Dynamic properties of rocks are important in a variety of rock mechanics and rock engineering problems. Due to the transient nature of the loading, dynamic tests of rock materials are very different from and much more...Dynamic properties of rocks are important in a variety of rock mechanics and rock engineering problems. Due to the transient nature of the loading, dynamic tests of rock materials are very different from and much more challenging than their static counterparts. Dynamic tests are usually conducted using the split Hopkinson bar or Kolsl^j bar systems, which include both split Hopkinson pressure bar (SHPB) and split Hopkinson tension bar (SHTB) systems. Significant progress has been made on the quantification of various rock dynamic properties, owing to the advances in the experimental techniques of SHPB system. This review aims to fully describe and critically assess the detailed procedures and principles of tech- niques for dynamic rock tests using split Hopkinson bars. The history and principles of SHPB are outlined, followed by the key loading techniques that are useful for dynamic rock tests with SHPB (i.e. pulse shaping, momentum-trap and multi-axial loading techniques). Various measurement techniques for rock tests in SHPB (i.e. X-ray micro computed tomography (CT), laser gap gauge (LGG), digital image corre- lation (DIC), Moir~ method, caustics method, photoelastic coating method, dynamic infrared thermog- raphy) are then discussed. As the main objective of the review, various dynamic measurement techniques for rocks using SHPB are described, including dynamic rock strength measurements (i.e. dynamic compression, tension, bending and shear tests), dynamic fracture measurements (i.e. dynamic imitation and propagation fracture toughness, dynamic fracture energy and fracture velocity), and dy- namic techniques for studying the influences of temperature and pore water.展开更多
This paper intuitively examines the dynamic behavior of two highly relevant interest rates in China. The first one is the government rate, which is decided and published by the central bank and can be simulated by pur...This paper intuitively examines the dynamic behavior of two highly relevant interest rates in China. The first one is the government rate, which is decided and published by the central bank and can be simulated by pure jump process. Estimation of the jump intension is given out. And by different robustness test, it keeps stable. The jump size has met the condition to make interest rate within reasonable bounds and shown some meaning of economic cycle behavior. The second one is the market rate, which is estimated by spline approximation based on the transaction data of government bonds. Several models, including Vasicek model, Vasicek-GARCH (1,1) model, CIR model, and CIR-GARCH(1,1), are empirically tested and the best performance is done by the Vasicek-GARCH(1,1) model. Furthermore, the estimate bias problem due to the near unit root process is tested and evidenced by both traditional methods and GPH test. Impact of government rate on market rate is finally checked and analyzed.展开更多
Considering the importance of the prediction of rock burst disasters, and in order to grasp the law of acoustic emission(AE) of coal samples in different dynamic destruction time, the SH-II AE monitoring system was ad...Considering the importance of the prediction of rock burst disasters, and in order to grasp the law of acoustic emission(AE) of coal samples in different dynamic destruction time, the SH-II AE monitoring system was adopted to monitor the failure process of coal samples. The study of the change rule of the AE numbers, energy, ‘b' value and spectrum in the micro crack propagation process of the coal samples shows that as dynamic damage time went by, AE presented high-energy counts and the accumulated counts increased during the compression phase. The AE energy and cumulative counts increased during the elastic stage. The AE blank area increased gradually and the blank lines were more and more obvious in the molding stage. The AE counts and energy showed a trend of decrease in the residual damage phase.AE ‘b' values gradually became sparse, and the large scale cracks percentage compared with micro cracks decreased and the degree of damage decreased. The AE frequency spectrum peak went from the residual damage phase to the molding phase, and finally it was nearly stable, besides the bandwidth of the main frequency is gradually narrowed. Also, the frequency peak changed from single peak frequency to bi-peak frequency and to the single peak frequency. Uniaxial compressive strength is more sensitive than the elastic modulus to dynamic damage time.展开更多
Three dimensional dynamic stress intensity factors are analyzed for a curved crack with a second order perturbation method. The method is extended to obtain an approximate representation of a three dimensional dynamic...Three dimensional dynamic stress intensity factors are analyzed for a curved crack with a second order perturbation method. The method is extended to obtain an approximate representation of a three dimensional dynamic stress intensity factors at the tip of a curved crack. Due to three dimensional curved crack growth the dynamic energy release rate can be calculated by using the Irwin's formula. A three dimensional curved crack in materials with inhomogeneous fracture toughness are considered. Paths of a brittle three dimensional curved crack propagating along a welded joint are predicted via the present method, where the effects of dynamic applied stresses, residual stresses, and material deterioration due to welding are taken into considerations.展开更多
