期刊文献+
共找到884篇文章
< 1 2 45 >
每页显示 20 50 100
Particle swarm optimization-based algorithm of a symplectic method for robotic dynamics and control 被引量:5
1
作者 Zhaoyue XU Lin DU +1 位作者 Haopeng WANG Zichen DENG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第1期111-126,共16页
Multibody system dynamics provides a strong tool for the estimation of dynamic performances and the optimization of multisystem robot design. It can be described with differential algebraic equations(DAEs). In this pa... Multibody system dynamics provides a strong tool for the estimation of dynamic performances and the optimization of multisystem robot design. It can be described with differential algebraic equations(DAEs). In this paper, a particle swarm optimization(PSO) method is introduced to solve and control a symplectic multibody system for the first time. It is first combined with the symplectic method to solve problems in uncontrolled and controlled robotic arm systems. It is shown that the results conserve the energy and keep the constraints of the chaotic motion, which demonstrates the efficiency, accuracy, and time-saving ability of the method. To make the system move along the pre-planned path, which is a functional extremum problem, a double-PSO-based instantaneous optimal control is introduced. Examples are performed to test the effectiveness of the double-PSO-based instantaneous optimal control. The results show that the method has high accuracy, a fast convergence speed, and a wide range of applications.All the above verify the immense potential applications of the PSO method in multibody system dynamics. 展开更多
关键词 ROBOTIC dynamicS MULTIBODY system SYMPLECTIC method particle swarm optimization(PSO)algorithm instantaneous optimal control
下载PDF
Dynamic Optimization Method on Electromechanical Coupling System by Exponential Inertia Weight Particle Swarm Algorithm 被引量:4
2
作者 LI Qiang WU Jianxin SUN Yan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第4期602-607,共6页
Dynamic optimization of electromechanical coupling system is a significant engineering problem in the field of mechatronics. The performance improvement of electromechanical equipment depends on the system design para... Dynamic optimization of electromechanical coupling system is a significant engineering problem in the field of mechatronics. The performance improvement of electromechanical equipment depends on the system design parameters. Aiming at the spindle unit of refitted machine tool for solid rocket, the vibration acceleration of tool is taken as objective function, and the electromechanical system design parameters are appointed as design variables. Dynamic optimization model is set up by adopting Lagrange-Maxwell equations, Park transform and electromechanical system energy equations. In the procedure of seeking high efficient optimization method, exponential function is adopted to be the weight function of particle swarm optimization algorithm. Exponential inertia weight particle swarm algorithm(EPSA), is formed and applied to solve the dynamic optimization problem of electromechanical system. The probability density function of EPSA is presented and used to perform convergence analysis. After calculation, the optimized design parameters of the spindle unit are obtained in limited time period. The vibration acceleration of the tool has been decreased greatly by the optimized design parameters. The research job in the paper reveals that the problem of dynamic optimization of electromechanical system can be solved by the method of combining system dynamic analysis with reformed swarm particle optimizati on. Such kind of method can be applied in the design of robots, NC machine, and other electromechanical equipments. 展开更多
关键词 particle swarm algorithm electromechanical coupling system dynamic optimization
下载PDF
An Improved Multi-Objective Particle Swarm Optimization Routing on MANET
3
作者 G.Rajeshkumar M.Vinoth Kumar +3 位作者 K.Sailaja Kumar Surbhi Bhatia Arwa Mashat Pankaj Dadheech 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1187-1200,共14页
A Mobile Ad hoc Network(MANET)is a group of low-power con-sumption of wireless mobile nodes that configure a wireless network without the assistance of any existing infrastructure/centralized organization.The primary a... A Mobile Ad hoc Network(MANET)is a group of low-power con-sumption of wireless mobile nodes that configure a wireless network without the assistance of any existing infrastructure/centralized organization.The primary aim of MANETs is to extendflexibility into the self-directed,mobile,and wireless domain,in which a cluster of autonomous nodes forms a MANET routing system.An Intrusion Detection System(IDS)is a tool that examines a network for mal-icious behavior/policy violations.A network monitoring system is often used to report/gather any suspicious attacks/violations.An IDS is a software program or hardware system that monitors