In this paper, Hailin City of Heilongjiang Province, China is taken as the research area. As an important city in Heilongjiang Province, China, the sustainable development of its ecological environment is related to t...In this paper, Hailin City of Heilongjiang Province, China is taken as the research area. As an important city in Heilongjiang Province, China, the sustainable development of its ecological environment is related to the opening up, economic prosperity and social stability of Northeast China. In this paper, the remote sensing ecological index (RSEI) of Hailin City in recent 20 years was calculated by using Landsat 5/8/9 series satellite images, and the temporal and spatial changes of the ecological environment in Hailin City were further analyzed and the influencing factors were discussed. From 2003 to 2023, the mean value of RSEI in Hailin City decreased and increased, and the ecological environment decreased slightly as a whole. RSEI declined most significantly from 2003 to 2008, and it increased from 2008 to 2013, decreased from 2013 to 2018, and increased from 2018 to 2023 again, with higher RSEI value in the south and lower RSEI value in the northwest. It is suggested to appropriately increase vegetation coverage in the northwest to improve ecological quality. As a result, the predicted value of Elman dynamic recurrent neural network model is consistent with the change trend of the mean value, and the prediction error converges quickly, which can accurately predict the ecological environment quality in the future study area.展开更多
A multilayer recurrent fuzzy neural network(MRFNN)is proposed for accurate dynamic system modeling.The proposed MRFNN has six layers combined with T-S fuzzy model.The recurrent structures are formed by local feedback ...A multilayer recurrent fuzzy neural network(MRFNN)is proposed for accurate dynamic system modeling.The proposed MRFNN has six layers combined with T-S fuzzy model.The recurrent structures are formed by local feedback connections in the membership layer and the rule layer.With these feedbacks,the fuzzy sets are time-varying and the temporal problem of dynamic system can be solved well.The parameters of MRFNN are learned by chaotic search(CS)and least square estimation(LSE)simultaneously,where CS is for tuning the premise parameters and LSE is for updating the consequent coefficients accordingly.Results of simulations show the proposed approach is effective for dynamic system modeling with high accuracy.展开更多
The goal of this paper is to introduce a new neural network architecture called Sigmoid Diagonal Recurrent Neural Network (SDRNN) to be used in the adaptive control of nonlinear dynamical systems. This is done by addi...The goal of this paper is to introduce a new neural network architecture called Sigmoid Diagonal Recurrent Neural Network (SDRNN) to be used in the adaptive control of nonlinear dynamical systems. This is done by adding a sigmoid weight victor in the hidden layer neurons to adapt of the shape of the sigmoid function making their outputs not restricted to the sigmoid function output. Also, we introduce a dynamic back propagation learning algorithm to train the new proposed network parameters. The simulation results showed that the (SDRNN) is more efficient and accurate than the DRNN in both the identification and adaptive control of nonlinear dynamical systems.展开更多
In this paper, an adaptive dynamic control scheme based on a fuzzy neural network is presented, that presents utilizes both feed-forward and feedback controller elements. The former of the two elements comprises a neu...In this paper, an adaptive dynamic control scheme based on a fuzzy neural network is presented, that presents utilizes both feed-forward and feedback controller elements. The former of the two elements comprises a neural network with both identification and control role, and the latter is a fuzzy neural algorithm, which is introduced to provide additional control enhancement. The feedforward controller provides only coarse control, whereas the feedback controller can generate on-line conditional proposition rule automatically to improve the overall control action. These properties make the design very versatile and applicable to a range of industrial applications.展开更多
In recent years,social media platforms have gained immense popularity.As a result,there has been a tremendous increase in content on social media platforms.This content can be related to an individual’s sentiments,th...In recent years,social media platforms have gained immense popularity.As a result,there has been a tremendous increase in content on social media platforms.This content can be related to an individual’s sentiments,thoughts,stories,advertisements,and news,among many other content types.With the recent increase in online content,the importance of identifying fake and real news has increased.Although,there is a lot of work present to detect fake news,a study on Fuzzy CRNN was not explored into this direction.In this work,a system is designed to classify fake and real news using fuzzy logic.The initial feature extraction process is done using a convolutional recurrent neural network(CRNN).After the extraction of features,word indexing is done with high dimensionality.Then,based on the indexing measures,the ranking process identifies whether news is fake or real.The fuzzy CRNN model is trained to yield outstanding resultswith 99.99±0.01%accuracy.This work utilizes three different datasets(LIAR,LIAR-PLUS,and ISOT)to find the most accurate model.展开更多