The urban power grid(UPG)combines transmission and distribution networks.Past studies on UPG congestion mitigation have primarily focused on relieving local congestion while ignoring large-scale energy transfer with s...The urban power grid(UPG)combines transmission and distribution networks.Past studies on UPG congestion mitigation have primarily focused on relieving local congestion while ignoring large-scale energy transfer with safety margins and load balancing.This situation is expected to worsen with the proliferation of renewable energy and electric vehicles.In this paper,a two-layer congestion mitigation framework is proposed,one which considers the congestion of the UPG with flexible topologies.In the upper-layer,the particle swarm optimization algorithm is employed to optimize the power supply distribution(PSD)of substation transformers.This is known as the upper-layer PSD.The lower-layer model recalculates the new PSD,known as the lower-layer PSD,based on the topology candidates.A candidate topology is at an optimum when the Euclidean distance mismatch between the upper-and lower-layer PSDs is the smallest.This optimum topology is tested by standard power flow to ascertain its feasibility.The optimum transitioning sequence between the initial and optimum topologies is also determined by the two-layer framework to minimize voltage deviation and line overloading of the UPG considering dynamic thermal rating.The proposed framework is tested on a 56-node test system.Results show that the proposed framework can significantly reduce congestion,maintain safety margins,and determine the optimum transitioning sequence.展开更多
The overseas oil and gas investment evaluation is one of the core tasks in overseas investment of oil and gas companies,among which risk evaluation and benefit evaluation are the most important.This paper sets forth t...The overseas oil and gas investment evaluation is one of the core tasks in overseas investment of oil and gas companies,among which risk evaluation and benefit evaluation are the most important.This paper sets forth transmission paths of risk factors to the investment benefit by identifying 14 overseas oil and gas investment risks in four categories.On the basis of the concept of risk compensation,different compensation mechanisms specific to each risk are designed.The risk and benefit are integrated objectively to develop a comprehensive evaluation model by correcting the recoverable reserve,adjusting benefit evaluation parameters such as investments on exploration and development,and compensating for the changes in risk factors with time through dynamic discount rate.Moreover,two cases studies,namely the evaluations of Project A in Sudan and comparison among Blocks A–G,are used to describe usage method and applicable scope of such evaluation model,respectively.According to the results,oil price is a key influencing factor for enterprise internal risk and industrial risk.Risk compensation reduces comprehensive benefit of overseas oil and gas investment and undermines the investment feasibility and priority of blocks.The research findings of this paper are free from the effects of some subject factors and avoid multi-objective decision making,and also avoid the undesired repeated calculation of risk factors.展开更多
Accurate short-term prediction of overhead line(OHL)transmission ampacity can directly affect the efficiency of power system operation and planning.Any overcstiniation of the dynamic thermal line rating(DTLR)can lead ...Accurate short-term prediction of overhead line(OHL)transmission ampacity can directly affect the efficiency of power system operation and planning.Any overcstiniation of the dynamic thermal line rating(DTLR)can lead to the lifetime degradation and failure of OHLs,safety hazards,etc.This paper presents a secure yet sharp probabilistic model for the hour-ahead prediction of the DTLR.The security of the proposed DTLR limits the frequency of DTLR prediction exceeding the actual DTLR.The model is based on an augmented deep learning architecture that makes use of a wide range of predictors,including historical climatology data and latent variables obtained during DTLR calculation.Furthermore,by introducing a customized cost function,the deep neural network is trained to consider the DTLR security based on the required probability of exceedance while minimizing the deviations of the predicted DTLRs from the actual values.The proposed probabilistic DTLR is developed and verified using recorded experimental data.The simulation results validate the superiority of the proposed DTLR compared with the state-of-the-art prediction models using well-known evaluation metrics.展开更多
Molecular dynamics simulations of nanocrystalline Cu with average grain sizes of 3.1 nm, 6.2 nm, 12.4 nm and 18.6 nm under uniaxial strain and stress tension at strain rates of 10^8 s^-1, 10^9 S^-1 and 10^10 s^-1 are ...Molecular dynamics simulations of nanocrystalline Cu with average grain sizes of 3.1 nm, 6.2 nm, 12.4 nm and 18.6 nm under uniaxial strain and stress tension at strain rates of 10^8 s^-1, 10^9 S^-1 and 10^10 s^-1 are performed to study the combined grain size, strain rate and loading condition effects on mechanical properties. It is found that the strength of nanocrystalline Cu increases as grain size increases regardless of loading condition. Both the strength and ductility of nanocrystalline Cu increase with strain rate except that there is no monotonic relation between the strength and strain rate for specimens under uni- axial strain loading. Moreover, the strength and ductility of specimens under uniaxial strain loading are lower than those under uniaxial stress loading. The nucleation of voids at grain boundaries and their subsequent growth characterize the failure of specimens under uniaxial strain loading, while grain boundary sliding and necking dominate the failure of specimens under uniaxial stress loading. The rate dependent strength is mainly caused by the dynamic wave effect that limits dislocation motion, while combined twinning and slipping mechanism makes the material more ductile at higher strain rates.展开更多