network/security traffic for malicious attacks,sending out alerts whenever it detects malicious nodes.The impact of Dynamic Source Routing(DSR)in MANETs challenging blackhole attack is investigated in this research article.The Cluster Trust Adaptive Acknowledgement(CTAA)method is used to identify unauthorised and malfunctioning nodes in a MANET environment.MANET system is active and provides successful delivery of a data packet,which implements Kalman Filters(KF)to anticipate node trustworthiness.Furthermore,KF is used to eliminate synchronisation errors that arise during the sending and receiving data.In order to provide an energy-efficient solution and to minimize network traffic,route optimization in MANET by using Multi-Objective Particle Swarm Optimization(MOPSO)technique to determine the optimal num-ber of clustered MANET along with energy dissipation in nodes.According to the researchfindings,the proposed CTAA-MPSO achieves a Packet Delivery Ratio(PDR)of 3.3%.In MANET,the PDR of CTAA-MPSO improves CTAA-PSO by 3.5%at 30%malware. 展开更多
关键词 MANET intrusion detection system CLUSTER kalmanfilter dynamic source routing multi-objective particle swarm optimization packet delivery ratio
下载PDF
Dynamical Adaptive Particle Swarm Algorithm and Its Application to Optimization of PID Parameters
4
作者 Jimin Li Guolin Yu 《American Journal of Operations Research》 2012年第3期448-451,共4页
Based on a new adaptive Particle Swarm Optimization algorithm with dynamically changing inertia weight (DAPSO), It is used to optimize parameters in PID controller. Compared to conventional PID methods, the simulation... Based on a new adaptive Particle Swarm Optimization algorithm with dynamically changing inertia weight (DAPSO), It is used to optimize parameters in PID controller. Compared to conventional PID methods, the simulation shows that this new method makes the optimization perfectly and convergence quickly. 展开更多
关键词 particle swarm optimization dynamicAL ADAPTIVE PID Automatic REGULATION System
下载PDF
Research on Optimization of Freight Train ATO Based on Elite Competition Multi-Objective Particle Swarm Optimization 被引量:1
5
作者 Lingzhi Yi Renzhe Duan +3 位作者 Wang Li Yihao Wang Dake Zhang Bo Liu 《Energy and Power Engineering》 2021年第4期41-51,共11页
<div style="text-align:justify;"> In view of the complex problems that freight train ATO (automatic train operation) needs to comprehensively consider punctuality, energy saving and safety, a dynamics ... <div style="text-align:justify;"> In view of the complex problems that freight train ATO (automatic train operation) needs to comprehensively consider punctuality, energy saving and safety, a dynamics model of the freight train operation process is established based on the safety and the freight train dynamics model in the process of its operation. The algorithm of combining elite competition strategy with multi-objective particle swarm optimization technology is introduced, and the winning particles are obtained through the competition between two elite particles to guide the update of other particles, so as to balance the convergence and distribution of multi-objective particle swarm optimization. The performance comparison experimental results verify the superiority of the proposed algorithm. The simulation experiments of the actual line verify the feasibility of the model and the effectiveness of the proposed algorithm. </div> 展开更多
关键词 Freight Train Automatic Train Operation dynamics Model Competitive Multi-Objective particle swarm optimization Algorithm (CMOPSO) Multi-Objective optimization
下载PDF
An Enhanced Particle Swarm Optimization for ITC2021 Sports Timetabling
6
作者 Mutasem K.Alsmadi Ghaith M.Jaradat +5 位作者 Malek Alzaqebah Ibrahim A.Lmarashdeh Fahad A.Alghamdi Rami Mustafa A.Mohammad Nahier Aldhafferi Abdullah Alqahtani 《Computers, Materials & Continua》 SCIE EI 2022年第7期1995-2014,共20页
Timetabling problem is among the most difficult operational tasks and is an important step in raising industrial productivity,capability,and capacity.Such tasks are usually tackled using metaheuristics techniques that... Timetabling problem is among the most difficult operational tasks and is an important step in raising industrial productivity,capability,and capacity.Such tasks are usually tackled using metaheuristics techniques that provide an intelligent way of suggesting solutions or decision-making.Swarm intelligence techniques including Particle Swarm Optimization(PSO)have proved to be effective examples.Different recent experiments showed that the PSO algorithm is reliable for timetabling in many applications such as educational and personnel timetabling,machine scheduling,etc.However,having an optimal solution is extremely challenging but having a sub-optimal solution using heuristics or metaheuristics is guaranteed.This research paper seeks the enhancement of the PSO algorithm for an efficient timetabling task.This algorithm aims at generating