In this paper, the global stability of Takagi-Sugeno (TS) uncertain stochastic fuzzy recurrent neural networks with discrete and distributed time-varying delays (TSUSFRNNs) is considered. A novel LMI-based stabili...In this paper, the global stability of Takagi-Sugeno (TS) uncertain stochastic fuzzy recurrent neural networks with discrete and distributed time-varying delays (TSUSFRNNs) is considered. A novel LMI-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of TSUSFRNNs. The proposed stability conditions are demonstrated through numerical examples. Furthermore, the supplementary requirement that the time derivative of time-varying delays must be smaller than one is removed. Comparison results are demonstrated to show that the proposed method is more able to guarantee the widest stability region than the other methods available in the existing literature.展开更多
Linguistic dynamic systems(LDS)are dynamic processes involving computing with words(CW)for modeling and analysis of complex systems.In this paper,a fuzzy neural network(FNN)structure of LDS was proposed.In addition,an...Linguistic dynamic systems(LDS)are dynamic processes involving computing with words(CW)for modeling and analysis of complex systems.In this paper,a fuzzy neural network(FNN)structure of LDS was proposed.In addition,an improved nonlinear particle swarm optimization was employed for training FNN.The experiment results on logistics formulation demonstrates the feasibility and the efficiency of this FNN model.展开更多
Dynamics is a key issue about understanding recurrent neural networks(RNNs).Because of the complexity,the problem still remains unanswered in spite of many important progresses.Echo state network(ESN)is a simple appro...Dynamics is a key issue about understanding recurrent neural networks(RNNs).Because of the complexity,the problem still remains unanswered in spite of many important progresses.Echo state network(ESN)is a simple approach to design RNNs.It is possible to investigate ESNs’dynamics deeply.However,most of dynamic studies have mainly concentrated on the shallow ESNs and seldom of them explain the dynamics of the deep ones.Therefore,this paper investigates the dynamics of four typical ESNs under a unified theoretical framework.These ESNs contain both the shallow versions and the deep ones.This investigation is helpful to clarify the dynamics of ESNs in a general sense.Also,the short-term memory(STM)of different ESNs is analyzed,which is closely related to the dynamics.This analysis is helpful to determine the hyper-parameters of ESNs for given problems.In addition,the problem-solving abilities of ESNs are investigated through modeling two time series tasks.It further explains the influence of the dynamics on ESN’s performance.展开更多
Based on wavelet neural networks (WNNs) and recurrent neural networks (RNNs), a class of models on recurrent wavelet neural networks (RWNNs) is proposed. The new networks possess the advantages of WNNs and RNNs....Based on wavelet neural networks (WNNs) and recurrent neural networks (RNNs), a class of models on recurrent wavelet neural networks (RWNNs) is proposed. The new networks possess the advantages of WNNs and RNNs. In this paper, asymptotic stability of RWNNs is researched.according to the Lyapunov theorem, and some theorems and formulae are given. The simulation results show the excellent performance of the networks in nonlinear dynamic system recognition.展开更多
In this paper, an adaptive neuro-control structure for complex dynamic system is proposed. A recurrent Neural Network is trained-off-line to learn the inverse dynamics of the system from the observation of the input-o...In this paper, an adaptive neuro-control structure for complex dynamic system is proposed. A recurrent Neural Network is trained-off-line to learn the inverse dynamics of the system from the observation of the input-output data. The direct adaptive approach is performed after the training process is achieved. A lyapunov-Base training algorithm is proposed and used to adjust on-line the network weights so that the neural model output follows the desired one. The simulation results obtained verify the effectiveness of the proposed control method.展开更多