A new temporal gravity field model called WHU-Grace01s solely recovered from Gravity Recovery and Climate Experiment (GRACE) K-Band Range Rate (KBRR) data based on dynamic integral approach is presented in this pa...A new temporal gravity field model called WHU-Grace01s solely recovered from Gravity Recovery and Climate Experiment (GRACE) K-Band Range Rate (KBRR) data based on dynamic integral approach is presented in this paper. After meticulously preprocessing of the GRACE KBRR data, the root mean square of its post residuals is about 0.2 micrometers per second, and seventy-two monthly temporal solutions truncated to degree and order 60 are computed for the period from January 2003 to December 2008. After applying the combi- nation filter in WHU-Grace01s, the global temporal signals show obvious periodical change rules in the large-scale fiver basins. In terms of the degree variance, our solution is smaller at high degrees, and shows a good consistency at the rest of degrees with the Release 05 models from Center for Space Research (CSR), GeoForschungsZentrum Potsdam (GFZ) and Jet Pro- pulsion Laboratory 0PL). Compared with other published models in terms of equivalent water height distribution, our solution is consistent with those published by CSR, GFZ, JPL, Delft institute of Earth Observation and Space system (DEOS), Tongji University (Tongji), Institute of Theoretical Geodesy (ITG), Astronomical Institute in University of Bern (AIUB) and Groupe de Recherche de Geodesie Spatiale (GRGS}, which indicates that the accuracy of WHU-Grace01s has a good consistency with the previously published GRACE solutions.展开更多
The dynamic response of multiple coplanar interface cracks between two dissimilar piezoelectric strips subjected to mechanical and electrical impacts is investigated.Solutions to two kinds of electric boundary conditi...The dynamic response of multiple coplanar interface cracks between two dissimilar piezoelectric strips subjected to mechanical and electrical impacts is investigated.Solutions to two kinds of electric boundary conditions on crack surfaces,i.e.electric impermeable and electric permeable,are obtained.Laplace and Fourier transforms and dislocation density functions are employed to reduce the mixed boundary value problem to Cauchy singular integral equations, which can be solved numerically.The effects of electrical load,geometry criterion of piezoelectric strips,relative location of cracks and material properties on the dynamic energy release rate are examined.展开更多
Different single-factor models are used to estimate the term structure of Hong Kong Inter-Bank Offered Rates (HIBOR). These models use stochastic differential equations which effectively reflect market characteristi...Different single-factor models are used to estimate the term structure of Hong Kong Inter-Bank Offered Rates (HIBOR). These models use stochastic differential equations which effectively reflect market characteristics of short- and long-term interest rates, such as capability of mean reversion and interest rate level fluctuation. For the period from 2005 to early 2007, the economy of Hong Kong had been relatively stable with pretty low volatilities in interest rate. However, starting from 2008 to beginning of 2012, the Hong Kong and the world economies had been steering from relatively stable to fluctuations, the 2008 financial tsunami initiated by the U,S. had been causing financial instability globally. With the U.S: government taking quantitative easing monetary policy, U.S. interest rates fluctuated and submerged rapidly. Volatility of HIBOR was extremely sensitive to fluctuation of U.S. interest rates, since Hong Kong dollar exchange rate has been pegged with U.S. dollar. In short, during the period of early 2008 to early 2012, volatility of short-term interest rate was extremely sensitive. Obviously, the term structure of interest rate for these two periods had made major shift, combining the two periods would lead to unfavorable econometric results.展开更多
The article presents the results of recent investigations into Holter monitoring of ECG, using non-linear analysis methods. This paper discusses one of the modern methods of time series analysis--a method of determini...The article presents the results of recent investigations into Holter monitoring of ECG, using non-linear analysis methods. This paper discusses one of the modern methods of time series analysis--a method of deterministic chaos theory. It involves the transition from study of the characteristics of the signal to the investigation of metric (and probabilistic) properties of the reconstructed attractor of the signal. It is shown that one of the most precise characteristics of the functional state of biological systems is the dynamical trend of correlation dimension and entropy of the reconstructed attractor. On the basis of this it is suggested that a complex programming apparatus be created for calculating these characteristics on line. A similar programming product is being created now with the support of RFBR. The first results of the working program, its adjustment, and further development, are also considered in the article.展开更多
One of the potential risks associated with subsurface storage of CO_2 is the seepage of CO_2 through existing faults and fractures. There have been a number of studies devoted to this topic. Some of these studies show...One of the potential risks associated with subsurface storage of CO_2 is the seepage of CO_2 through existing faults and fractures. There have been a number of studies devoted to this topic. Some of these studies show that geochemistry, especially mineralization, plays an important role in rendering the faults as conduits for CO_2 movement while others show that mineralization due to CO_2 injection can result in seep migration and flow diversion. Therefore, understanding the changes in reservoir properties due to pore alterations is important to ensure safe long term CO_2 storage in the subsurface. We study the changes in the Representative Elementary Volume(REV) of a rock due to reactive kinetics over a time, using a statistical approach and pore-scale CO_2-rock interactiondata.The goal of this study is to obtain the REV of a rock property that accounts for pore-scale changes over time due to reactive kinetics, and we call this as spatiotemporal REV. Scale-up results suggest that the REV changes with time when CO_2-rock interaction is considered. It is hypothesized that the alteration in pore structure introduces more heterogeneity in the rock, and because of this the magnitude of REV increases. It is possible that these noticeable changes in REV at pore-scale may have an impact when analyzed at the reservoir scale.展开更多