a feasible timetable within a reasonable time.This enhanced version is a hybrid dynamic adaptive PSO algorithm that is tested on a round-robin tournament known as ITC2021 which is dedicated to sports timetabling.The competition includes several soft and hard constraints to be satisfied in order to build a feasible or sub-optimal timetable.It consists of three categories of complexities,namely early,test,and middle instances.Results showed that the proposed dynamic adaptive PSO has obtained feasible timetables for almost all of the instances.The feasibility is measured by minimizing the violation of hard constraints to zero.The performance of the dynamic adaptive PSO is evaluated by the consumed computational time to produce a solution of feasible timetable,consistency,and robustness.The dynamic adaptive PSO showed a robust and consistent performance in producing a diversity of timetables in a reasonable computational time. 展开更多
关键词 Sports timetabling particle swarm optimization ITC2021 roundrobin tournament dynamic adaptive
下载PDF
Design of Robust Power System Stabilizer Based on Particle Swarm Optimization
7
作者 Magdi S. Mahmoud Hisham M. Soliman 《Circuits and Systems》 2012年第1期82-89,共8页
In this paper, we examine the problem of designing power system stabilizer (PSS). A new technique is developed using particle swarm optimization (PSO) combined with linear matrix inequality (LMI). The main feature of ... In this paper, we examine the problem of designing power system stabilizer (PSS). A new technique is developed using particle swarm optimization (PSO) combined with linear matrix inequality (LMI). The main feature of PSO, not sticking into a local minimum, is used to eliminate the conservativeness of designing a static output feedback (SOF) stabilizer within an iterative solution of LMIs. The technique is further extended to guarantee robustness against uncertainties wherein power systems operation is changing continuously due to load changes. Numerical simulation ahs illustrated the utility of the developed technique. 展开更多
关键词 dynamic Stability Power System STABILIZER STATIC OUTPUT Feedback particle swarm optimization Linear Matrix INEQUALITY
下载PDF
Recent Advances in Particle Swarm Optimization for Large Scale Problems
8
作者 Danping Yan Yongzhong Lu +3 位作者 Min Zhou Shiping Chen David Levy Jicheng You 《Journal of Autonomous Intelligence》 2018年第1期22-35,共14页
Accompanied by the advent of current big data ages,the scales of real world optimization problems with many decisive design variables are becoming much larger.Up to date,how to develop new optimization algorithms for ... Accompanied by the advent of current big data ages,the scales of real world optimization problems with many decisive design variables are becoming much larger.Up to date,how to develop new optimization algorithms for these large scale problems and how to expand the scalability of existing optimization algorithms have posed further challenges in the domain of bio-inspired computation.So addressing these complex large scale problems to produce truly useful results is one of the presently hottest topics.As a branch of the swarm intelligence based algorithms,particle swarm optimization (PSO) for coping with large scale problems and its expansively diverse applications have been in rapid development over the last decade years.This reviewpaper mainly presents its recent achievements and trends,and also highlights the existing unsolved challenging problems and key issues with a huge impact in order to encourage further more research in both large scale PSO theories and their applications in the forthcoming years. 展开更多
关键词 swarm INTELLIGENCE particle swarm optimization large scale optimization problem cooperative coevolution ENSEMBLE evolution static GROUPING METHOD dynamic GROUPING METHOD
下载PDF
Data-based Fault Tolerant Control for Affine Nonlinear Systems Through Particle Swarm Optimized Neural Networks 被引量:15
9
作者 Haowei Lin Bo Zhao +1 位作者 Derong Liu Cesare Alippi 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第4期954-964,共11页
In this paper, a data-based fault tolerant control(FTC) scheme is investigated for unknown continuous-time(CT)affine nonlinear systems with actuator faults. First, a neural network(NN) identifier based on particle swa... In this paper, a data-based fault tolerant control(FTC) scheme is investigated for unknown continuous-time(CT)affine nonlinear systems with actuator faults. First, a neural network(NN) identifier based on particle swarm optimization(PSO) is constructed to model the unknown system dynamics. By utilizing the estimated system states, the particle swarm optimized critic neural network(PSOCNN) is employed to solve the Hamilton-Jacobi-Bellman equation(HJBE) more efficiently.Then, a data-based FTC scheme, which consists of the NN identifier and the fault compensator, is proposed to achieve actuator fault tolerance. The stability of the closed-loop system under actuator faults is guaranteed by the Lyapunov stability theorem. Finally, simulations are provided to demonstrate the effectiveness of the developed method. 展开更多