The length of fexible manipulators with a telescopic arm alters during movement.The dynamic parameters of telescopic fexible manipulators exhibit signifcant time-varying characteristics owing to variations in length.W...The length of fexible manipulators with a telescopic arm alters during movement.The dynamic parameters of telescopic fexible manipulators exhibit signifcant time-varying characteristics owing to variations in length.With an increase in the manipulators’length,the nonlinear terms caused by fexibility in the manipulators’dynamic equations cannot be ignored.The time-varying characteristics and nonlinear terms of telescopic fexible manipulators cause fuctuations in rotation angles,which afect the operation accuracy of end-efectors.In this study,a control strategy based on a combination of fuzzy adjustment and an RBF neural network is utilized to improve the control accuracy of fexible telescopic manipulators.First,the dynamic equation of the manipulators is established using the assumed mode method and Lagrange’s principle,and the infuence of nonlinear terms is analyzed.Subsequently,a combined control strategy is proposed to suppress the fuctuation of the rotation angle in telescopic fexible manipulators.The variation ranges of the feedforward PD controller parameters are determined by the pole placement strategy and length of the manipulators.Fuzzy rules are utilized to adjust the controller parameters in real-time.The RBF neural network is utilized to identify and compensate the uncertain part of the dynamic model of the fexible manipulators.The uncertain part comprises time-varying parameters and nonlinear terms.Finally,numerical simulations and prototype experiments prove the efectiveness of the combined control strategy.The results prove that the proposed control strategy has a smaller standard deviation of errors.Therefore,the combined control strategy is more suitable for telescopic fexible manipulators,which can efectively improve the control accuracy of rotation angles.展开更多
In this paper,the dynamic evolution for a dualarm space robot capturing a spacecraft is studied,the impact effect and the coordinated stabilization control problem for postimpact closed chain system are discussed.At f...In this paper,the dynamic evolution for a dualarm space robot capturing a spacecraft is studied,the impact effect and the coordinated stabilization control problem for postimpact closed chain system are discussed.At first,the pre-impact dynamic equations of open chain dual-arm space robot are established by Lagrangian approach,and the dynamic equations of a spacecraft are obtained by Newton-Euler method.Based on the results,with the process of integral and simplify,the response of the dual-arm space robot impacted by the spacecraft is analyzed by momentum conservation law and force transfer law.The closed chain system is formed in the post-impact phase.Closed chain constraint equations are obtained by the constraints of closed-loop geometry and kinematics.With the closed chain constraint equations,the composite system dynamic equations are derived.Secondly,the recurrent fuzzy neural network control scheme is designed for calm motion of unstable closed chain system with uncertain system parameter.In order to overcome the effects of uncertain system inertial parameters,the recurrent fuzzy neural network is used to approximate the unknown part,the control method with H∞tracking characteristic.According to the Lyapunov theory,the global stability is demonstrated.Meanwhile,the weighted minimum-norm theory is introduced to distribute torques guarantee that cooperative operation between manipulators.At last,numerical examples simulate the response of the collision,and the efficiency of the control scheme is verified by the simulation results.展开更多
Steel strips are the main of steel products and flatness is an important quality indicator of steel strips. Flatness control is the key and highly difficult technique of strip mills. The bottle-neck restricting the im...Steel strips are the main of steel products and flatness is an important quality indicator of steel strips. Flatness control is the key and highly difficult technique of strip mills. The bottle-neck restricting the improvement of flatness control techniques is that the research on flatness theories and control mathematic models is not in accordance with the requirement of technique developments. To build a simple, rapid and accurate explicit formulation control model has become an urgent need for the development of flatness control technique. This paper puts forward the conception of dynamic effective matrix based on the effective matrix method for flatness control proposed by the authors under the consideration of the influence of the change of parameters in roiling processes on the effective matrix, and the concept is validated by industrial productions. Three methods of the effective matrix generation are induced: the calculation method based on the flatness prediction model; the calculation method based on the data excavation in rolling processes and the direct calculation method based on the network model. A fuzzy neural network effective matrix model is built based on the clusters, and then the network structure is optimized and the high-speed-calculation problem of the dynamic effective matrix is solved. The flatness control scheme for cold strip mills is proposed based on the dynamic effective matrix. On stand 5 of the 1 220 mm five-stand 4-high cold strip tandem mill, the industrial experiment with the control methods of tilting roll and bending roll is done by the control scheme of the static effective matrix and the dynamic effective matrix, respectively. The experiment result proves that the control effect of the dynamic effective matrix is much better than that of the static effective matrix. This paper proposes a new idea and method for the dynamic flatness control in the rolling processes of cold strip mills and develops the theory and model of the flatness control effective matrix method.展开更多
