The rheological properties including the complex modulus G* and the phase angle δof matrix and warm mix asphalt (WMA)binders were measured by using the dynamic shear rheometer (DSR ) test at the medium temperatu...The rheological properties including the complex modulus G* and the phase angle δof matrix and warm mix asphalt (WMA)binders were measured by using the dynamic shear rheometer (DSR ) test at the medium temperature ranging from 16 to 40 ℃,and the relationships between the fatigue factor G* sinδand the matrix binder property,WMA additive and test temperature were established.It is found that G* decreases with the increasing temperature while δincreases inversely,and G* of the asphalt binder with high WMA additive dosage is large,and δis small.G*sinδexponentially decreases with the increasing temperature and linearly increases with the increase in additive dosage,and the amplitudes of variation are large at low temperatures and high additive dosages.The effect of WMA additive on the rheological property is more remarkable for the matrix asphalt binder with low G*.Besides,aging has a great effect on the property of matrix asphalt binder,and a slight effect on the interaction between asphalt and additive.The high additive dosage can increase the fatigue cracking potential of the asphalt binder.展开更多
The characters of basalt fiber are analyzed and compared with commonly used fibers. The rheological behaviors of the basalt fiber reinforced asphalt mastic are investigated by the dynamic shear rheological tests and t...The characters of basalt fiber are analyzed and compared with commonly used fibers. The rheological behaviors of the basalt fiber reinforced asphalt mastic are investigated by the dynamic shear rheological tests and the repeated creep tests. The results show that basalt fiber has excellent reinforced performances, such as high asphalt absorption ratio, low water absorption ratio, high tensile strength, high elastic modulus and high temperature stability. The rutting factor of the fiber reinforced asphalt mastic is higher than the plain asphalt mastic and the reinforced effects are more remarkable under high temperature. The rheological performances of the asphalt mastic demonstrate a good linear relationship between different temperature and loading frequency. The creep stiffness modulus of the asphalt mastic at different loading time can be expressed by power function. Improved Burgers model is used to represent the rheological behaviors of the asphalt mastic with basalt fiber and the model parameters are estimated.展开更多
In order to study the chemical modification mechanism and rheological properties of polyphosphoric acid (PPA)-modified asphalt,asphalt modified with different PPA contents were characterized by four-component test,ato...In order to study the chemical modification mechanism and rheological properties of polyphosphoric acid (PPA)-modified asphalt,asphalt modified with different PPA contents were characterized by four-component test,atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR).In the test,changes in asphalt chemical composition and colloidal structure were analyzed for different PPA contents,and infrared spectra were fitted with a Gaussian function.The reaction mechanism of PPA and matrix asphalt was also discussed.Based on dynamic shear rheometer (DSR) test and bending beam rheometer (BBR) test,rheological index G~*/sinδ and S/m were used to evaluate the modification effect of PPA on asphalt.The results show that,with an increase in PPA content,both large and small honeycomb structures increased in the three-dimensional topography seen in the atomic force microscope (AFM).In a certain space range,some of the micelles in the asphalt are connected each other to form interlocking skeleton structures,and locally form dense spatial network structures.The added PPA does not chemically react with the functional groups in the functional-group area of the infrared spectra (3 100-2 750 cm^(-1),1 800-1 330 cm^(-1)),and the structure is very stable.However,there is an obvious new absorption peak below 1 330 cm^(-1) in the fingerprint area,that is,the chemical reaction between PPA and the matrix asphalt generates a new compound,inorganic phosphate.Infrared spectra of PPA-modified asphalt with different contents were fitted by a Gaussian function,which makes up for the limitation that the absorption intensity information of each superimposed functional group cannot be obtained directly from the original infrared spectra.Results of this qualitative analysis were further verified by quantitative analysis.The addition of PPA can effectively improve the high and low-temperature performance of asphalt,and the lower the temperature is in the negative temperature zone,the more obvious the improvement is.When PPA content is more than 1%,the improvement of asphalt low-temperature performance is not obvious.展开更多
基金The National Natural Science Foundation of China(No.51408043)the Natural Science Foundation of Shaanxi Province(No.2014JQ7278)
文摘The rheological properties including the complex modulus G* and the phase angle δof matrix and warm mix asphalt (WMA)binders were measured by using the dynamic shear rheometer (DSR ) test at the medium temperature ranging from 16 to 40 ℃,and the relationships between the fatigue factor G* sinδand the matrix binder property,WMA additive and test temperature were established.It is found that G* decreases with the increasing temperature while δincreases inversely,and G* of the asphalt binder with high WMA additive dosage is large,and δis small.G*sinδexponentially decreases with the increasing temperature and linearly increases with the increase in additive dosage,and the amplitudes of variation are large at low temperatures and high additive dosages.The effect of WMA additive on the rheological property is more remarkable for the matrix asphalt binder with low G*.Besides,aging has a great effect on the property of matrix asphalt binder,and a slight effect on the interaction between asphalt and additive.The high additive dosage can increase the fatigue cracking potential of the asphalt binder.