关键词 Adaptive dynamic programming(ADP) critic neural network data-based fault tolerant control(FTC) particle swarm optimization(PSO)
下载PDF
Structural optimization strategy of pipe isolation tool by dynamic plugging process analysis 被引量:2
10
作者 Ting-Ting Wu Hong Zhao +1 位作者 Bo-Xuan Gao Fan-Bo Meng 《Petroleum Science》 SCIE CAS CSCD 2021年第6期1829-1839,共11页
During the pipeline plugging process,both the pipeline and the pipe isolation tool(PIT)will be greatly damaged,due to the violent vibration of the flow field.In this study,it was proposed for the first time to reduce ... During the pipeline plugging process,both the pipeline and the pipe isolation tool(PIT)will be greatly damaged,due to the violent vibration of the flow field.In this study,it was proposed for the first time to reduce the vibration of the flow field during the plugging process by optimizing the surface structure of the PIT.Firstly,the central composite design(CCD)was used to obtain the optimization schemes,and the drag coefficient and pressure coefficient were proposed to evaluate the degree of flow field changes.Secondly,a series of computational fluid dynamics(CFD)simulations were performed to obtain the drag coefficient and pressure coefficient during dynamic plugging.And the mathematical model of drag coefficient and pressure coefficient with the surface structure of the PIT were established respectively.Then,a modified particle swarm optimization(PSO)was applied to predict the optimal value of the surface structure of the PIT.Finally,an experimental rig was built to verify the effectiveness of the optimization.The results showed that the improved method could reduce the flow field vibration by 49.56%.This study provides a reference for the design of the PIT surface structure for flow field vibration technology. 展开更多
关键词 Pipe isolation tool dynamic analysis Drag coefficient Pressure coefficient Modified particle swarm optimization algorithm
下载PDF
Dynamic Multi-objective Optimization of Chemical Processes Using Modified BareBones MOPSO Algorithm
11
作者 杜文莉 王珊珊 +1 位作者 陈旭 钱锋 《Journal of Donghua University(English Edition)》 EI CAS 2014年第2期184-189,共6页
Dynamic multi-objective optimization is a complex and difficult research topic of process systems engineering. In this paper,a modified multi-objective bare-bones particle swarm optimization( MOBBPSO) algorithm is pro... Dynamic multi-objective optimization is a complex and difficult research topic of process systems engineering. In this paper,a modified multi-objective bare-bones particle swarm optimization( MOBBPSO) algorithm is proposed that takes advantage of a few parameters of bare-bones algorithm. To avoid premature convergence,Gaussian mutation is introduced; and an adaptive sampling distribution strategy is also used to improve the exploratory capability. Moreover, a circular crowded sorting approach is adopted to improve the uniformity of the population distribution.Finally, by combining the algorithm with control vector parameterization,an approach is proposed to solve the dynamic optimization problems of chemical processes. It is proved that the new algorithm performs better compared with other classic multiobjective optimization algorithms through the results of solving three dynamic optimization problems. 展开更多
关键词 dynamic multi-objective optimization bare-bones particle swarm optimization(PSO) algorithm chemical process
下载PDF
An Optimal Dynamic Generation Scheduling for a Wind-Thermal Power System 被引量:4
12
作者 Xingyu Li Dongmei Zhao 《Energy and Power Engineering》 2013年第4期1016-1021,共6页
In this paper, a dynamic generation scheduling model is formulated, aiming at minimizing the costs of power generation and taking into account the constraints of thermal power units and spinning reserve in wind power ... In this paper, a dynamic generation scheduling model is formulated, aiming at minimizing the costs of power generation and taking into account the constraints of thermal power units and spinning reserve in wind power integrated systems. A dynamic solving method blended with particle swarm optimization algorithm is proposed. In this method, the solution space of the states of unit commitment is created and will be updated when the status of unit commitment changes in a period to meet the spinning reserve demand. The thermal unit operation constrains are inspected in adjacent time intervals to ensure all the states in the solution space effective. The particle swarm algorithm is applied in the procedure to optimize the load distribution of each unit commitment state. A case study in a simulation system is finally given to verify the feasibility and effectiveness of this dynamic optimization algorithm. 展开更多
关键词 Generation SCHEDULING dynamic optimization WIND Power particle swarm optimization
