was proposed to be ...Chemoreceptor TlpB(Tlp=transducer-like protein), which has been demonstrated to respond to pH sensing function, is crucial for the survival ofHelicobacterpylori(H, pylori) in host stomach. Urea was proposed to be essen- tial for TlpB's pH sensing function via binding with the Per-ARNT-Sim(PAS) domain of TlpB. Additionally, KI66R mutation of the TlpB protein has also been proven to have a similar effect on TlpB pH sensing as urea binding. Al- though X-ray crystallographic studies have been carried out for urea-bound Tlpl3, the molecular mechanism for the stabilization of TIpB induced by urea binding and K166R mutation remains to be elucidated. In this study, molecular dynamics simulations combined with principal component analysis(PCA) for the simulation results were used to gain an insight into the molecular mechanism of the stabilization of urea on TlpB protein. The formed H-bonds and salt-bridges surrounding Aspll4, which were induced by both urea binding and K166R mutation of TIpB, were im- portant to the stabilization of TlpB by urea. The similarity between the urea binding and K166R mutation as well as their differences in effect has been explicitly demonstrated with computer simulations at atomic-level. The findings may Dave the wav for the further researches of TlpB.展开更多
Multiblock kernel principal component analysis (MBKPCA) has been proposed to isolate the faults and avoid the high computation cost. However, MBKPCA is not available for dynamic processes. To solve this problem, recur...Multiblock kernel principal component analysis (MBKPCA) has been proposed to isolate the faults and avoid the high computation cost. However, MBKPCA is not available for dynamic processes. To solve this problem, recursive MBKPCA is proposed for monitoring large scale processes. In this paper, we present a new recursive MBKPCA (RMBKPCA) algorithm, where the adaptive technique is adopted for dynamic characteristics. The proposed algorithm reduces the high computation cost, and is suitable for online model updating in the feature space. The proposed algorithm was applied to an industrial process for adaptive monitoring and found to efficiently capture the time-varying and nonlinear relationship in the process variables.展开更多
To solve the increasing model complexity due to several input variables and large correlations under variable load conditions,a dynamic modeling method combining a kernel extreme learning machine(KELM)and principal co...To solve the increasing model complexity due to several input variables and large correlations under variable load conditions,a dynamic modeling method combining a kernel extreme learning machine(KELM)and principal component analysis(PCA)was proposed and applied to the prediction of nitrogen oxide(NO_(x))concentration at the outlet of a selective catalytic reduction(SCR)denitrification system.First,PCA is applied to the feature information extraction of input data,and the current and previous sequence values of the extracted information are used as the inputs of the KELM model to reflect the dynamic characteristics of the NO_(x)concentration at the SCR outlet.Then,the model takes the historical data of the NO_(x)concentration at the SCR outlet as the model input to improve its accuracy.Finally,an optimization algorithm is used to determine the optimal parameters of the model.Compared with the Gaussian process regression,long short-term memory,and convolutional neural network models,the prediction errors are reduced by approximately 78.4%,67.6%,and 59.3%,respectively.The results indicate that the proposed dynamic model structure is reliable and can accurately predict NO_(x)concentrations at the outlet of the SCR system.展开更多
Since the economic reform in 1978, urban development in China has become much more rapid and the dynamic mechanisms of urbanization more diversified. The 'Bottom Up' strategy becomes as important as, or even m...Since the economic reform in 1978, urban development in China has become much more rapid and the dynamic mechanisms of urbanization more diversified. The 'Bottom Up' strategy becomes as important as, or even more important than, the 'Top Down' strategy as the dynamic mechanisms of regional urbanization. On the basis of major theories of development economics and regional economics, this paper analyzes the major dynamic mechanisms of regional urbanization in coastal area of Fujian Province from 1978 to 1989, and describes quantitatively the territorial differentiation of regional urbanization process under two major dynamic mechanisms using principal componet analysis.展开更多
Total recoverable concentration of five elements of concern: Aluminum, Iron, Manganese, Arsenic and Lead (Al, Fe, Mn, As, Pb) were measured by inductively coupled plasma atomic emission spectrometry, and mass spectrom...Total recoverable concentration of five elements of concern: Aluminum, Iron, Manganese, Arsenic and Lead (Al, Fe, Mn, As, Pb) were measured by inductively coupled plasma atomic emission spectrometry, and mass spectrometry. The results show that sediment texture plays a controlling role in the concentrations and their spatial distribution. Principal Component Analysis and Cluster Analysis were used to analyze the grain sizes of the sediments. Result of texture analysis classified the samples into three main components in percentages: sand, silt, and clay. Significant differences among the element concentrations in the three groups were observed, and the concentrations of the elements in each group are reported in this study. Most of the elements have their highest concentrations in the fine-grained samples with clay playing an important role, in comparison with the sand component of the soil/sediment samples. There appears to be a strong correlation between samples with high silt, and clay content with the areas of elevated concentrations for Al, Fe, and Mn. There was a strong correlation between aluminum and lead with clay;lead with silt;and sand with manganese, aluminum, and lead. However, there was no strong relationship between the soil textures and iron or arsenic. All elements measured were statistically significant (at P ≤ 0.05) by watershed. The upland areas, and depositional areas’ spatial variation of element concentrations in the sediments were also observed, which was in line with the spatial distribution of the grain size and was thought to be related to the watersheds hydrological dynamics.展开更多
针对飞机发动机异常状态识别精度差、效率低和易误诊漏诊等问题,提出了一种基于动态主元分析(dynamic principal component analysis,DPCA)和最小二乘支持向量机(least square support vector machine,LSSVM)的飞机发动机润滑系统异常...针对飞机发动机异常状态识别精度差、效率低和易误诊漏诊等问题,提出了一种基于动态主元分析(dynamic principal component analysis,DPCA)和最小二乘支持向量机(least square support vector machine,LSSVM)的飞机发动机润滑系统异常状态识别方法;首先对发动机润滑系统参数进行DPCA处理以及在线检测是否有故障发生,如果有故障发生,再采用LSSVM方法进行异常状态识别;以某型飞机发动机润滑系统为例,对文中所提方法的准确性进行试验验证,由试验结果得出文中方法能有效提高飞机发动机异常状态识别准确率。展开更多
基金the National Natural Science Foundation of China (No.60421002).