The COVID-19 was firstly reported in Wuhan,Hubei province,and it was brought to all over China by people travelling for Chinese New Year.The pandemic coronavirus with its catastrophic effects is now a global concern.F...The COVID-19 was firstly reported in Wuhan,Hubei province,and it was brought to all over China by people travelling for Chinese New Year.The pandemic coronavirus with its catastrophic effects is now a global concern.Forecasting of COVID-19 spread has attracted a great attention for public health emergency.However,few re-searchers look into the relationship between dynamic transmission rate and preventable measures by authorities.In this paper,the SEIR(Susceptible Exposed Infectious Recovered)model is employed to investigate the spread of COVID-19.The epidemic spread is divided into two stages:before and after intervention.Before intervention,the transmission rate is assumed to be a constant since individual,community and government response has not taken into place.After intervention,the transmission rate is reduced dramatically due to the societal actions or measures to reduce and prevent the spread of disease.The transmission rate is assumed to follow an exponential function,and the removal rate is assumed to follow a power exponent function.The removal rate is increased with the evolution of the time.Using the real data,the model and parameters are optimized.The transmission rate without measure is calculated to be 0.033 and 0.030 for Hubei and outside Hubei province,respectively.After the model is established,the spread of COVID-19 in Hubei province,France and USA is predicted.From results,USA performs the worst according to the dynamic ratio.The model has provided a mathematical method to evaluate the effectiveness of the government response and can be used to forecast the spread of COVID-19 with better performance.展开更多
The hydrogen ion implantation process in Smart-Cut technology is investigated in the present paper using molecular dynamics(MD) simulations.This work focuses on the effects of the implantation energy,dose of hydroge...The hydrogen ion implantation process in Smart-Cut technology is investigated in the present paper using molecular dynamics(MD) simulations.This work focuses on the effects of the implantation energy,dose of hydrogen ions and implantation temperature on the distribution of hydrogen ions and defect rate induced by ion implantation.Numerical analysis shows that implanted hydrogen ions follow an approximate Gaussian distribution which mainly depends on the implantation energy and is independent of the hydrogen ion dose and implantation temperature.By introducing a new parameter of defect rate,the influence of the processing parameters on defect rate is also quantitatively examined.展开更多
During high speed machining in the field of manufacture,chip formation is a severe plastic deformation process including large strain,high strain rate and high temperature.And the strain rate in high speed cutting pro...During high speed machining in the field of manufacture,chip formation is a severe plastic deformation process including large strain,high strain rate and high temperature.And the strain rate in high speed cutting process can be achieved to 105 s^(-1).30CrMnSiNi2Asteel is a kind of important high-strength low-alloy structural steel with wide application range.Obtaining the dynamic mechanical properties of30CrMnSiNi2Aunder the conditions of high strain rate and high temperature is necessary to construct the constitutive relation model for high speed machining.The dynamic compressive mechanical properties of30CrMnSiNi2Asteel were studied using split Hopkinson pressure bar(SHPB)tests at 30-700°C and3000-10000s^(-1).The stress-strain curves of 30CrMnSiNi2Asteel at different temperatures and strain rates were investigated,and the strain hardening effect and temperature effect were discussed.Experimental results show that 30CrMnSiNi2Ahas obvious temperature sensitivity at 300°C.Moreover,the flow stress decreased significantly with the increase of temperature.The strain hardening effect of the material at high strain rate is not significant with the increase of strain.The strain rate hardening effect is obvious with increasing the temperature.According to the experimental results,the established Johnson-Cook(J-C)constitutive model of 30CrMnSiNi2Asteel could be used at high strain rate and high temperature.展开更多
Reliable estimation of the ventilation rate(VR)in intensive livestock buildings is necessary for studying building environmental control strategies and predicting indoor air quality and air emissions.As direct air exc...Reliable estimation of the ventilation rate(VR)in intensive livestock buildings is necessary for studying building environmental control strategies and predicting indoor air quality and air emissions.As direct air exchange measurements are time-consuming and expensive,it is environmentally inefficient to measure livestock building VR continuously in practice.Hence,indirect VR estimation methods have been widely used in modelling environmental control and air emissions,and also to measure airflow in the field.The accuracy of indirect measurement methods needs to be evaluated by comparing with direct measurements.In this study,the direct and indirect methods of determining hourly and daily mean VRs were applied to a mechanically-ventilated dairy free stall barn monitored by the 24-month National Air Emissions Monitoring Study.The direct method was used to continuously monitor fan rotational speeds,and differential static pressures,coupled with periodic in-situ fan performance assessments,to calculate the VR.The indirect method consisted of estimating the VR using CO2 concentration measurements and the CO2 mass balance method.The average daily and hourly means(mean±SD)of directly measured barn ventilation rates for two years were(246±73)m3/s and(245±77)m3/s,respectively.The average daily and hourly means(mean±SD)of barn ventilation rates estimated by the CO2 mass balance method were(287±93.4)m3/s and(287±118)m3/s,respectively.Correlation analyses showed a strong correlation between the indirect CO2 mass balance method and direct measurement methods(r=0.93 for daily means and r=0.85 for hourly means).展开更多
