Deep neural network-based relational extraction research has made significant progress in recent years,andit provides data support for many natural language processing downstream tasks such as building knowledgegraph,...Deep neural network-based relational extraction research has made significant progress in recent years,andit provides data support for many natural language processing downstream tasks such as building knowledgegraph,sentiment analysis and question-answering systems.However,previous studies ignored much unusedstructural information in sentences that could enhance the performance of the relation extraction task.Moreover,most existing dependency-based models utilize self-attention to distinguish the importance of context,whichhardly deals withmultiple-structure information.To efficiently leverage multiple structure information,this paperproposes a dynamic structure attention mechanism model based on textual structure information,which deeplyintegrates word embedding,named entity recognition labels,part of speech,dependency tree and dependency typeinto a graph convolutional network.Specifically,our model extracts text features of different structures from theinput sentence.Textual Structure information Graph Convolutional Networks employs the dynamic structureattention mechanism to learn multi-structure attention,effectively distinguishing important contextual features invarious structural information.In addition,multi-structure weights are carefully designed as amergingmechanismin the different structure attention to dynamically adjust the final attention.This paper combines these featuresand trains a graph convolutional network for relation extraction.We experiment on supervised relation extractiondatasets including SemEval 2010 Task 8,TACRED,TACREV,and Re-TACED,the result significantly outperformsthe previous.展开更多
The relative motion of the electrodes is a typical feature of sliding electrical contact systems.The system fault caused by the arc is the key problem that restricts the service life of the sliding electrical contact ...The relative motion of the electrodes is a typical feature of sliding electrical contact systems.The system fault caused by the arc is the key problem that restricts the service life of the sliding electrical contact system.In this paper,an arcing experimental platform that can accurately control the relative speed and distance of electrodes is built,and the influence of different electrode speeds and electrode distances on arc motion characteristics is explored.It is found that there are three different modes of arc root motion:single arc root motion mode,single and double arc roots alternating motion mode,and multiple arc roots motion mode.The physical process and influence mechanism of different arc root motion modes are further studied,and the corresponding relationship between arc root motion modes and electrode speed is revealed.In addition,to further explore the distribution characteristics of arc temperature and its influencing factors,an arc magnetohydrodynamic model under the relative motion of electrodes is established,and the variation law of arc temperature under the effect of different electrode speeds and electrode distances is summarized.Finally,the influence mechanism of electrode speed and electrode distance on arc temperature,arc root distance,and arc root speed is clarified.The research results enrich the research system of arc dynamic characteristics in the field of sliding electrical contact,and provide theoretical support for restraining arc erosion and improving the service life of the sliding electrical contact system.展开更多
The phenomenon of “missing mass” in galaxies has triggered new theoretical exploration, forming a competition between dark matter assumption, modified Newtonian dynamics and modified gravity. Over the past forty yea...The phenomenon of “missing mass” in galaxies has triggered new theoretical exploration, forming a competition between dark matter assumption, modified Newtonian dynamics and modified gravity. Over the past forty years, various versions of the modified scenario have been proposed to simulate the effects of missing mass. These schemes replace the dynamic effect of dark matter by introducing some tiny extra force terms in the dynamic equations. Such extra forces have mainly interactions on large scales of galaxies, such as fitting the Tully-Fisher relation or asymptotically flat rotation curves. The discussion in this paper shows that the evidence of taking the modified schemes as fundamental theory is still insufficient. In this paper, we display a system of simplified galactic dynamical equations derived from weak field and low-speed approximations of Einstein field equations, and then we use it to discuss two important empirical relations in galactic dynamics, namely the Faber-Jackson relation and Tully-Fisher relation, as well as the related fundamental plane. These discussions provide a reference scheme for improving the dispersion of the empirical relations, and also provide a theoretical foundation to analyze the properties of dark matter and galactic structures.展开更多