文摘Principal component analysis (PCA) is a useful tool in process fault detection, but offers little support on fault isolation. In this article, structured residual with strong isolation property is introduced. Although it is easy to get the residual by transformation matrix in static process, unfortunately, it becomes hard in dynamic process under control loop. Therefore, partial dynamic PCA(PDPCA) is proposed to obtain structured residual and enhance the isolation ability of dynamic process monitoring, and a compound statistic is introduced to resolve the problem resulting from independent variables in every variable subset. Simulations on continuous stirred tank reactor (CSTR) show the effectiveness of the proposed method.
文摘In this paper, our previous work on Principal Component Analysis (PCA) based fault detection method is extended to the dynamic monitoring and detection of loss-of-main in power systems using wide-area synchrophasor measurements. In the previous work, a static PCA model was built and verified to be capable of detecting and extracting system faulty events;however the false alarm rate is high. To address this problem, this paper uses a well-known ‘time lag shift’ method to include dynamic behavior of the PCA model based on the synchronized measurements from Phasor Measurement Units (PMU), which is named as the Dynamic Principal Component Analysis (DPCA). Compared with the static PCA approach as well as the traditional passive mechanisms of loss-of-main detection, the proposed DPCA procedure describes how the synchrophasors are linearly auto- and cross-correlated, based on conducting the singular value decomposition on the augmented time lagged synchrophasor matrix. Similar to the static PCA method, two statistics, namely T2 and Q with confidence limits are calculated to form intuitive charts for engineers or operators to monitor the loss-of-main situation in real time. The effectiveness of the proposed methodology is evaluated on the loss-of-main monitoring of a real system, where the historic data are recorded from PMUs installed in several locations in the UK/Ireland power system.
文摘Dynamic variation of water quality in Meiliang Bay and part of West Taihu Lake has been analysed based on data from 1991 to 1992. Principal Component Analysis is used to reveal the mutual relationships of various factors. It is shown that there existis an obvious spatial and temporal variation in the main factors of water quality. Annual values of TP, CON, TN, Chl-a and conductivity decrease evidently from inner Meiliang Bay to the outer from north to south. TP and TN fluctuate seasonally with much higher value in winter. This is particularly true for the mouth of Liangxi River. In addition, the Chl-1 has a synchronous variation with water temperature, although being lagged a little, and closely relates to TP and TN. Finally, the results from Principal Component Analysis show that TP, TN, SS (or SD), water temperature and Chl-a are the most influential factors to water qualuty in this area, and both suspensions and algae can contribute to transparency to Taihu Lake.
基金Supported by the National Natural Science Founda-tion of China (60132030)
文摘The main research motive is to analysis and to veiny the inherent nonlinear character of MPEG-4 video. The power spectral density estimation of the video trafiic describes its 1/f^β and periodic characteristics.The priraeipal compohems analysis of the reconstructed space dimension shows only several principal components can be the representation of all dimensions. The correlation dimension analysis proves its fractal characteristic. To accurately compute the largest Lyapunov exponent, the video traffic is divided into many parts.So the largest Lyapunov exponent spectrum is separately calculated using the small data sets method. The largest Lyapunov exponent spectrum shows there exists abundant nonlinear chaos in MPEG-4 video traffic. The conclusion can be made that MPEG-4 video traffic have complex nonlinear be havior and can be characterized by its power spectral density,principal components, correlation dimension and the largest Lyapunov exponent besides its common statistics.
基金Supported by the National Natural Science Foundation of China(No.21273095).