A Multimedia streams dynamic rate control algorithm based on Fuzzy adaptive PID (MFPID) has been proposed to implement multimedia streams' end sending rate on-line self-regulating and smoothing, and to track system...A Multimedia streams dynamic rate control algorithm based on Fuzzy adaptive PID (MFPID) has been proposed to implement multimedia streams' end sending rate on-line self-regulating and smoothing, and to track system resources in time, so that it can avoid system's regulating oscillation and guarantee system's stability. And, some work has been done to analyze adaptive session model of multimedia streams, to implement future available bandwidth estimation of IP network, to achieve PID parameters' on-line self-tuning by fuzzy controlling. Simulation validated the theoretical results of MFPID.展开更多
文摘Dynamic properties of rocks are important in a variety of rock mechanics and rock engineering problems. Due to the transient nature of the loading, dynamic tests of rock materials are very different from and much more challenging than their static counterparts. Dynamic tests are usually conducted using the split Hopkinson bar or Kolsl^j bar systems, which include both split Hopkinson pressure bar (SHPB) and split Hopkinson tension bar (SHTB) systems. Significant progress has been made on the quantification of various rock dynamic properties, owing to the advances in the experimental techniques of SHPB system. This review aims to fully describe and critically assess the detailed procedures and principles of tech- niques for dynamic rock tests using split Hopkinson bars. The history and principles of SHPB are outlined, followed by the key loading techniques that are useful for dynamic rock tests with SHPB (i.e. pulse shaping, momentum-trap and multi-axial loading techniques). Various measurement techniques for rock tests in SHPB (i.e. X-ray micro computed tomography (CT), laser gap gauge (LGG), digital image corre- lation (DIC), Moir~ method, caustics method, photoelastic coating method, dynamic infrared thermog- raphy) are then discussed. As the main objective of the review, various dynamic measurement techniques for rocks using SHPB are described, including dynamic rock strength measurements (i.e. dynamic compression, tension, bending and shear tests), dynamic fracture measurements (i.e. dynamic imitation and propagation fracture toughness, dynamic fracture energy and fracture velocity), and dy- namic techniques for studying the influences of temperature and pore water.
文摘This paper intuitively examines the dynamic behavior of two highly relevant interest rates in China. The first one is the government rate, which is decided and published by the central bank and can be simulated by pure jump process. Estimation of the jump intension is given out. And by different robustness test, it keeps stable. The jump size has met the condition to make interest rate within reasonable bounds and shown some meaning of economic cycle behavior. The second one is the market rate, which is estimated by spline approximation based on the transaction data of government bonds. Several models, including Vasicek model, Vasicek-GARCH (1,1) model, CIR model, and CIR-GARCH(1,1), are empirically tested and the best performance is done by the Vasicek-GARCH(1,1) model. Furthermore, the estimate bias problem due to the near unit root process is tested and evidenced by both traditional methods and GPH test. Impact of government rate on market rate is finally checked and analyzed.
基金provided by the National Natural Science Foundation of China (No.51374097)the Science Foundation General Projects of Chinese Postgraduate (No.2014M561384)Key Project of Science and Technology Research of Department of Education in Heilongjiang Province (No.12541z009)
文摘Considering the importance of the prediction of rock burst disasters, and in order to grasp the law of acoustic emission(AE) of coal samples in different dynamic destruction time, the SH-II AE monitoring system was adopted to monitor the failure process of coal samples. The study of the change rule of the AE numbers, energy, ‘b' value and spectrum in the micro crack propagation process of the coal samples shows that as dynamic damage time went by, AE presented high-energy counts and the accumulated counts increased during the compression phase. The AE energy and cumulative counts increased during the elastic stage. The AE blank area increased gradually and the blank lines were more and more obvious in the molding stage. The AE counts and energy showed a trend of decrease in the residual damage phase.AE ‘b' values gradually became sparse, and the large scale cracks percentage compared with micro cracks decreased and the degree of damage decreased. The AE frequency spectrum peak went from the residual damage phase to the molding phase, and finally it was nearly stable, besides the bandwidth of the main frequency is gradually narrowed. Also, the frequency peak changed from single peak frequency to bi-peak frequency and to the single peak frequency. Uniaxial compressive strength is more sensitive than the elastic modulus to dynamic damage time.
基金supported by National Natural Science Foundation of China(No.91016026)Henan Province Natural Science Foundation Subsidy Project(No.152300410003)
文摘Three dimensional dynamic stress intensity factors are analyzed for a curved crack with a second order perturbation method. The method is extended to obtain an approximate representation of a three dimensional dynamic stress intensity factors at the tip of a curved crack. Due to three dimensional curved crack growth the dynamic energy release rate can be calculated by using the Irwin's formula. A three dimensional curved crack in materials with inhomogeneous fracture toughness are considered. Paths of a brittle three dimensional curved crack propagating along a welded joint are predicted via the present method, where the effects of dynamic applied stresses, residual stresses, and material deterioration due to welding are taken into considerations.
基金supported by the Universiti Sains Malaysia,Research University Team(RUTeam)Grant Scheme(No.1001/PELECT/8580011).
