When the radio frequency identification(RFID)system inventories multiple tags,the recognition rate will be seriously affected due to collisions.Based on the existing dynamic frame slotted Aloha(DFSA)algorithm,a sub-fr...When the radio frequency identification(RFID)system inventories multiple tags,the recognition rate will be seriously affected due to collisions.Based on the existing dynamic frame slotted Aloha(DFSA)algorithm,a sub-frame observation and cyclic redundancy check(CRC)grouping combined dynamic framed slotted Aloha(SUBF-CGDFSA)algorithm is proposed.The algorithm combines the precise estimation method of the quantity of large-scale tags,the large-scale tags grouping mechanism based on CRC pseudo-randomcharacteristics,and the Aloha anti-collision optimization mechanism based on sub-frame observation.By grouping tags and sequentially identifying themwithin subframes,it accurately estimates the number of remaining tags and optimizes frame length accordingly to improve efficiency in large-scale RFID systems.Simulation outcomes demonstrate that this proposed algorithmcan effectively break through the system throughput bottleneck of 36.8%,which is up to 30%higher than the existing DFSA standard scheme,and has more significant advantages,which is suitable for application in largescale RFID tags scenarios.展开更多
The container sea-rail multimodal transport system faces complex challenges with de- mand uncertainties for joint slot allocation and dynamic pricing. The challenge is formulated as a two-stage optimal model based on ...The container sea-rail multimodal transport system faces complex challenges with de- mand uncertainties for joint slot allocation and dynamic pricing. The challenge is formulated as a two-stage optimal model based on revenue management (RM) as actual slots sale of multi-node container sea-rail multimodal transport usually includes contract sale to large shippers and free sale to scattered shippers. First stage in the model utilizes an origin-destination control approach, formulated as a stochastic integer programming equation, to settle long-term slot allocation in the contract market and empty container allocation. Second stage in the model is formulated as a stochastic nonlinear programming equation to solve a multiproduct joint dynamic pricing and inventory control problem for price settling and slot allocation in each period of free market. Considering the random nature of demand, the methods of chance constrained programming and robust optimi- zation are utilized to transform stochastic models into deterministic models. A numerical experiment is presented to verify the availability of models and solving methods. Results of considering uncertain/certain demand are compared, which show that the two-stage optimal strategy integrating slot allocation with dynamic pricing considering random de- mand is revealed to increase the revenue for multimodal transport operators (MTO) while concurrently satisfying shippers' demand. Research resulting from this paper will contribute to the theory and practice of container sea-rail multimodal transport revenue management and provide a scientific decision-making tool for MTO.展开更多
基金supported in part by National Natural Science Foundation of China(U22B2004,62371106)in part by the Joint Project of China Mobile Research Institute&X-NET(Project Number:2022H002)+6 种基金in part by the Pre-Research Project(31513070501)in part by National Key R&D Program(2018AAA0103203)in part by Guangdong Provincial Research and Development Plan in Key Areas(2019B010141001)in part by Sichuan Provincial Science and Technology Planning Program of China(2022YFG0230,2023YFG0040)in part by the Fundamental Enhancement Program Technology Area Fund(2021-JCJQ-JJ-0667)in part by the Joint Fund of ZF and Ministry of Education(8091B022126)in part by Innovation Ability Construction Project for Sichuan Provincial Engineering Research Center of Communication Technology for Intelligent IoT(2303-510109-04-03-318020).
文摘When the radio frequency identification(RFID)system inventories multiple tags,the recognition rate will be seriously affected due to collisions.Based on the existing dynamic frame slotted Aloha(DFSA)algorithm,a sub-frame observation and cyclic redundancy check(CRC)grouping combined dynamic framed slotted Aloha(SUBF-CGDFSA)algorithm is proposed.The algorithm combines the precise estimation method of the quantity of large-scale tags,the large-scale tags grouping mechanism based on CRC pseudo-randomcharacteristics,and the Aloha anti-collision optimization mechanism based on sub-frame observation.By grouping tags and sequentially identifying themwithin subframes,it accurately estimates the number of remaining tags and optimizes frame length accordingly to improve efficiency in large-scale RFID systems.Simulation outcomes demonstrate that this proposed algorithmcan effectively break through the system throughput bottleneck of 36.8%,which is up to 30%higher than the existing DFSA standard scheme,and has more significant advantages,which is suitable for application in largescale RFID tags scenarios.
基金supported by the National Natural Science Foundation of China(No.71372088)the scientific research fund of Education Department of Liaoning Province (No.L2014179,L2013207)
文摘The container sea-rail multimodal transport system faces complex challenges with de- mand uncertainties for joint slot allocation and dynamic pricing. The challenge is formulated as a two-stage optimal model based on revenue management (RM) as actual slots sale of multi-node container sea-rail multimodal transport usually includes contract sale to large shippers and free sale to scattered shippers. First stage in the model utilizes an origin-destination control approach, formulated as a stochastic integer programming equation, to settle long-term slot allocation in the contract market and empty container allocation. Second stage in the model is formulated as a stochastic nonlinear programming equation to solve a multiproduct joint dynamic pricing and inventory control problem for price settling and slot allocation in each period of free market. Considering the random nature of demand, the methods of chance constrained programming and robust optimi- zation are utilized to transform stochastic models into deterministic models. A numerical experiment is presented to verify the availability of models and solving methods. Results of considering uncertain/certain demand are compared, which show that the two-stage optimal strategy integrating slot allocation with dynamic pricing considering random de- mand is revealed to increase the revenue for multimodal transport operators (MTO) while concurrently satisfying shippers' demand. Research resulting from this paper will contribute to the theory and practice of container sea-rail multimodal transport revenue management and provide a scientific decision-making tool for MTO.