下载PDF
Dynamic Allocation of Manufacturing Tasks and Resources in Shared Manufacturing
13
作者 Caiyun Liu Peng Liu 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期3221-3242,共22页
Shared manufacturing is recognized as a new point-to-point manufac-turing mode in the digital era.Shared manufacturing is referred to as a new man-ufacturing mode to realize the dynamic allocation of manufacturing tas... Shared manufacturing is recognized as a new point-to-point manufac-turing mode in the digital era.Shared manufacturing is referred to as a new man-ufacturing mode to realize the dynamic allocation of manufacturing tasks and resources.Compared with the traditional mode,shared manufacturing offers more abundant manufacturing resources and flexible configuration options.This paper proposes a model based on the description of the dynamic allocation of tasks and resources in the shared manufacturing environment,and the characteristics of shared manufacturing resource allocation.The execution of manufacturing tasks,in which candidate manufacturing resources enter or exit at various time nodes,enables the dynamic allocation of manufacturing tasks and resources.Then non-dominated sorting genetic algorithm(NSGA-II)and multi-objective particle swarm optimization(MOPSO)algorithms are designed to solve the model.The optimal parameter settings for the NSGA-II and MOPSO algorithms have been obtained according to the experiments with various population sizes and iteration numbers.In addition,the proposed model’s efficiency,which considers the entries and exits of manufacturing resources in the shared manufacturing environment,is further demonstrated by the overlap between the outputs of the NSGA-II and MOPSO algorithms for optimal resource allocation. 展开更多
关键词 Shared manufacturing dynamic allocation variation of resources non-dominated sorting genetic algorithm(NSGA-II) multi-objective particle swarm optimization(MOPSO)algorithm
下载PDF
An extended discrete particle swarm optimization algorithm for the dynamic facility layout problem 被引量:3
14
作者 Hassan REZAZADEH Mehdi GHAZANFARI +1 位作者 Mohammad SAIDI-MEHRABAD Seyed JAFAR SADJADI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第4期520-529,共10页
We extended an improved version of the discrete particle swarm optimization (DPSO) algorithm proposed by Liao et al.(2007) to solve the dynamic facility layout problem (DFLP). A computational study was performed with ... We extended an improved version of the discrete particle swarm optimization (DPSO) algorithm proposed by Liao et al.(2007) to solve the dynamic facility layout problem (DFLP). A computational study was performed with the existing heuristic algorithms, including the dynamic programming (DP), genetic algorithm (GA), simulated annealing (SA), hybrid ant system (HAS), hybrid simulated annealing (SA-EG), hybrid genetic algorithms (NLGA and CONGA). The proposed DPSO algorithm, SA, HAS, GA, DP, SA-EG, NLGA, and CONGA obtained the best solutions for 33, 24, 20, 10, 12, 20, 5, and 2 of the 48 problems from (Balakrishnan and Cheng, 2000), respectively. These results show that the DPSO is very effective in dealing with the DFLP. The extended DPSO also has very good computational efficiency when the problem size increases. 展开更多
关键词 离散粒子群优化算法 布局问题 设施 混合遗传算法 模拟退火 启发式算法 动态规划 蚂蚁系统
原文传递
Dynamic neighborhood genetic learning particle swarm optimization for high-power-density electric propulsion motor 被引量:1
15
作者 Jinquan XU Huapeng LIN Hong GUO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第12期253-265,共13页
To maximize the power density of the electric propulsion motor in aerospace application,this paper proposes a novel Dynamic Neighborhood Genetic Learning Particle Swarm Optimization(DNGL-PSO)for the motor design,which... To maximize the power density of the electric propulsion motor in aerospace application,this paper proposes a novel Dynamic Neighborhood Genetic Learning Particle Swarm Optimization(DNGL-PSO)for the motor design,which can deal with the insufficient population diversity and non-global optimal solution issues.The DNGL-PSO framework is composed of the dynamic neighborhood module and the particle update module.To improve the population diversity,the dynamic neighborhood strategy is first proposed,which combines the local neighborhood exemplar generation mechanism and the shuffling mechanism.The local neighborhood exemplar generation mechanism enlarges the search range of the algorithm in the solution space,thus obtaining highquality exemplars.Meanwhile,when the global optimal solution cannot update its fitness value,the shuffling mechanism module is triggered to dynamically change the local neighborhood members.The roulette wheel selection operator is introduced into the shuffling mechanism to ensure that particles with larger fitness value are selected with a higher probability and remain in the local neighborhood.Then,the global learning based particle update approach is proposed,which can achieve a good balance between the expansion of the search range in the early stage and the acceleration of local convergence in the later stage.Finally,the optimization design of the electric propulsion motor is conducted to verify the effectiveness of the proposed DNGL-PSO.The simulation results show that the proposed DNGL-PSO has excellent adaptability,optimization efficiency and global optimization capability,while the optimized electric propulsion motor has a high power density of 5.207 kW/kg with the efficiency of 96.12%. 展开更多