文摘The urban power grid(UPG)combines transmission and distribution networks.Past studies on UPG congestion mitigation have primarily focused on relieving local congestion while ignoring large-scale energy transfer with safety margins and load balancing.This situation is expected to worsen with the proliferation of renewable energy and electric vehicles.In this paper,a two-layer congestion mitigation framework is proposed,one which considers the congestion of the UPG with flexible topologies.In the upper-layer,the particle swarm optimization algorithm is employed to optimize the power supply distribution(PSD)of substation transformers.This is known as the upper-layer PSD.The lower-layer model recalculates the new PSD,known as the lower-layer PSD,based on the topology candidates.A candidate topology is at an optimum when the Euclidean distance mismatch between the upper-and lower-layer PSDs is the smallest.This optimum topology is tested by standard power flow to ascertain its feasibility.The optimum transitioning sequence between the initial and optimum topologies is also determined by the two-layer framework to minimize voltage deviation and line overloading of the UPG considering dynamic thermal rating.The proposed framework is tested on a 56-node test system.Results show that the proposed framework can significantly reduce congestion,maintain safety margins,and determine the optimum transitioning sequence.
文摘The overseas oil and gas investment evaluation is one of the core tasks in overseas investment of oil and gas companies,among which risk evaluation and benefit evaluation are the most important.This paper sets forth transmission paths of risk factors to the investment benefit by identifying 14 overseas oil and gas investment risks in four categories.On the basis of the concept of risk compensation,different compensation mechanisms specific to each risk are designed.The risk and benefit are integrated objectively to develop a comprehensive evaluation model by correcting the recoverable reserve,adjusting benefit evaluation parameters such as investments on exploration and development,and compensating for the changes in risk factors with time through dynamic discount rate.Moreover,two cases studies,namely the evaluations of Project A in Sudan and comparison among Blocks A–G,are used to describe usage method and applicable scope of such evaluation model,respectively.According to the results,oil price is a key influencing factor for enterprise internal risk and industrial risk.Risk compensation reduces comprehensive benefit of overseas oil and gas investment and undermines the investment feasibility and priority of blocks.The research findings of this paper are free from the effects of some subject factors and avoid multi-objective decision making,and also avoid the undesired repeated calculation of risk factors.
文摘Accurate short-term prediction of overhead line(OHL)transmission ampacity can directly affect the efficiency of power system operation and planning.Any overcstiniation of the dynamic thermal line rating(DTLR)can lead to the lifetime degradation and failure of OHLs,safety hazards,etc.This paper presents a secure yet sharp probabilistic model for the hour-ahead prediction of the DTLR.The security of the proposed DTLR limits the frequency of DTLR prediction exceeding the actual DTLR.The model is based on an augmented deep learning architecture that makes use of a wide range of predictors,including historical climatology data and latent variables obtained during DTLR calculation.Furthermore,by introducing a customized cost function,the deep neural network is trained to consider the DTLR security based on the required probability of exceedance while minimizing the deviations of the predicted DTLRs from the actual values.The proposed probabilistic DTLR is developed and verified using recorded experimental data.The simulation results validate the superiority of the proposed DTLR compared with the state-of-the-art prediction models using well-known evaluation metrics.
基金financial support from Australian Research Council(ARC)Centre of Excellence for Design in Light Metals
文摘Molecular dynamics simulations of nanocrystalline Cu with average grain sizes of 3.1 nm, 6.2 nm, 12.4 nm and 18.6 nm under uniaxial strain and stress tension at strain rates of 10^8 s^-1, 10^9 S^-1 and 10^10 s^-1 are performed to study the combined grain size, strain rate and loading condition effects on mechanical properties. It is found that the strength of nanocrystalline Cu increases as grain size increases regardless of loading condition. Both the strength and ductility of nanocrystalline Cu increase with strain rate except that there is no monotonic relation between the strength and strain rate for specimens under uni- axial strain loading. Moreover, the strength and ductility of specimens under uniaxial strain loading are lower than those under uniaxial stress loading. The nucleation of voids at grain boundaries and their subsequent growth characterize the failure of specimens under uniaxial strain loading, while grain boundary sliding and necking dominate the failure of specimens under uniaxial stress loading. The rate dependent strength is mainly caused by the dynamic wave effect that limits dislocation motion, while combined twinning and slipping mechanism makes the material more ductile at higher strain rates.
基金supported by the National 973Program of China(2013CB733302)the National Natural Science Foundation of China(41131067,41174020,41374023,41474019)+2 种基金the Open Research Fund Program of the State Key Laboratory of Geodesy and Earth's Dynamics(SKLGED2015-1-3-E)the open fund of State Key Laboratory of Geographic Information Engineering(SKLGIE2013-M-1-3)the open fund of Key Laboratory of Geospace Environment and Geodesy,Ministry of Education(13-02-05)
文摘A new temporal gravity field model called WHU-Grace01s solely recovered from Gravity Recovery and Climate Experiment (GRACE) K-Band Range Rate (KBRR) data based on dynamic integral approach is presented in this paper. After meticulously preprocessing of the GRACE KBRR data, the root mean square of its post residuals is about 0.2 micrometers per second, and seventy-two monthly temporal solutions truncated to degree and order 60 are computed for the period from January 2003 to December 2008. After applying the combi- nation filter in WHU-Grace01s, the global temporal signals show obvious periodical change rules in the large-scale fiver basins. In terms of the degree variance, our solution is smaller at high degrees, and shows a good consistency at the rest of degrees with the Release 05 models from Center for Space Research (CSR), GeoForschungsZentrum Potsdam (GFZ) and Jet Pro- pulsion Laboratory 0PL). Compared with other published models in terms of equivalent water height distribution, our solution is consistent with those published by CSR, GFZ, JPL, Delft institute of Earth Observation and Space system (DEOS), Tongji University (Tongji), Institute of Theoretical Geodesy (ITG), Astronomical Institute in University of Bern (AIUB) and Groupe de Recherche de Geodesie Spatiale (GRGS}, which indicates that the accuracy of WHU-Grace01s has a good consistency with the previously published GRACE solutions.
