Presents the calculation of critical velocity, natural frequency and dynamic respondency of fluid conveying pipe are calculated under different boundary conditions using finite element method, and the use of calculati...Presents the calculation of critical velocity, natural frequency and dynamic respondency of fluid conveying pipe are calculated under different boundary conditions using finite element method, and the use of calculation results to design and research rocket pipes feeding fuel and watery turbine pipes conveying water etc.展开更多
In order to establish the relationship between the measured dynamic response and the health status of long-span bridges, a double-layer model updating method for steel-concrete composite beam cable-stayed bridges is p...In order to establish the relationship between the measured dynamic response and the health status of long-span bridges, a double-layer model updating method for steel-concrete composite beam cable-stayed bridges is proposed. Measured frequencies are selected as the first-layer reference data, and the mass of the bridge deck, the grid density, the modulus of concrete and the ballast on the side span are modified by using a manual tuning technique. Measured global positioning system (GPS) data is selected as the second-layer reference data, and the degradation of the integral structure stiffness EI of the whole bridge is taken into account for the second-layer model updating by using the finite element iteration algorithm. The Nanpu Bridge in Shanghai is taken as a case to verify the applicability of the proposed model updating method. After the first-layer model updating, the standard deviation of modal frequencies is smaller than 7%. After the second-layer model updating, the error of the deflection of the mid-span is smaller than 10%. The integral structure stiffness of the whole bridge decreases about 20%. The research results show a good agreement between the calculated response and the measured response.展开更多
文摘Presents the calculation of critical velocity, natural frequency and dynamic respondency of fluid conveying pipe are calculated under different boundary conditions using finite element method, and the use of calculation results to design and research rocket pipes feeding fuel and watery turbine pipes conveying water etc.
基金The Special Project of the Ministry of Construction ofChina (No.20060909).
文摘In order to establish the relationship between the measured dynamic response and the health status of long-span bridges, a double-layer model updating method for steel-concrete composite beam cable-stayed bridges is proposed. Measured frequencies are selected as the first-layer reference data, and the mass of the bridge deck, the grid density, the modulus of concrete and the ballast on the side span are modified by using a manual tuning technique. Measured global positioning system (GPS) data is selected as the second-layer reference data, and the degradation of the integral structure stiffness EI of the whole bridge is taken into account for the second-layer model updating by using the finite element iteration algorithm. The Nanpu Bridge in Shanghai is taken as a case to verify the applicability of the proposed model updating method. After the first-layer model updating, the standard deviation of modal frequencies is smaller than 7%. After the second-layer model updating, the error of the deflection of the mid-span is smaller than 10%. The integral structure stiffness of the whole bridge decreases about 20%. The research results show a good agreement between the calculated response and the measured response.