A robust neuro-adaptive controller for uncertain flexible joint robots is presented. This control scheme integrates H^infinity disturbance attenuation design and recurrent neural network adaptive control technique int...A robust neuro-adaptive controller for uncertain flexible joint robots is presented. This control scheme integrates H^infinity disturbance attenuation design and recurrent neural network adaptive control technique into the dy- namic surface control framework. Two recurrent neural networks are used to adaptively learn the uncertain functions in a flexible joint robot. Then, the effects of approximation error and filter error on the tracking performance are attenuated to a prescribed level by the embedded H-infinity controller, so that the desired H-infinity tracking performance can be achieved. Finally. simulation results verifv the effectiveness of the nronosed control scheme.展开更多
There are many techniques using sensors and wearable devices for detecting and monitoring patients with Parkinson’s disease(PD).A recent development is the utilization of human interaction with computer keyboards for...There are many techniques using sensors and wearable devices for detecting and monitoring patients with Parkinson’s disease(PD).A recent development is the utilization of human interaction with computer keyboards for analyzing and identifying motor signs in the early stages of the disease.Current designs for classification of time series of computer-key hold durations recorded from healthy control and PD subjects require the time series of length to be considerably long.With an attempt to avoid discomfort to participants in performing long physical tasks for data recording,this paper introduces the use of fuzzy recurrence plots of very short time series as input data for the machine training and classification with long short-term memory(LSTM)neural networks.Being an original approach that is able to both significantly increase the feature dimensions and provides the property of deterministic dynamical systems of very short time series for information processing carried out by an LSTM layer architecture,fuzzy recurrence plots provide promising results and outperform the direct input of the time series for the classification of healthy control and early PD subjects.展开更多
A realistic model of neural networks was proposed in this paper.The dynamicprocess of neural impulse discharging was considered.The equations of the model correspondto postsynaptic potentials,receptor potentials,initi...A realistic model of neural networks was proposed in this paper.The dynamicprocess of neural impulse discharging was considered.The equations of the model correspondto postsynaptic potentials,receptor potentials,initial segment graded potentials and the impulsetrain along the axon respectively.To solve the equations numerically,a recurrent algorithm and itscorresponding flow chart was also developed.The simulation results can imitate adaptation,post-excitation inhibition,and phase locking of sensory receptors;they can also imitate the transientresponses of lateral inhibitory network and Mach band phenomenon when they trended to besteady.The simulation results also showed that the lateral inhibitory network was sensitive tomoving objects.展开更多
针对实际应用中基于动态工况下电池状态参数的片段数据进行电池健康状态(state of health,SOH)实时估计的问题,提出基于动态工况下锂离子电池状态参数(电压、电流、温度)实测数据二维特征图像和深度学习的锂离子电池容量估计算法。首先...针对实际应用中基于动态工况下电池状态参数的片段数据进行电池健康状态(state of health,SOH)实时估计的问题,提出基于动态工况下锂离子电池状态参数(电压、电流、温度)实测数据二维特征图像和深度学习的锂离子电池容量估计算法。首先,将动态工况下电池状态参数监测量(电压、电流和温度)的片段数据转化为二维特征图像。其次,提出基于残差卷积神经网络(residual convolutional neural network,Res-CNN)和门控循环单元(gate recurrent unit,GRU)网络结合的多通道深度学习模型Res-CNN-GRU,以构建动态工况下电池状态参数特征图像和SOH之间的复杂非线性关系,其中电压、电流和温度的二维特征图像以三通道的方式输入到Res-CNN-GRU模型中,模型输出为对应电池的相邻参考充放电循环实验所获得容量的差值。研究结果表明:此方法在锂电池随机充放电工况下对电池健康状态估计效果更佳,且Res-CNN-GRU模型的泛化性和全局特征提取能力较强。论文研究为现实工况下电池健康状态估计的进一步深入研究提供了参考。展开更多
文摘In this paper, Hailin City of Heilongjiang Province, China is taken as the research area. As an important city in Heilongjiang Province, China, the sustainable development of its ecological environment is related to the opening up, economic prosperity and social stability of Northeast China. In this paper, the remote sensing ecological index (RSEI) of Hailin City in recent 20 years was calculated by using Landsat 5/8/9 series satellite images, and the temporal and spatial changes of the ecological environment in Hailin City were further analyzed and the influencing factors were discussed. From 2003 to 2023, the mean value of RSEI in Hailin City decreased and increased, and the ecological environment decreased slightly as a whole. RSEI declined most significantly from 2003 to 2008, and it increased from 2008 to 2013, decreased from 2013 to 2018, and increased from 2018 to 2023 again, with higher RSEI value in the south and lower RSEI value in the northwest. It is suggested to appropriately increase vegetation coverage in the northwest to improve ecological quality. As a result, the predicted value of Elman dynamic recurrent neural network model is consistent with the change trend of the mean value, and the prediction error converges quickly, which can accurately predict the ecological environment quality in the future study area.