In this paper, Hailin City of Heilongjiang Province, China is taken as the research area. As an important city in Heilongjiang Province, China, the sustainable development of its ecological environment is related to t...In this paper, Hailin City of Heilongjiang Province, China is taken as the research area. As an important city in Heilongjiang Province, China, the sustainable development of its ecological environment is related to the opening up, economic prosperity and social stability of Northeast China. In this paper, the remote sensing ecological index (RSEI) of Hailin City in recent 20 years was calculated by using Landsat 5/8/9 series satellite images, and the temporal and spatial changes of the ecological environment in Hailin City were further analyzed and the influencing factors were discussed. From 2003 to 2023, the mean value of RSEI in Hailin City decreased and increased, and the ecological environment decreased slightly as a whole. RSEI declined most significantly from 2003 to 2008, and it increased from 2008 to 2013, decreased from 2013 to 2018, and increased from 2018 to 2023 again, with higher RSEI value in the south and lower RSEI value in the northwest. It is suggested to appropriately increase vegetation coverage in the northwest to improve ecological quality. As a result, the predicted value of Elman dynamic recurrent neural network model is consistent with the change trend of the mean value, and the prediction error converges quickly, which can accurately predict the ecological environment quality in the future study area.展开更多
The equations of motion governing the quasi-static and dynamical behavior of a viscoelastic Timoshenko beam are derived. The viscoelastic material is assumed to obey a three-dimensional fractional derivative constitut...The equations of motion governing the quasi-static and dynamical behavior of a viscoelastic Timoshenko beam are derived. The viscoelastic material is assumed to obey a three-dimensional fractional derivative constitutive relation. ne quasi-static behavior of the viscoelastic Timoshenko beam under step loading is analyzed and the analytical solution is obtained. The influence of material parameters on the deflection is investigated. The dynamical response of the viscoelastic Timoshenko beam subjected to a periodic excitation is studied by means of mode shape functions. And the effect of both transverse shear and rotational inertia on the vibration of the beam is discussed.展开更多
In this paper,a space-time correlation based fast regional spectrum sensing(RSS)scheme is proposed to reduce the time and energy consumption of traditional spatial spectrum sensing. The target region is divided into s...In this paper,a space-time correlation based fast regional spectrum sensing(RSS)scheme is proposed to reduce the time and energy consumption of traditional spatial spectrum sensing. The target region is divided into small meshes,and all meshes are clustered into highly related groups using the spatial correlation among them. In each group,some representative meshes are selected as detecting meshes(DMs)using a multi-center mesh(MCM)clustering algorithm,while other meshes(EMs)are estimated according to their correlations with DMs and the Markov modeled dependence on history by MAP principle. Thus,detecting fewer meshes saves the sensing consumption. Since two independent estimation processes may provide contradictory results,minimum entropy principle is adopted to merge the results. Tested with data acquired by radio environment mapping measurement conducted in the downtown Beijing,our scheme is capable to reduce the consumption of traditional sensing method with acceptable sensing performance.展开更多
An online dynamic method based on electrical conductivity probe, tensiometer and datataker was presented to measure saturation-capillary pressure (S-p) relation in water-light nonaqueous phase liquid (LNAPL) two-p...An online dynamic method based on electrical conductivity probe, tensiometer and datataker was presented to measure saturation-capillary pressure (S-p) relation in water-light nonaqueous phase liquid (LNAPL) two-phase sandy medium under water level fluctuation. Three-electrode electrical conductivity probe (ECP) was used to measure water saturation. Hydrophobic tensiometer was obtained by spraying waterproof material to the ceramic cup of commercially available hydrophilic tensiometer. A couple of hydrophilic tensiometer and hydrophobic tensiometer were used to measure pore water pressure and pore LNAPL pressure of the sandy medium, respectively. All the signals from ECP and tensiometer were collected by a data taker connected with a computer. The results show that this method can finish the measurement of S-R relation of a complete drainage or imbibition process in less than 60 min. It is much more timesaving compared with 10-40 d of traditional methods. Two cycles of water level fluctuation were produced, and four saturation-capillary pressure relations including two stable residual LNAPL saturations of the sandy medium were obtained during in 350 h. The results show that this method has a good durable performance and feasibility in the porous medium with complicated multiphase flow. Although further studies are needed on the signal stability and accuracy drift of the ECP, this online dynamic method can be used successfully in the rapid characterization of a LNAPL migration in porous media.展开更多