基金Funded by The National Natural Science Foundation of China(No.51108082)
文摘The characters of basalt fiber are analyzed and compared with commonly used fibers. The rheological behaviors of the basalt fiber reinforced asphalt mastic are investigated by the dynamic shear rheological tests and the repeated creep tests. The results show that basalt fiber has excellent reinforced performances, such as high asphalt absorption ratio, low water absorption ratio, high tensile strength, high elastic modulus and high temperature stability. The rutting factor of the fiber reinforced asphalt mastic is higher than the plain asphalt mastic and the reinforced effects are more remarkable under high temperature. The rheological performances of the asphalt mastic demonstrate a good linear relationship between different temperature and loading frequency. The creep stiffness modulus of the asphalt mastic at different loading time can be expressed by power function. Improved Burgers model is used to represent the rheological behaviors of the asphalt mastic with basalt fiber and the model parameters are estimated.
基金Funded by National Natural Science Foundation of China (No. 11962024)Inner Mongolia Transportation Technology Project (No. NJ-2014-9)Research Fund for the Doctoral Program of Higher Education of China (RFDP)(No. BS2020042)。
文摘In order to study the chemical modification mechanism and rheological properties of polyphosphoric acid (PPA)-modified asphalt,asphalt modified with different PPA contents were characterized by four-component test,atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR).In the test,changes in asphalt chemical composition and colloidal structure were analyzed for different PPA contents,and infrared spectra were fitted with a Gaussian function.The reaction mechanism of PPA and matrix asphalt was also discussed.Based on dynamic shear rheometer (DSR) test and bending beam rheometer (BBR) test,rheological index G~*/sinδ and S/m were used to evaluate the modification effect of PPA on asphalt.The results show that,with an increase in PPA content,both large and small honeycomb structures increased in the three-dimensional topography seen in the atomic force microscope (AFM).In a certain space range,some of the micelles in the asphalt are connected each other to form interlocking skeleton structures,and locally form dense spatial network structures.The added PPA does not chemically react with the functional groups in the functional-group area of the infrared spectra (3 100-2 750 cm^(-1),1 800-1 330 cm^(-1)),and the structure is very stable.However,there is an obvious new absorption peak below 1 330 cm^(-1) in the fingerprint area,that is,the chemical reaction between PPA and the matrix asphalt generates a new compound,inorganic phosphate.Infrared spectra of PPA-modified asphalt with different contents were fitted by a Gaussian function,which makes up for the limitation that the absorption intensity information of each superimposed functional group cannot be obtained directly from the original infrared spectra.Results of this qualitative analysis were further verified by quantitative analysis.The addition of PPA can effectively improve the high and low-temperature performance of asphalt,and the lower the temperature is in the negative temperature zone,the more obvious the improvement is.When PPA content is more than 1%,the improvement of asphalt low-temperature performance is not obvious.