Ground-based interferometric synthetic aperture radar(GB-InSAR)can take deformation measurement with a high accuracy.Partition of the GB-InSAR deformation map benefits analyzing the deformation state of the monitoring...Ground-based interferometric synthetic aperture radar(GB-InSAR)can take deformation measurement with a high accuracy.Partition of the GB-InSAR deformation map benefits analyzing the deformation state of the monitoring scene better.Existing partition methods rely on labelled datasets or single deformation feature,and they cannot be effectively utilized in GBInSAR applications.This paper proposes an improved partition method of the GB-InSAR deformation map based on dynamic time warping(DTW)and k-means.The DTW similarities between a reference point and all the measurement points are calculated based on their time-series deformations.Then the DTW similarity and cumulative deformation are taken as two partition features.With the k-means algorithm and the score based on multi evaluation indexes,a deformation map can be partitioned into an appropriate number of classes.Experimental datasets of West Copper Mine are processed to validate the effectiveness of the proposed method,whose measurement points are divided into seven classes with a score of 0.3151.展开更多
Ethylene glycol(EG)plays a pivotal role as a primary raw material in the polyester industry,and the syngas-to-EG route has become a significant technical route in production.The carbon monoxide(CO)gas-phase catalytic ...Ethylene glycol(EG)plays a pivotal role as a primary raw material in the polyester industry,and the syngas-to-EG route has become a significant technical route in production.The carbon monoxide(CO)gas-phase catalytic coupling to synthesize dimethyl oxalate(DMO)is a crucial process in the syngas-to-EG route,whereby the composition of the reactor outlet exerts influence on the ultimate quality of the EG product and the energy consumption during the subsequent separation process.However,measuring product quality in real time or establishing accurate dynamic mechanism models is challenging.To effectively model the DMO synthesis process,this study proposes a hybrid modeling strategy that integrates process mechanisms and data-driven approaches.The CO gas-phase catalytic coupling mechanism model is developed based on intrinsic kinetics and material balance,while a long short-term memory(LSTM)neural network is employed to predict the macroscopic reaction rate by leveraging temporal relationships derived from archived measurements.The proposed model is trained semi-supervised to accommodate limited-label data scenarios,leveraging historical data.By integrating these predictions with the mechanism model,the hybrid modeling approach provides reliable and interpretable forecasts of mass fractions.Empirical investigations unequivocally validate the superiority of the proposed hybrid modeling approach over conventional data-driven models(DDMs)and other hybrid modeling techniques.展开更多
Recently,the Cooperative Training Algorithm(CTA),a well-known Semi-Supervised Learning(SSL)technique,has garnered significant attention in the field of image classification.However,traditional CTA approaches face chal...Recently,the Cooperative Training Algorithm(CTA),a well-known Semi-Supervised Learning(SSL)technique,has garnered significant attention in the field of image classification.However,traditional CTA approaches face challenges such as high computational complexity and low classification accuracy.To overcome these limitations,we present a novel approach called Weighted fusion based Cooperative Training Algorithm(W-CTA),which leverages the cooperative training technique and unlabeled data to enhance classification performance.Moreover,we introduce the K-means Cooperative Training Algorithm(km-CTA)to prevent the occurrence of local optima during the training phase.Finally,we conduct various experiments to verify the performance of the proposed methods.Experimental results show that W-CTA and km-CTA are effective and efficient on CIFAR-10 dataset.展开更多
We propose a clustering-based approach for identifying coherent flow structuresin continuous dynamical systems. We first treat a particle trajectory over a finitetime interval as a high-dimensional data point and then...We propose a clustering-based approach for identifying coherent flow structuresin continuous dynamical systems. We first treat a particle trajectory over a finitetime interval as a high-dimensional data point and then cluster these data from differentinitial locations into groups. The method then uses the normalized standarddeviation or mean absolute deviation to quantify the deformation. Unlike the usualfinite-time Lyapunov exponent (FTLE), the proposed algorithm considers the completetraveling history of the particles. We also suggest two extensions of the method. To improvethe computational efficiency, we develop an adaptive approach that constructsdifferent subsamples of the whole particle trajectory based on a finite time interval. Tostart the computation in parallel to the flow trajectory data collection, we also developan on-the-fly approach to improve the solution as we continue to provide more measurementsfor the algorithm. The method can efficiently compute the WCVE over adifferent time interval by modifying the available data points.展开更多
Modeling genetic regulatory networks is an important research topic in genomic research and computationM systems biology. This paper considers the problem of constructing a genetic regula- tory network (GRN) using t...Modeling genetic regulatory networks is an important research topic in genomic research and computationM systems biology. This paper considers the problem of constructing a genetic regula- tory network (GRN) using the discrete dynamic system (DDS) model approach. Although considerable research has been devoted to building GRNs, many of the works did not consider the time-delay effect. Here, the authors propose a time-delay DDS model composed of linear difference equations to represent temporal interactions among significantly expressed genes. The authors also introduce interpolation scheme and re-sampling method for equalizing the non-uniformity of sampling time points. Statistical significance plays an active role in obtaining the optimal interaction matrix of GRNs. The constructed genetic network using linear multiple regression matches with the original data very well. Simulation results are given to demonstrate the effectiveness of the proposed method and model.展开更多
基金supported by the National Natural Science Foundation of China(61971037,61960206009,61601031)the Natural Science Foundation of Chongqing,China(cstc2020jcyj-msxm X0608,cstc2020jcyj-jq X0008)。
文摘Ground-based interferometric synthetic aperture radar(GB-InSAR)can take deformation measurement with a high accuracy.Partition of the GB-InSAR deformation map benefits analyzing the deformation state of the monitoring scene better.Existing partition methods rely on labelled datasets or single deformation feature,and they cannot be effectively utilized in GBInSAR applications.This paper proposes an improved partition method of the GB-InSAR deformation map based on dynamic time warping(DTW)and k-means.The DTW similarities between a reference point and all the measurement points are calculated based on their time-series deformations.Then the DTW similarity and cumulative deformation are taken as two partition features.With the k-means algorithm and the score based on multi evaluation indexes,a deformation map can be partitioned into an appropriate number of classes.Experimental datasets of West Copper Mine are processed to validate the effectiveness of the proposed method,whose measurement points are divided into seven classes with a score of 0.3151.