This research work proceeds from the assumption, which was still considered by Einstein, that the quantization of gravity does not require additional external procedures: quantum phenomena can be a consequence of the ...This research work proceeds from the assumption, which was still considered by Einstein, that the quantization of gravity does not require additional external procedures: quantum phenomena can be a consequence of the properties of the universal gravitational interaction, which maps any physical field upon the space-time geometry. Therefore, an attempt is made in this research work to reduce the quantization of physical fields in GRT to the space-time quantization. Three reasons for quantum phenomena are considered: Partition of space-time into a set of unconnected Novikov’s R- and T-domains impenetrable for light paths;the set is generated by the invariance of Einstein’s equations with respect to dual mappings;The existence of electric charge quanta of wormholes, which geometrically describe elementary particles in GRT. This gives rise to a discrete spectrum of their physical and geometric parameters governed by Diophantine equations. It is shown that the fundamental constants (electric charge, rest masses of an electron and a proton) are interconnected arithmetically;The existence of the so-called Diophantine catastrophe, when fluctuations in the values of physical constants tending to zero lead to fluctuations in the number of electric charges and the number of nucleons at the wormhole throats, which tend to infinity, so that the product of the increments of these numbers by the increment of physical constants forms a relation equivalent to the uncertainty relation in quantum mechanics. This suggests that space-time cannot but fluctuate, and, moreover, its fluctuations are bounded from below, so that all processes become chaotic, and the observables become averaged over this chaos.展开更多
Temperature profiles down to 1500m(CTD) collected by Academia Sinica from 1986 to 1990 are used and discussed in relation to the dynamic heights at130 E across the North Equatorial Current (NEC). An extremely high cor...Temperature profiles down to 1500m(CTD) collected by Academia Sinica from 1986 to 1990 are used and discussed in relation to the dynamic heights at130 E across the North Equatorial Current (NEC). An extremely high correlation between subsurface (say at 400 m depth) temperature and dynamic height relative to 1500 db is found, and the corresponding regression relationships suggest a method to estimate gpostrophic circulation from subsurface temperature alone. These suggest that the conclusions from extensive studies on this topic in Australian waters also apply to the NEC region, at least at130 E , thus making the subsurface thermal structure an excellent indicator of the variation of the NEC.展开更多
The dynamic stability of simple supported viscoelastic column, subjected to a periodic axial force, is investigated. The viscoelastic material was assumed to obey the fractional derivative constitutive relation. The g...The dynamic stability of simple supported viscoelastic column, subjected to a periodic axial force, is investigated. The viscoelastic material was assumed to obey the fractional derivative constitutive relation. The governing equation of motion was derived as a weakly singular Volterra integro-partial-differential equation, and it was simplified into weakly singular Volterra integro-ordinary-differential equation by the Galerkin method. In terms of the averaging method, the dynamical stability was analyzed. A new numerical method is proposed to avoid storing all history data. Numerical examples are presented and the numerical results agree with the analytical ones.展开更多
Red turpentine beetle (RTB), Dendroctongs valens LeConte, is a destructive forest invasive species in China, it mainly attacks Pings tabuliformis and P. bungeana. So far it has spread rapidly to the provinces of Sha...Red turpentine beetle (RTB), Dendroctongs valens LeConte, is a destructive forest invasive species in China, it mainly attacks Pings tabuliformis and P. bungeana. So far it has spread rapidly to the provinces of Shanxi, Hebei, Henan, Shanxi and Beijing since its first outbreak in Shanxi Province in 1998, and has caused extensive tree mortality. Space-time dynamics of D. valens population and spatial sampling technique based on its spatial distribution pattern were ana- lyzed using geostatistical methods in the pure P. tabuliforis forests and mixedwood stands which were at different damage levels. According to the spatial distribu- tion of D. valeas population, the specific spatial sampling technique was also studied, and then was compared with traditional sampling technique. The spatial sam- piing technique combined with sampling theory and the biological characteristics of D. valens population, which not only could calcnlate the error of the sampling, but also could discuss the optimal sampling number and the optimum size of plot according to different damage levels and different stand types. This helps to explain population expansion and colonization mechanism of D. valens, and to provide a good reference for adopting snitable control measures.展开更多