文摘A multilayer recurrent fuzzy neural network(MRFNN)is proposed for accurate dynamic system modeling.The proposed MRFNN has six layers combined with T-S fuzzy model.The recurrent structures are formed by local feedback connections in the membership layer and the rule layer.With these feedbacks,the fuzzy sets are time-varying and the temporal problem of dynamic system can be solved well.The parameters of MRFNN are learned by chaotic search(CS)and least square estimation(LSE)simultaneously,where CS is for tuning the premise parameters and LSE is for updating the consequent coefficients accordingly.Results of simulations show the proposed approach is effective for dynamic system modeling with high accuracy.
文摘The goal of this paper is to introduce a new neural network architecture called Sigmoid Diagonal Recurrent Neural Network (SDRNN) to be used in the adaptive control of nonlinear dynamical systems. This is done by adding a sigmoid weight victor in the hidden layer neurons to adapt of the shape of the sigmoid function making their outputs not restricted to the sigmoid function output. Also, we introduce a dynamic back propagation learning algorithm to train the new proposed network parameters. The simulation results showed that the (SDRNN) is more efficient and accurate than the DRNN in both the identification and adaptive control of nonlinear dynamical systems.
基金China Postdoctoral Science Foundation and Natural Science of Heibei Province!698004
文摘In this paper, an adaptive dynamic control scheme based on a fuzzy neural network is presented, that presents utilizes both feed-forward and feedback controller elements. The former of the two elements comprises a neural network with both identification and control role, and the latter is a fuzzy neural algorithm, which is introduced to provide additional control enhancement. The feedforward controller provides only coarse control, whereas the feedback controller can generate on-line conditional proposition rule automatically to improve the overall control action. These properties make the design very versatile and applicable to a range of industrial applications.
文摘In recent years,social media platforms have gained immense popularity.As a result,there has been a tremendous increase in content on social media platforms.This content can be related to an individual’s sentiments,thoughts,stories,advertisements,and news,among many other content types.With the recent increase in online content,the importance of identifying fake and real news has increased.Although,there is a lot of work present to detect fake news,a study on Fuzzy CRNN was not explored into this direction.In this work,a system is designed to classify fake and real news using fuzzy logic.The initial feature extraction process is done using a convolutional recurrent neural network(CRNN).After the extraction of features,word indexing is done with high dimensionality.Then,based on the indexing measures,the ranking process identifies whether news is fake or real.The fuzzy CRNN model is trained to yield outstanding resultswith 99.99±0.01%accuracy.This work utilizes three different datasets(LIAR,LIAR-PLUS,and ISOT)to find the most accurate model.
文摘In this paper, the global stability of Takagi-Sugeno (TS) uncertain stochastic fuzzy recurrent neural networks with discrete and distributed time-varying delays (TSUSFRNNs) is considered. A novel LMI-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of TSUSFRNNs. The proposed stability conditions are demonstrated through numerical examples. Furthermore, the supplementary requirement that the time derivative of time-varying delays must be smaller than one is removed. Comparison results are demonstrated to show that the proposed method is more able to guarantee the widest stability region than the other methods available in the existing literature.
基金National Natural Science Foundation of China(No.60873179)Doctoral Program Foundation of Institutions of Higher Education of China(No.20090121110032)+3 种基金Shenzhen Science and Technology Research Foundations,China(No.JC200903180630A,No.ZYB200907110169A)Key Project of Institutes Serving for the Economic Zone on the Western Coast of the Tai wan Strait,ChinaNatural Science Foundation of Xiamen,China(No.3502Z2093018)Projects of Education Depart ment of Fujian Province of China(No.JK2009017,No.JK2010031,No.JA10196)
文摘Linguistic dynamic systems(LDS)are dynamic processes involving computing with words(CW)for modeling and analysis of complex systems.In this paper,a fuzzy neural network(FNN)structure of LDS was proposed.In addition,an improved nonlinear particle swarm optimization was employed for training FNN.The experiment results on logistics formulation demonstrates the feasibility and the efficiency of this FNN model.