基金supported in part by the National Key Research and Development Program of China(2022YFB3305300)the National Natural Science Foundation of China(62173178).
文摘Ethylene glycol(EG)plays a pivotal role as a primary raw material in the polyester industry,and the syngas-to-EG route has become a significant technical route in production.The carbon monoxide(CO)gas-phase catalytic coupling to synthesize dimethyl oxalate(DMO)is a crucial process in the syngas-to-EG route,whereby the composition of the reactor outlet exerts influence on the ultimate quality of the EG product and the energy consumption during the subsequent separation process.However,measuring product quality in real time or establishing accurate dynamic mechanism models is challenging.To effectively model the DMO synthesis process,this study proposes a hybrid modeling strategy that integrates process mechanisms and data-driven approaches.The CO gas-phase catalytic coupling mechanism model is developed based on intrinsic kinetics and material balance,while a long short-term memory(LSTM)neural network is employed to predict the macroscopic reaction rate by leveraging temporal relationships derived from archived measurements.The proposed model is trained semi-supervised to accommodate limited-label data scenarios,leveraging historical data.By integrating these predictions with the mechanism model,the hybrid modeling approach provides reliable and interpretable forecasts of mass fractions.Empirical investigations unequivocally validate the superiority of the proposed hybrid modeling approach over conventional data-driven models(DDMs)and other hybrid modeling techniques.
基金supported in part by the National Natural Science Foundation of China(NSFC)(Nos.62033010,62102134)in part by the Leading talents of science and technology in the Central Plain of China(No.224200510004)+2 种基金in part by the Key R&D projects in Henan Province,China(No.231111222600)in part by the Aeronautical Science Foundation of China(No.2019460T5001)in part by the Scientific and Technological Innovation Talents of Colleges and Universities in Henan Province,China(No.22HASTIT014).
文摘Recently,the Cooperative Training Algorithm(CTA),a well-known Semi-Supervised Learning(SSL)technique,has garnered significant attention in the field of image classification.However,traditional CTA approaches face challenges such as high computational complexity and low classification accuracy.To overcome these limitations,we present a novel approach called Weighted fusion based Cooperative Training Algorithm(W-CTA),which leverages the cooperative training technique and unlabeled data to enhance classification performance.Moreover,we introduce the K-means Cooperative Training Algorithm(km-CTA)to prevent the occurrence of local optima during the training phase.Finally,we conduct various experiments to verify the performance of the proposed methods.Experimental results show that W-CTA and km-CTA are effective and efficient on CIFAR-10 dataset.
文摘We propose a clustering-based approach for identifying coherent flow structuresin continuous dynamical systems. We first treat a particle trajectory over a finitetime interval as a high-dimensional data point and then cluster these data from differentinitial locations into groups. The method then uses the normalized standarddeviation or mean absolute deviation to quantify the deformation. Unlike the usualfinite-time Lyapunov exponent (FTLE), the proposed algorithm considers the completetraveling history of the particles. We also suggest two extensions of the method. To improvethe computational efficiency, we develop an adaptive approach that constructsdifferent subsamples of the whole particle trajectory based on a finite time interval. Tostart the computation in parallel to the flow trajectory data collection, we also developan on-the-fly approach to improve the solution as we continue to provide more measurementsfor the algorithm. The method can efficiently compute the WCVE over adifferent time interval by modifying the available data points.
基金supported in part by HKRGC GrantHKU Strategic Theme Grant on Computational SciencesNational Natural Science Foundation of China under Grant Nos.10971075 and 11271144
文摘Modeling genetic regulatory networks is an important research topic in genomic research and computationM systems biology. This paper considers the problem of constructing a genetic regula- tory network (GRN) using the discrete dynamic system (DDS) model approach. Although considerable research has been devoted to building GRNs, many of the works did not consider the time-delay effect. Here, the authors propose a time-delay DDS model composed of linear difference equations to represent temporal interactions among significantly expressed genes. The authors also introduce interpolation scheme and re-sampling method for equalizing the non-uniformity of sampling time points. Statistical significance plays an active role in obtaining the optimal interaction matrix of GRNs. The constructed genetic network using linear multiple regression matches with the original data very well. Simulation results are given to demonstrate the effectiveness of the proposed method and model.