- Starting from satellite remote sensing data, the dynamical processes of shear waves occurring at the boundary between the western boundary current and the shelf slope water are studied and dynamically analyzed in th...- Starting from satellite remote sensing data, the dynamical processes of shear waves occurring at the boundary between the western boundary current and the shelf slope water are studied and dynamically analyzed in this study. The average wavelength is 75 km, and the average amplitude (from crest to trough )17 km. the average phase speed 100 cms-1 for the shear waves along the north wall of the Gulf Stream to the east of Cape Hatteras measured from NOAA satellite IR (infrared ) images. The average wavelength of shear waves along the north wall of the Kuroshio Current is 57 km, and the average amplitude 17 km. For the shear waves occurring along the west wall of the Gulf Stream to the south of Cape Hatteras, the average wavelength is 131 km, and the average amplitude 33 km measured from Seasat SAR (synthetic aperture radar )images. The time for one cycle of shear wave event is about one week.In order to explore the dynamical mechanisms of shear waves, we solved the vorticity equation for a stratified fluid, and obtained an analytical expression of dispersion relation of shear waves. The results indicated that there was a parabolic relation between the phase speed and the wavelength of shear waves, and the mean flow field was an important factor in the dispersion relation. The latter point means that the horizontal tangent variation of velocity is a basic condition for shear wave occurrence. Theoretical analyses are confirmed by satellite remote sensing data.展开更多
Aim To study the Lie symmetries and conserved quantities of the dynamical equationsof relative motion for holonomic mechanical systems. Methods Lie's method of the invariance of ordinary differential equations u...Aim To study the Lie symmetries and conserved quantities of the dynamical equationsof relative motion for holonomic mechanical systems. Methods Lie's method of the invariance of ordinary differential equations under infinitesimal transformations was used. Results and Conclusion The determining equaiton of the Lie symmetries for the dynamical equationS of relative motion is established.The structure quation and the form conserved quantities are obtained. An example iD illustrate the application of the result is given.展开更多
This paper discusses in detail the conformal invariance by infinitesimal transformations of a dynamical system of relative motion. The necessary and sufficient conditions of conformal invariance and Lie symmetry are g...This paper discusses in detail the conformal invariance by infinitesimal transformations of a dynamical system of relative motion. The necessary and sufficient conditions of conformal invariance and Lie symmetry are given simultaneously by the action of infinitesimal transformations. Then it obtains the conserved quantities of conformal invariance by the infinitesimal transformations. Finally an example is given to illustrate the application of the results.展开更多
Special Lie symmetry and the Hojman conserved quantity for Appell equations in a dynamical system of relative motion are investigated. The definition and the criterion of the special Lie symmetry of Appell equations i...Special Lie symmetry and the Hojman conserved quantity for Appell equations in a dynamical system of relative motion are investigated. The definition and the criterion of the special Lie symmetry of Appell equations in a dynamical system of relative motion under infinitesimal group transformation are presented. The expression of the equation for the special Lie symmetry of Appell equations and the Hojman conserved quantity, deduced directly from the special Lie symmetry in a dynamical system of relative motion, are obtained. An example is given to illustrate the application of the results.展开更多
The rapid development of traffic engineering in cold regions and its consequent problems need to be considered.In this paper,the dynamic response characteristics of the tunnel portal section in cold regions with harmo...The rapid development of traffic engineering in cold regions and its consequent problems need to be considered.In this paper,the dynamic response characteristics of the tunnel portal section in cold regions with harmonic load acting on the lining were studied in the frequency domain.The lining is in close contact with the frozen soil,and there is relative movement between the frozen and unfrozen soil due to the phase change.The analytical solution of the vibration of tunnel portal section caused by the harmonic load acting on the lining was derived under the consideration of the anisotropy frost heave of overlying soil.Based on the continuity conditions and boundary conditions,the undetermined coefficients were obtained,and the analytical solutions for different medium displacements and stresses of the cold-region tunnel system were acquired.The vertical pressure coefficient was equivalently simplified as a variable that could be used to replace the thickness of the overlying soil above the tunnel.The analysis of the parameter model shows that the change of the medium parameters(lining,frozen,and unfrozen soil)affects the circumferential stresses,the radial displacements and their peak frequencies of the soil.For example,the increase of density ratio of tunnel lining to frozen soil decreases the radial stresses of the frozen and unfrozen soil;the increase of volumetric frost heaving strain of the frozen soil increases the radial displacements of the frozen surface and decreases the stability of the frozen surface;the increasing of thickness of the frozen soil significantly reduces the radial displacement of unfrozen soil at dimensionless radius η=4.5 compared with that of frozen soil at η=1.5.展开更多