关键词 dynamic Neighborhood Genetic Learning particle swarm optimization(DNGL-PSO) Permanent magnet synchronous motor Power density Efficiency of motor Electric propulsion motor
原文传递
Dynamic modeling and parameter identification of a gun saddle ring 被引量:5
16
作者 Tong Lin Lin-fang Qian +2 位作者 Qiang Yin Shi-yu Chen Tai-su Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第2期325-333,共9页
In this study,a theoretical nonlinear dynamic model was established for a saddle ring based on a dynamic force analysis of the launching process and the structure according to contact-impact theory.The ADAMS software ... In this study,a theoretical nonlinear dynamic model was established for a saddle ring based on a dynamic force analysis of the launching process and the structure according to contact-impact theory.The ADAMS software was used to build a parameterized dynamic model of the saddle ring.A parameter identification method for the ring was proposed based on the particle swarm optimization algorithm.A loading test was designed and performed several times at different elevation angles.The response histories of the saddle ring with different loads were then obtained.The parameters of the saddle ring dynamic model were identified from statistics generated at a 500 elevation angle to verify the feasibility and accuracy of the proposed method.The actual loading history of the ring at a 70°elevation angle was taken as the model input.The response histories of the ring under these working conditions were obtained through a simulation.The simulation results agreed with the actual response.Thus,the effectiveness and applicability of the proposed dynamic model were verified,and it provides an effective method for modeling saddle rings. 展开更多
关键词 GUN SADDLE RING dynamic response PARAMETER identification particle swarm optimization
下载PDF
Rule-and PSO Algorithm-based Dynamic Spatial Rescheduling Method for Hull Curved Block Construction 被引量:2
17
作者 ZHANG Zhiying GU Jiayu +1 位作者 XU Chen LI Zhen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第3期594-605,共12页
Due to no effective rescheduling method in hull curved block construction planning, existing scheduling planning can’t be applied in practical production effectively. Two-dimensional layout and dynamic attributes of ... Due to no effective rescheduling method in hull curved block construction planning, existing scheduling planning can’t be applied in practical production effectively. Two-dimensional layout and dynamic attributes of block construction planning are considered to develop a spatial rescheduling method, which is based on the spatial points searching rule and the particle swarm optimization(PSO) algorithm. A dynamic spatial rescheduling method is proposed to solve the manufacturing problem of rush-order blocks. Through spatial rescheduling, the rescheduling start time, the current processing information set and rescheduling blocks set can be obtained automatically. By using and updating the data of these sets, the rescheduling method combines the PSO algorithm with the spatial points searching rule to determine the rescheduling start time and layout of the blocks. Three types of dynamic events, including rush-order block delay, existing block delay and existing block position changes, are used to address problems with different function goals by setting different function weights. Finally, simulations based on three types of rush-order block events are performed to validate this method, including single rush-order block, multi rush-order blocks at the same time and multi rush-order blocks at different times. The simulation results demonstrate that this method can solve the rush-order block problems in hull block construction and reduce the interference to the existing manufacturing schedule. The proposed research provides a new rescheduling method and helps instruct scheduler to make production planning in hull block construction. 展开更多
关键词 spatial scheduling rush-order block event particle swarm optimization dynamic rescheduling
下载PDF
Improved Prediction of Metamaterial Antenna Bandwidth Using Adaptive Optimization of LSTM 被引量:1
18
作者 Doaa Sami Khafaga Amel Ali Alhussan +4 位作者 El-Sayed M.El-kenawy Abdelhameed Ibrahim Said H.Abd Elkhalik Shady Y.El-Mashad Abdelaziz A.Abdelhamid 《Computers, Materials & Continua》 SCIE EI 2022年第10期865-881,共17页
