Adding buckling restrained braces(BRB)of reinforced concrete frame structure can effectively improve the safety performance of the structure.The dynamic reliability analysis based on Poisson continuous process assumpt...Adding buckling restrained braces(BRB)of reinforced concrete frame structure can effectively improve the safety performance of the structure.The dynamic reliability analysis based on Poisson continuous process assumption and the first exceeding failure probability can be used to obtain the failure probability of the buckling restrained brace frame system under earthquake load,and the relationship between the failure probabilities of each floor of the structure is analyzed to obtain the frame system reliability interval of frame structure.The results show that the reliability of BRB frame structure is higher than that of pure frame structure,and the discrete failure probability is lower.展开更多
This paper proposes a novel model named as “imprecise stochastic process model” to handle the dynamic uncertainty with insufficient sample information in real-world problems. In the imprecise stochastic process mode...This paper proposes a novel model named as “imprecise stochastic process model” to handle the dynamic uncertainty with insufficient sample information in real-world problems. In the imprecise stochastic process model, the imprecise probabilistic model rather than a precise probability distribution function is employed to characterize the uncertainty at each time point for a time-variant parameter, which provides an effective tool for problems with limited experimental samples. The linear correlation between variables at different time points for imprecise stochastic processes is described by defining the auto-correlation coefficient function and the crosscorrelation coefficient function. For the convenience of analysis, this paper gives the definition of the P-box-based imprecise stochastic process and categorizes it into two classes: parameterized and non-parameterized P-box-based imprecise stochastic processes. Besides, a time-variant reliability analysis approach is developed based on the P-box-based imprecise stochastic process model,through which the interval of dynamic reliability for a structure under uncertain dynamic excitations or time-variant factors can be obtained. Finally, the effectiveness of the proposed method is verified by investigating three numerical examples.展开更多
文摘Adding buckling restrained braces(BRB)of reinforced concrete frame structure can effectively improve the safety performance of the structure.The dynamic reliability analysis based on Poisson continuous process assumption and the first exceeding failure probability can be used to obtain the failure probability of the buckling restrained brace frame system under earthquake load,and the relationship between the failure probabilities of each floor of the structure is analyzed to obtain the frame system reliability interval of frame structure.The results show that the reliability of BRB frame structure is higher than that of pure frame structure,and the discrete failure probability is lower.
基金supported by the Science Challenge Project,China(No.TZ2018007)the National Science Fund for Distinguished Young Scholars,China(No.51725502)+2 种基金the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(No.51621004)the Fundamental Research Foundation of China(No.JCKY2020110C105)the National Natural Science Foundation of China(No.52105253)。
文摘This paper proposes a novel model named as “imprecise stochastic process model” to handle the dynamic uncertainty with insufficient sample information in real-world problems. In the imprecise stochastic process model, the imprecise probabilistic model rather than a precise probability distribution function is employed to characterize the uncertainty at each time point for a time-variant parameter, which provides an effective tool for problems with limited experimental samples. The linear correlation between variables at different time points for imprecise stochastic processes is described by defining the auto-correlation coefficient function and the crosscorrelation coefficient function. For the convenience of analysis, this paper gives the definition of the P-box-based imprecise stochastic process and categorizes it into two classes: parameterized and non-parameterized P-box-based imprecise stochastic processes. Besides, a time-variant reliability analysis approach is developed based on the P-box-based imprecise stochastic process model,through which the interval of dynamic reliability for a structure under uncertain dynamic excitations or time-variant factors can be obtained. Finally, the effectiveness of the proposed method is verified by investigating three numerical examples.