This paper focuses on studying the Poisson theory and the integration method of dynamics of relative motion. Equations of a dynamical system of relative motion in phase space are given. Poisson theory of the system is...This paper focuses on studying the Poisson theory and the integration method of dynamics of relative motion. Equations of a dynamical system of relative motion in phase space are given. Poisson theory of the system is established. The Jacobi last multiplier of the system is defined, and the relation between the Jacobi last multiplier and the first integrals of the system is studied. Our research shows that for a dynamical system of relative motion, whose configuration is determined by n generalized coordinates, the solution of the system can be found by using the Jacobi last multiplier if (2n-1) first integrals of the system are known. At the end of the paper, an example is given to illustrate the application of the results.展开更多
Lie symmetry and conserved quantity deduced from Lie symmetry of Appell equations in a dynamical system of relative motion with Chetaev-type nonholonomic constraints are studied.The differential equations of motion of...Lie symmetry and conserved quantity deduced from Lie symmetry of Appell equations in a dynamical system of relative motion with Chetaev-type nonholonomic constraints are studied.The differential equations of motion of the Appell equation for the system,the definition and criterion of Lie symmetry,the condition and the expression of generalized Hojman conserved quantity deduced from Lie symmetry for the system are obtained.The condition and the expression of Hojman conserved quantity deduced from special Lie symmetry for the system under invariable time are further obtained.An example is given to illustrate the application of the results.展开更多
This paper studies the chaotic behaviours of a relative rotation nonlinear dynamical system under parametric excitation and its control. The dynamical equation of relative rotation nonlinear dynamical system under par...This paper studies the chaotic behaviours of a relative rotation nonlinear dynamical system under parametric excitation and its control. The dynamical equation of relative rotation nonlinear dynamical system under parametric excitation is deduced by using the dissipation Lagrange equation. The. criterion of existence of chaos under parametric excitation is given by using the Melnikov theory. The chaotic behaviours are detected by numerical simulations including bifurcation diagrams, Poincare map and maximal Lyapunov exponent. Furthermore, it implements chaotic control using nomfeedback method. It obtains the parameter condition of chaotic control by the Melnikov theory. Numerical simulation results show the consistence with the theoretical analysis. The chaotic motions can be controlled to periodmotions by adding an excitation term.展开更多
文摘Deep neural network-based relational extraction research has made significant progress in recent years,andit provides data support for many natural language processing downstream tasks such as building knowledgegraph,sentiment analysis and question-answering systems.However,previous studies ignored much unusedstructural information in sentences that could enhance the performance of the relation extraction task.Moreover,most existing dependency-based models utilize self-attention to distinguish the importance of context,whichhardly deals withmultiple-structure information.To efficiently leverage multiple structure information,this paperproposes a dynamic structure attention mechanism model based on textual structure information,which deeplyintegrates word embedding,named entity recognition labels,part of speech,dependency tree and dependency typeinto a graph convolutional network.Specifically,our model extracts text features of different structures from theinput sentence.Textual Structure information Graph Convolutional Networks employs the dynamic structureattention mechanism to learn multi-structure attention,effectively distinguishing important contextual features invarious structural information.In addition,multi-structure weights are carefully designed as amergingmechanismin the different structure attention to dynamically adjust the final attention.This paper combines these featuresand trains a graph convolutional network for relation extraction.We experiment on supervised relation extractiondatasets including SemEval 2010 Task 8,TACRED,TACREV,and Re-TACED,the result significantly outperformsthe previous.