基金Sponsored by the Shandong Provincial Natural Science Foundation(Grant No.ZR2021MF105).
文摘Dynamics is a key issue about understanding recurrent neural networks(RNNs).Because of the complexity,the problem still remains unanswered in spite of many important progresses.Echo state network(ESN)is a simple approach to design RNNs.It is possible to investigate ESNs’dynamics deeply.However,most of dynamic studies have mainly concentrated on the shallow ESNs and seldom of them explain the dynamics of the deep ones.Therefore,this paper investigates the dynamics of four typical ESNs under a unified theoretical framework.These ESNs contain both the shallow versions and the deep ones.This investigation is helpful to clarify the dynamics of ESNs in a general sense.Also,the short-term memory(STM)of different ESNs is analyzed,which is closely related to the dynamics.This analysis is helpful to determine the hyper-parameters of ESNs for given problems.In addition,the problem-solving abilities of ESNs are investigated through modeling two time series tasks.It further explains the influence of the dynamics on ESN’s performance.
文摘Based on wavelet neural networks (WNNs) and recurrent neural networks (RNNs), a class of models on recurrent wavelet neural networks (RWNNs) is proposed. The new networks possess the advantages of WNNs and RNNs. In this paper, asymptotic stability of RWNNs is researched.according to the Lyapunov theorem, and some theorems and formulae are given. The simulation results show the excellent performance of the networks in nonlinear dynamic system recognition.
文摘In this paper, an adaptive neuro-control structure for complex dynamic system is proposed. A recurrent Neural Network is trained-off-line to learn the inverse dynamics of the system from the observation of the input-output data. The direct adaptive approach is performed after the training process is achieved. A lyapunov-Base training algorithm is proposed and used to adjust on-line the network weights so that the neural model output follows the desired one. The simulation results obtained verify the effectiveness of the proposed control method.
基金Supported by National Natural Science Foundation of China(Grant No.51875092)National Key Research and Development Project of China(Grant No.2020YFB2007802)+1 种基金Natural Science Foundation of Ningxia Province(Grant No.2020AAC03279)Fundamental Research Funds for the Central Universities(Grant No.N2103025).
文摘The length of fexible manipulators with a telescopic arm alters during movement.The dynamic parameters of telescopic fexible manipulators exhibit signifcant time-varying characteristics owing to variations in length.With an increase in the manipulators’length,the nonlinear terms caused by fexibility in the manipulators’dynamic equations cannot be ignored.The time-varying characteristics and nonlinear terms of telescopic fexible manipulators cause fuctuations in rotation angles,which afect the operation accuracy of end-efectors.In this study,a control strategy based on a combination of fuzzy adjustment and an RBF neural network is utilized to improve the control accuracy of fexible telescopic manipulators.First,the dynamic equation of the manipulators is established using the assumed mode method and Lagrange’s principle,and the infuence of nonlinear terms is analyzed.Subsequently,a combined control strategy is proposed to suppress the fuctuation of the rotation angle in telescopic fexible manipulators.The variation ranges of the feedforward PD controller parameters are determined by the pole placement strategy and length of the manipulators.Fuzzy rules are utilized to adjust the controller parameters in real-time.The RBF neural network is utilized to identify and compensate the uncertain part of the dynamic model of the fexible manipulators.The uncertain part comprises time-varying parameters and nonlinear terms.Finally,numerical simulations and prototype experiments prove the efectiveness of the combined control strategy.The results prove that the proposed control strategy has a smaller standard deviation of errors.Therefore,the combined control strategy is more suitable for telescopic fexible manipulators,which can efectively improve the control accuracy of rotation angles.
基金supported by the National Natural Science Foundation of China(11372073,11072061)。
文摘In this paper,the dynamic evolution for a dualarm space robot capturing a spacecraft is studied,the impact effect and the coordinated stabilization control problem for postimpact closed chain system are discussed.At first,the pre-impact dynamic equations of open chain dual-arm space robot are established by Lagrangian approach,and the dynamic equations of a spacecraft are obtained by Newton-Euler method.Based on the results,with the process of integral and simplify,the response of the dual-arm space robot impacted by the spacecraft is analyzed by momentum conservation law and force transfer law.The closed chain system is formed in the post-impact phase.Closed chain constraint equations are obtained by the constraints of closed-loop geometry and kinematics.With the closed chain constraint equations,the composite system dynamic equations are derived.Secondly,the recurrent fuzzy neural network control scheme is designed for calm motion of unstable closed chain system with uncertain system parameter.In order to overcome the effects of uncertain system inertial parameters,the recurrent fuzzy neural network is used to approximate the unknown part,the control method with H∞tracking characteristic.According to the Lyapunov theory,the global stability is demonstrated.Meanwhile,the weighted minimum-norm theory is introduced to distribute torques guarantee that cooperative operation between manipulators.At last,numerical examples simulate the response of the collision,and the efficiency of the control scheme is verified by the simulation results.