The design of an antenna requires a careful selection of its parameters to retain the desired performance.However,this task is time-consuming when the traditional approaches are employed,which represents a significant... The design of an antenna requires a careful selection of its parameters to retain the desired performance.However,this task is time-consuming when the traditional approaches are employed,which represents a significant challenge.On the other hand,machine learning presents an effective solution to this challenge through a set of regression models that can robustly assist antenna designers to find out the best set of design parameters to achieve the intended performance.In this paper,we propose a novel approach for accurately predicting the bandwidth of metamaterial antenna.The proposed approach is based on employing the recently emerged guided whale optimization algorithm using adaptive particle swarm optimization to optimize the parameters of the long-short-term memory(LSTM)deep network.This optimized network is used to retrieve the metamaterial bandwidth given a set of features.In addition,the superiority of the proposed approach is examined in terms of a comparison with the traditional multilayer perceptron(ML),Knearest neighbors(K-NN),and the basic LSTM in terms of several evaluation criteria such as root mean square error(RMSE),mean absolute error(MAE),and mean bias error(MBE).Experimental results show that the proposed approach could achieve RMSE of(0.003018),MAE of(0.001871),and MBE of(0.000205).These values are better than those of the other competing models. 展开更多
关键词 Metamaterial antenna long short term memory(LSTM) guided whale optimization algorithm(Guided WOA) adaptive dynamic particle swarm algorithm(AD-PSO)
下载PDF
Improved Dynamic Response of DC to DC Converter Using Hybrid PSO Tuned Fuzzy Sliding Mode Controller 被引量:1
19
作者 R. Anand P. Melba Mary 《Circuits and Systems》 2016年第6期946-955,共10页
DC/DC switching converters are widely used in numerous appliances in modern existence. In this paper, the dynamic and transient response of phase shift series resonant DC/DC converter are improved using hybrid particl... DC/DC switching converters are widely used in numerous appliances in modern existence. In this paper, the dynamic and transient response of phase shift series resonant DC/DC converter are improved using hybrid particle swarm optimization tuned fuzzy sliding mode controller under starting and load step change conditions. The aim of the control is to regulate the output voltage beneath the load change. The model of the hybrid particle swarm optimization tuned fuzzy sliding mode controller is implemented using Sim Power Systems toolbox of MATLAB SIMULINK. Performance of the proposed dynamic novel control under step load change condition is investigated. 展开更多
关键词 DC to DC Converter dynamic Response Hybrid particle swarm optimization Ripple Voltage Sliding Mode Controller
下载PDF
Interactive Heuristic D* Path Planning Solution Based on PSO for Two-Link Robotic Arm in Dynamic Environment
20
作者 Firas A. Raheem Umniah I. Hameed 《World Journal of Engineering and Technology》 2019年第1期80-99,共20页
This paper is devoted to find an intelligent and safe path for two-link robotic arm in dynamic environment. This paper focuses on computational part of motion planning in completely changing dynamic environment at eve... This paper is devoted to find an intelligent and safe path for two-link robotic arm in dynamic environment. This paper focuses on computational part of motion planning in completely changing dynamic environment at every motion sample domains,?since the local minima and sharp edges are the most common problems in all path planning algorithms. In addition, finding a path solution in a dynamic environment represents a challenge for the robotics researchers,?so in this paper, a proposed mixing approach was suggested to overcome all these obstructions. The proposed approach methodology?for obtaining robot interactive path planning solution in known dynamic environment utilizes?the use of modified heuristic D-star (D*) algorithm based on the full free Cartesian space analysis at each motion sample with the Particle Swarm Optimization (PSO) technique.?Also, a modification on the?D* algorithm has been done to match the dynamic environment requirements by adding stop and return backward cases which is not included in the original D* algorithm theory. The resultant interactive path solution was computed by taking into consideration the time and position changes of the moving obstacles. Furthermore, to insure the enhancement of the?final path length optimality, the PSO technique was used.?The simulation results are given to show the effectiveness of the proposed method. 展开更多
关键词 D* Algorithm particle swarm optimization (PSO) Path Planning TWO-LINK Arm KNOWN dynamic Environment
下载PDF
上一页 1 2 45 下一页 到第
使用帮助 返回顶部