基金supported by National Natural Science Foundation of China(Nos.U19A20105 and 52077182)。
文摘The relative motion of the electrodes is a typical feature of sliding electrical contact systems.The system fault caused by the arc is the key problem that restricts the service life of the sliding electrical contact system.In this paper,an arcing experimental platform that can accurately control the relative speed and distance of electrodes is built,and the influence of different electrode speeds and electrode distances on arc motion characteristics is explored.It is found that there are three different modes of arc root motion:single arc root motion mode,single and double arc roots alternating motion mode,and multiple arc roots motion mode.The physical process and influence mechanism of different arc root motion modes are further studied,and the corresponding relationship between arc root motion modes and electrode speed is revealed.In addition,to further explore the distribution characteristics of arc temperature and its influencing factors,an arc magnetohydrodynamic model under the relative motion of electrodes is established,and the variation law of arc temperature under the effect of different electrode speeds and electrode distances is summarized.Finally,the influence mechanism of electrode speed and electrode distance on arc temperature,arc root distance,and arc root speed is clarified.The research results enrich the research system of arc dynamic characteristics in the field of sliding electrical contact,and provide theoretical support for restraining arc erosion and improving the service life of the sliding electrical contact system.
文摘The phenomenon of “missing mass” in galaxies has triggered new theoretical exploration, forming a competition between dark matter assumption, modified Newtonian dynamics and modified gravity. Over the past forty years, various versions of the modified scenario have been proposed to simulate the effects of missing mass. These schemes replace the dynamic effect of dark matter by introducing some tiny extra force terms in the dynamic equations. Such extra forces have mainly interactions on large scales of galaxies, such as fitting the Tully-Fisher relation or asymptotically flat rotation curves. The discussion in this paper shows that the evidence of taking the modified schemes as fundamental theory is still insufficient. In this paper, we display a system of simplified galactic dynamical equations derived from weak field and low-speed approximations of Einstein field equations, and then we use it to discuss two important empirical relations in galactic dynamics, namely the Faber-Jackson relation and Tully-Fisher relation, as well as the related fundamental plane. These discussions provide a reference scheme for improving the dispersion of the empirical relations, and also provide a theoretical foundation to analyze the properties of dark matter and galactic structures.
文摘In this paper, Hailin City of Heilongjiang Province, China is taken as the research area. As an important city in Heilongjiang Province, China, the sustainable development of its ecological environment is related to the opening up, economic prosperity and social stability of Northeast China. In this paper, the remote sensing ecological index (RSEI) of Hailin City in recent 20 years was calculated by using Landsat 5/8/9 series satellite images, and the temporal and spatial changes of the ecological environment in Hailin City were further analyzed and the influencing factors were discussed. From 2003 to 2023, the mean value of RSEI in Hailin City decreased and increased, and the ecological environment decreased slightly as a whole. RSEI declined most significantly from 2003 to 2008, and it increased from 2008 to 2013, decreased from 2013 to 2018, and increased from 2018 to 2023 again, with higher RSEI value in the south and lower RSEI value in the northwest. It is suggested to appropriately increase vegetation coverage in the northwest to improve ecological quality. As a result, the predicted value of Elman dynamic recurrent neural network model is consistent with the change trend of the mean value, and the prediction error converges quickly, which can accurately predict the ecological environment quality in the future study area.
文摘The equations of motion governing the quasi-static and dynamical behavior of a viscoelastic Timoshenko beam are derived. The viscoelastic material is assumed to obey a three-dimensional fractional derivative constitutive relation. ne quasi-static behavior of the viscoelastic Timoshenko beam under step loading is analyzed and the analytical solution is obtained. The influence of material parameters on the deflection is investigated. The dynamical response of the viscoelastic Timoshenko beam subjected to a periodic excitation is studied by means of mode shape functions. And the effect of both transverse shear and rotational inertia on the vibration of the beam is discussed.