基金Project supported by the Research Grants Council of the Hong Kong Special Administrative Region,China(No.HKUT014/00E)the National Natural Science Foundation of China(No.19772029).
文摘The dynamic response of multiple coplanar interface cracks between two dissimilar piezoelectric strips subjected to mechanical and electrical impacts is investigated.Solutions to two kinds of electric boundary conditions on crack surfaces,i.e.electric impermeable and electric permeable,are obtained.Laplace and Fourier transforms and dislocation density functions are employed to reduce the mixed boundary value problem to Cauchy singular integral equations, which can be solved numerically.The effects of electrical load,geometry criterion of piezoelectric strips,relative location of cracks and material properties on the dynamic energy release rate are examined.
文摘Different single-factor models are used to estimate the term structure of Hong Kong Inter-Bank Offered Rates (HIBOR). These models use stochastic differential equations which effectively reflect market characteristics of short- and long-term interest rates, such as capability of mean reversion and interest rate level fluctuation. For the period from 2005 to early 2007, the economy of Hong Kong had been relatively stable with pretty low volatilities in interest rate. However, starting from 2008 to beginning of 2012, the Hong Kong and the world economies had been steering from relatively stable to fluctuations, the 2008 financial tsunami initiated by the U,S. had been causing financial instability globally. With the U.S: government taking quantitative easing monetary policy, U.S. interest rates fluctuated and submerged rapidly. Volatility of HIBOR was extremely sensitive to fluctuation of U.S. interest rates, since Hong Kong dollar exchange rate has been pegged with U.S. dollar. In short, during the period of early 2008 to early 2012, volatility of short-term interest rate was extremely sensitive. Obviously, the term structure of interest rate for these two periods had made major shift, combining the two periods would lead to unfavorable econometric results.
文摘The article presents the results of recent investigations into Holter monitoring of ECG, using non-linear analysis methods. This paper discusses one of the modern methods of time series analysis--a method of deterministic chaos theory. It involves the transition from study of the characteristics of the signal to the investigation of metric (and probabilistic) properties of the reconstructed attractor of the signal. It is shown that one of the most precise characteristics of the functional state of biological systems is the dynamical trend of correlation dimension and entropy of the reconstructed attractor. On the basis of this it is suggested that a complex programming apparatus be created for calculating these characteristics on line. A similar programming product is being created now with the support of RFBR. The first results of the working program, its adjustment, and further development, are also considered in the article.
基金supported by the Center for Frontiers of Subsurface Energy Security (CFSES), UT Austinfunded by Basic Energy Sciences at the U.S.Department of Energy
文摘One of the potential risks associated with subsurface storage of CO_2 is the seepage of CO_2 through existing faults and fractures. There have been a number of studies devoted to this topic. Some of these studies show that geochemistry, especially mineralization, plays an important role in rendering the faults as conduits for CO_2 movement while others show that mineralization due to CO_2 injection can result in seep migration and flow diversion. Therefore, understanding the changes in reservoir properties due to pore alterations is important to ensure safe long term CO_2 storage in the subsurface. We study the changes in the Representative Elementary Volume(REV) of a rock due to reactive kinetics over a time, using a statistical approach and pore-scale CO_2-rock interactiondata.The goal of this study is to obtain the REV of a rock property that accounts for pore-scale changes over time due to reactive kinetics, and we call this as spatiotemporal REV. Scale-up results suggest that the REV changes with time when CO_2-rock interaction is considered. It is hypothesized that the alteration in pore structure introduces more heterogeneity in the rock, and because of this the magnitude of REV increases. It is possible that these noticeable changes in REV at pore-scale may have an impact when analyzed at the reservoir scale.
基金This work is supported by National Key R and D Program of China(No.2017YFC0803300)National Science Foundation of China(Grant Nos.7204100828,91646201,U1633203)High-tech Discipline Con-struction Funding for Universities in Beijing(Safety Science and Engi-neering)and Beijing Key Laboratory of City Integrated Emergency Re-sponse Science.