基金supported by National Natural Science Foundation of China(Grant No. 50675186)Hebei Provincial Major Natural Science Foundation of China (Grant No. E2006001038)
文摘Steel strips are the main of steel products and flatness is an important quality indicator of steel strips. Flatness control is the key and highly difficult technique of strip mills. The bottle-neck restricting the improvement of flatness control techniques is that the research on flatness theories and control mathematic models is not in accordance with the requirement of technique developments. To build a simple, rapid and accurate explicit formulation control model has become an urgent need for the development of flatness control technique. This paper puts forward the conception of dynamic effective matrix based on the effective matrix method for flatness control proposed by the authors under the consideration of the influence of the change of parameters in roiling processes on the effective matrix, and the concept is validated by industrial productions. Three methods of the effective matrix generation are induced: the calculation method based on the flatness prediction model; the calculation method based on the data excavation in rolling processes and the direct calculation method based on the network model. A fuzzy neural network effective matrix model is built based on the clusters, and then the network structure is optimized and the high-speed-calculation problem of the dynamic effective matrix is solved. The flatness control scheme for cold strip mills is proposed based on the dynamic effective matrix. On stand 5 of the 1 220 mm five-stand 4-high cold strip tandem mill, the industrial experiment with the control methods of tilting roll and bending roll is done by the control scheme of the static effective matrix and the dynamic effective matrix, respectively. The experiment result proves that the control effect of the dynamic effective matrix is much better than that of the static effective matrix. This paper proposes a new idea and method for the dynamic flatness control in the rolling processes of cold strip mills and develops the theory and model of the flatness control effective matrix method.
基金supported by the National Natural Science Foundation of China(Nos.60835004,61175075)the Hunan Provincial Innovation Foundation for Postgraduate(No.CX2012B147)
文摘A robust neuro-adaptive controller for uncertain flexible joint robots is presented. This control scheme integrates H^infinity disturbance attenuation design and recurrent neural network adaptive control technique into the dy- namic surface control framework. Two recurrent neural networks are used to adaptively learn the uncertain functions in a flexible joint robot. Then, the effects of approximation error and filter error on the tracking performance are attenuated to a prescribed level by the embedded H-infinity controller, so that the desired H-infinity tracking performance can be achieved. Finally. simulation results verifv the effectiveness of the nronosed control scheme.
文摘There are many techniques using sensors and wearable devices for detecting and monitoring patients with Parkinson’s disease(PD).A recent development is the utilization of human interaction with computer keyboards for analyzing and identifying motor signs in the early stages of the disease.Current designs for classification of time series of computer-key hold durations recorded from healthy control and PD subjects require the time series of length to be considerably long.With an attempt to avoid discomfort to participants in performing long physical tasks for data recording,this paper introduces the use of fuzzy recurrence plots of very short time series as input data for the machine training and classification with long short-term memory(LSTM)neural networks.Being an original approach that is able to both significantly increase the feature dimensions and provides the property of deterministic dynamical systems of very short time series for information processing carried out by an LSTM layer architecture,fuzzy recurrence plots provide promising results and outperform the direct input of the time series for the classification of healthy control and early PD subjects.
基金Supported by National Natural Science Foundation of China
文摘A realistic model of neural networks was proposed in this paper.The dynamicprocess of neural impulse discharging was considered.The equations of the model correspondto postsynaptic potentials,receptor potentials,initial segment graded potentials and the impulsetrain along the axon respectively.To solve the equations numerically,a recurrent algorithm and itscorresponding flow chart was also developed.The simulation results can imitate adaptation,post-excitation inhibition,and phase locking of sensory receptors;they can also imitate the transientresponses of lateral inhibitory network and Mach band phenomenon when they trended to besteady.The simulation results also showed that the lateral inhibitory network was sensitive tomoving objects.