基金supported in part by National Natural Science Foundation of China under Grants(61525101,61227801 and 61601055)in part by the National Key Technology R&D Program of China under Grant 2015ZX03002008
文摘In this paper,a space-time correlation based fast regional spectrum sensing(RSS)scheme is proposed to reduce the time and energy consumption of traditional spatial spectrum sensing. The target region is divided into small meshes,and all meshes are clustered into highly related groups using the spatial correlation among them. In each group,some representative meshes are selected as detecting meshes(DMs)using a multi-center mesh(MCM)clustering algorithm,while other meshes(EMs)are estimated according to their correlations with DMs and the Markov modeled dependence on history by MAP principle. Thus,detecting fewer meshes saves the sensing consumption. Since two independent estimation processes may provide contradictory results,minimum entropy principle is adopted to merge the results. Tested with data acquired by radio environment mapping measurement conducted in the downtown Beijing,our scheme is capable to reduce the consumption of traditional sensing method with acceptable sensing performance.
基金Project(8151027501000008) supported by Guangdong Natural Science Foundation, ChinaProject(2007490511) supported by the Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, ChinaProject (2006K0006) supported by the Open Foundation of Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, China
文摘An online dynamic method based on electrical conductivity probe, tensiometer and datataker was presented to measure saturation-capillary pressure (S-p) relation in water-light nonaqueous phase liquid (LNAPL) two-phase sandy medium under water level fluctuation. Three-electrode electrical conductivity probe (ECP) was used to measure water saturation. Hydrophobic tensiometer was obtained by spraying waterproof material to the ceramic cup of commercially available hydrophilic tensiometer. A couple of hydrophilic tensiometer and hydrophobic tensiometer were used to measure pore water pressure and pore LNAPL pressure of the sandy medium, respectively. All the signals from ECP and tensiometer were collected by a data taker connected with a computer. The results show that this method can finish the measurement of S-R relation of a complete drainage or imbibition process in less than 60 min. It is much more timesaving compared with 10-40 d of traditional methods. Two cycles of water level fluctuation were produced, and four saturation-capillary pressure relations including two stable residual LNAPL saturations of the sandy medium were obtained during in 350 h. The results show that this method has a good durable performance and feasibility in the porous medium with complicated multiphase flow. Although further studies are needed on the signal stability and accuracy drift of the ECP, this online dynamic method can be used successfully in the rapid characterization of a LNAPL migration in porous media.
文摘This research work proceeds from the assumption, which was still considered by Einstein, that the quantization of gravity does not require additional external procedures: quantum phenomena can be a consequence of the properties of the universal gravitational interaction, which maps any physical field upon the space-time geometry. Therefore, an attempt is made in this research work to reduce the quantization of physical fields in GRT to the space-time quantization. Three reasons for quantum phenomena are considered: Partition of space-time into a set of unconnected Novikov’s R- and T-domains impenetrable for light paths;the set is generated by the invariance of Einstein’s equations with respect to dual mappings;The existence of electric charge quanta of wormholes, which geometrically describe elementary particles in GRT. This gives rise to a discrete spectrum of their physical and geometric parameters governed by Diophantine equations. It is shown that the fundamental constants (electric charge, rest masses of an electron and a proton) are interconnected arithmetically;The existence of the so-called Diophantine catastrophe, when fluctuations in the values of physical constants tending to zero lead to fluctuations in the number of electric charges and the number of nucleons at the wormhole throats, which tend to infinity, so that the product of the increments of these numbers by the increment of physical constants forms a relation equivalent to the uncertainty relation in quantum mechanics. This suggests that space-time cannot but fluctuate, and, moreover, its fluctuations are bounded from below, so that all processes become chaotic, and the observables become averaged over this chaos.