文摘Chemoreceptor TlpB(Tlp=transducer-like protein), which has been demonstrated to respond to pH sensing function, is crucial for the survival ofHelicobacterpylori(H, pylori) in host stomach. Urea was proposed to be essen- tial for TlpB's pH sensing function via binding with the Per-ARNT-Sim(PAS) domain of TlpB. Additionally, KI66R mutation of the TlpB protein has also been proven to have a similar effect on TlpB pH sensing as urea binding. Al- though X-ray crystallographic studies have been carried out for urea-bound Tlpl3, the molecular mechanism for the stabilization of TIpB induced by urea binding and K166R mutation remains to be elucidated. In this study, molecular dynamics simulations combined with principal component analysis(PCA) for the simulation results were used to gain an insight into the molecular mechanism of the stabilization of urea on TlpB protein. The formed H-bonds and salt-bridges surrounding Aspll4, which were induced by both urea binding and K166R mutation of TIpB, were im- portant to the stabilization of TlpB by urea. The similarity between the urea binding and K166R mutation as well as their differences in effect has been explicitly demonstrated with computer simulations at atomic-level. The findings may Dave the wav for the further researches of TlpB.
基金Project supported by the National Basic Research Program (973) of China (No. 2009CB320600) the National Natural Science Foun-dation of China (No. 60974057)
文摘Multiblock kernel principal component analysis (MBKPCA) has been proposed to isolate the faults and avoid the high computation cost. However, MBKPCA is not available for dynamic processes. To solve this problem, recursive MBKPCA is proposed for monitoring large scale processes. In this paper, we present a new recursive MBKPCA (RMBKPCA) algorithm, where the adaptive technique is adopted for dynamic characteristics. The proposed algorithm reduces the high computation cost, and is suitable for online model updating in the feature space. The proposed algorithm was applied to an industrial process for adaptive monitoring and found to efficiently capture the time-varying and nonlinear relationship in the process variables.
基金The National Natural Science Foundation of China(No.71471060)the Natural Science Foundation of Hebei Province(No.E2018502111)。
文摘To solve the increasing model complexity due to several input variables and large correlations under variable load conditions,a dynamic modeling method combining a kernel extreme learning machine(KELM)and principal component analysis(PCA)was proposed and applied to the prediction of nitrogen oxide(NO_(x))concentration at the outlet of a selective catalytic reduction(SCR)denitrification system.First,PCA is applied to the feature information extraction of input data,and the current and previous sequence values of the extracted information are used as the inputs of the KELM model to reflect the dynamic characteristics of the NO_(x)concentration at the SCR outlet.Then,the model takes the historical data of the NO_(x)concentration at the SCR outlet as the model input to improve its accuracy.Finally,an optimization algorithm is used to determine the optimal parameters of the model.Compared with the Gaussian process regression,long short-term memory,and convolutional neural network models,the prediction errors are reduced by approximately 78.4%,67.6%,and 59.3%,respectively.The results indicate that the proposed dynamic model structure is reliable and can accurately predict NO_(x)concentrations at the outlet of the SCR system.
文摘Since the economic reform in 1978, urban development in China has become much more rapid and the dynamic mechanisms of urbanization more diversified. The 'Bottom Up' strategy becomes as important as, or even more important than, the 'Top Down' strategy as the dynamic mechanisms of regional urbanization. On the basis of major theories of development economics and regional economics, this paper analyzes the major dynamic mechanisms of regional urbanization in coastal area of Fujian Province from 1978 to 1989, and describes quantitatively the territorial differentiation of regional urbanization process under two major dynamic mechanisms using principal componet analysis.
文摘Total recoverable concentration of five elements of concern: Aluminum, Iron, Manganese, Arsenic and Lead (Al, Fe, Mn, As, Pb) were measured by inductively coupled plasma atomic emission spectrometry, and mass spectrometry. The results show that sediment texture plays a controlling role in the concentrations and their spatial distribution. Principal Component Analysis and Cluster Analysis were used to analyze the grain sizes of the sediments. Result of texture analysis classified the samples into three main components in percentages: sand, silt, and clay. Significant differences among the element concentrations in the three groups were observed, and the concentrations of the elements in each group are reported in this study. Most of the elements have their highest concentrations in the fine-grained samples with clay playing an important role, in comparison with the sand component of the soil/sediment samples. There appears to be a strong correlation between samples with high silt, and clay content with the areas of elevated concentrations for Al, Fe, and Mn. There was a strong correlation between aluminum and lead with clay;lead with silt;and sand with manganese, aluminum, and lead. However, there was no strong relationship between the soil textures and iron or arsenic. All elements measured were statistically significant (at P ≤ 0.05) by watershed. The upland areas, and depositional areas’ spatial variation of element concentrations in the sediments were also observed, which was in line with the spatial distribution of the grain size and was thought to be related to the watersheds hydrological dynamics.
文摘针对飞机发动机异常状态识别精度差、效率低和易误诊漏诊等问题,提出了一种基于动态主元分析(dynamic principal component analysis,DPCA)和最小二乘支持向量机(least square support vector machine,LSSVM)的飞机发动机润滑系统异常状态识别方法;首先对发动机润滑系统参数进行DPCA处理以及在线检测是否有故障发生,如果有故障发生,再采用LSSVM方法进行异常状态识别;以某型飞机发动机润滑系统为例,对文中所提方法的准确性进行试验验证,由试验结果得出文中方法能有效提高飞机发动机异常状态识别准确率。