文摘The COVID-19 was firstly reported in Wuhan,Hubei province,and it was brought to all over China by people travelling for Chinese New Year.The pandemic coronavirus with its catastrophic effects is now a global concern.Forecasting of COVID-19 spread has attracted a great attention for public health emergency.However,few re-searchers look into the relationship between dynamic transmission rate and preventable measures by authorities.In this paper,the SEIR(Susceptible Exposed Infectious Recovered)model is employed to investigate the spread of COVID-19.The epidemic spread is divided into two stages:before and after intervention.Before intervention,the transmission rate is assumed to be a constant since individual,community and government response has not taken into place.After intervention,the transmission rate is reduced dramatically due to the societal actions or measures to reduce and prevent the spread of disease.The transmission rate is assumed to follow an exponential function,and the removal rate is assumed to follow a power exponent function.The removal rate is increased with the evolution of the time.Using the real data,the model and parameters are optimized.The transmission rate without measure is calculated to be 0.033 and 0.030 for Hubei and outside Hubei province,respectively.After the model is established,the spread of COVID-19 in Hubei province,France and USA is predicted.From results,USA performs the worst according to the dynamic ratio.The model has provided a mathematical method to evaluate the effectiveness of the government response and can be used to forecast the spread of COVID-19 with better performance.
基金Project supported by the National Natural Science Foundation of China(No.11372261)the Excellent Young Scientists Supporting Project of Science and Technology Department of Sichuan Province(No.2013JQ0030)+3 种基金the Supporting Project of Department of Education of Sichuan Province(No.2014zd3132)the Opening Project of Key Laboratory of Testing Technology for Manufacturing Process,Southwest University of Science and Technology-Ministry of Education(No.12zxzk02)the Fund of Doctoral Research of Southwest University of Science and Technology(No.12zx7106)the Postgraduate Innovation Fund Project of Southwest University of Science and Technology(No.14ycxjj0121)
文摘The hydrogen ion implantation process in Smart-Cut technology is investigated in the present paper using molecular dynamics(MD) simulations.This work focuses on the effects of the implantation energy,dose of hydrogen ions and implantation temperature on the distribution of hydrogen ions and defect rate induced by ion implantation.Numerical analysis shows that implanted hydrogen ions follow an approximate Gaussian distribution which mainly depends on the implantation energy and is independent of the hydrogen ion dose and implantation temperature.By introducing a new parameter of defect rate,the influence of the processing parameters on defect rate is also quantitatively examined.
基金supported by the National High Technology Research and Development Program of China(2014AA041504)the National Natural Science Foundation of China(51605161)
文摘During high speed machining in the field of manufacture,chip formation is a severe plastic deformation process including large strain,high strain rate and high temperature.And the strain rate in high speed cutting process can be achieved to 105 s^(-1).30CrMnSiNi2Asteel is a kind of important high-strength low-alloy structural steel with wide application range.Obtaining the dynamic mechanical properties of30CrMnSiNi2Aunder the conditions of high strain rate and high temperature is necessary to construct the constitutive relation model for high speed machining.The dynamic compressive mechanical properties of30CrMnSiNi2Asteel were studied using split Hopkinson pressure bar(SHPB)tests at 30-700°C and3000-10000s^(-1).The stress-strain curves of 30CrMnSiNi2Asteel at different temperatures and strain rates were investigated,and the strain hardening effect and temperature effect were discussed.Experimental results show that 30CrMnSiNi2Ahas obvious temperature sensitivity at 300°C.Moreover,the flow stress decreased significantly with the increase of temperature.The strain hardening effect of the material at high strain rate is not significant with the increase of strain.The strain rate hardening effect is obvious with increasing the temperature.According to the experimental results,the established Johnson-Cook(J-C)constitutive model of 30CrMnSiNi2Asteel could be used at high strain rate and high temperature.
文摘Reliable estimation of the ventilation rate(VR)in intensive livestock buildings is necessary for studying building environmental control strategies and predicting indoor air quality and air emissions.As direct air exchange measurements are time-consuming and expensive,it is environmentally inefficient to measure livestock building VR continuously in practice.Hence,indirect VR estimation methods have been widely used in modelling environmental control and air emissions,and also to measure airflow in the field.The accuracy of indirect measurement methods needs to be evaluated by comparing with direct measurements.In this study,the direct and indirect methods of determining hourly and daily mean VRs were applied to a mechanically-ventilated dairy free stall barn monitored by the 24-month National Air Emissions Monitoring Study.The direct method was used to continuously monitor fan rotational speeds,and differential static pressures,coupled with periodic in-situ fan performance assessments,to calculate the VR.The indirect method consisted of estimating the VR using CO2 concentration measurements and the CO2 mass balance method.The average daily and hourly means(mean±SD)of directly measured barn ventilation rates for two years were(246±73)m3/s and(245±77)m3/s,respectively.The average daily and hourly means(mean±SD)of barn ventilation rates estimated by the CO2 mass balance method were(287±93.4)m3/s and(287±118)m3/s,respectively.Correlation analyses showed a strong correlation between the indirect CO2 mass balance method and direct measurement methods(r=0.93 for daily means and r=0.85 for hourly means).
基金This workis supported by the Chinese High Technology Development Project"863"(2003AA121560) .
文摘A Multimedia streams dynamic rate control algorithm based on Fuzzy adaptive PID (MFPID) has been proposed to implement multimedia streams' end sending rate on-line self-regulating and smoothing, and to track system resources in time, so that it can avoid system's regulating oscillation and guarantee system's stability. And, some work has been done to analyze adaptive session model of multimedia streams, to implement future available bandwidth estimation of IP network, to achieve PID parameters' on-line self-tuning by fuzzy controlling. Simulation validated the theoretical results of MFPID.