文摘Temperature profiles down to 1500m(CTD) collected by Academia Sinica from 1986 to 1990 are used and discussed in relation to the dynamic heights at130 E across the North Equatorial Current (NEC). An extremely high correlation between subsurface (say at 400 m depth) temperature and dynamic height relative to 1500 db is found, and the corresponding regression relationships suggest a method to estimate gpostrophic circulation from subsurface temperature alone. These suggest that the conclusions from extensive studies on this topic in Australian waters also apply to the NEC region, at least at130 E , thus making the subsurface thermal structure an excellent indicator of the variation of the NEC.
文摘The dynamic stability of simple supported viscoelastic column, subjected to a periodic axial force, is investigated. The viscoelastic material was assumed to obey the fractional derivative constitutive relation. The governing equation of motion was derived as a weakly singular Volterra integro-partial-differential equation, and it was simplified into weakly singular Volterra integro-ordinary-differential equation by the Galerkin method. In terms of the averaging method, the dynamical stability was analyzed. A new numerical method is proposed to avoid storing all history data. Numerical examples are presented and the numerical results agree with the analytical ones.
基金Supported by Research Project of Jiangsu Entry-Exit Inspection and Quarantine Bureau(2015KJ49)Project of Beijing Municipal Education Commission(JD100220888)+2 种基金Project of Beijing Excellent Talents Funding(D Class)Project of Beijing Municipal Education Commission(JD100220888)Beijing Excellent Talents Funding(D Class)Project "Study on Prevention and Control Technology of Dendroctonus valens"
文摘Red turpentine beetle (RTB), Dendroctongs valens LeConte, is a destructive forest invasive species in China, it mainly attacks Pings tabuliformis and P. bungeana. So far it has spread rapidly to the provinces of Shanxi, Hebei, Henan, Shanxi and Beijing since its first outbreak in Shanxi Province in 1998, and has caused extensive tree mortality. Space-time dynamics of D. valens population and spatial sampling technique based on its spatial distribution pattern were ana- lyzed using geostatistical methods in the pure P. tabuliforis forests and mixedwood stands which were at different damage levels. According to the spatial distribu- tion of D. valeas population, the specific spatial sampling technique was also studied, and then was compared with traditional sampling technique. The spatial sam- piing technique combined with sampling theory and the biological characteristics of D. valens population, which not only could calcnlate the error of the sampling, but also could discuss the optimal sampling number and the optimum size of plot according to different damage levels and different stand types. This helps to explain population expansion and colonization mechanism of D. valens, and to provide a good reference for adopting snitable control measures.
文摘- Starting from satellite remote sensing data, the dynamical processes of shear waves occurring at the boundary between the western boundary current and the shelf slope water are studied and dynamically analyzed in this study. The average wavelength is 75 km, and the average amplitude (from crest to trough )17 km. the average phase speed 100 cms-1 for the shear waves along the north wall of the Gulf Stream to the east of Cape Hatteras measured from NOAA satellite IR (infrared ) images. The average wavelength of shear waves along the north wall of the Kuroshio Current is 57 km, and the average amplitude 17 km. For the shear waves occurring along the west wall of the Gulf Stream to the south of Cape Hatteras, the average wavelength is 131 km, and the average amplitude 33 km measured from Seasat SAR (synthetic aperture radar )images. The time for one cycle of shear wave event is about one week.In order to explore the dynamical mechanisms of shear waves, we solved the vorticity equation for a stratified fluid, and obtained an analytical expression of dispersion relation of shear waves. The results indicated that there was a parabolic relation between the phase speed and the wavelength of shear waves, and the mean flow field was an important factor in the dispersion relation. The latter point means that the horizontal tangent variation of velocity is a basic condition for shear wave occurrence. Theoretical analyses are confirmed by satellite remote sensing data.
文摘Aim To study the Lie symmetries and conserved quantities of the dynamical equationsof relative motion for holonomic mechanical systems. Methods Lie's method of the invariance of ordinary differential equations under infinitesimal transformations was used. Results and Conclusion The determining equaiton of the Lie symmetries for the dynamical equationS of relative motion is established.The structure quation and the form conserved quantities are obtained. An example iD illustrate the application of the result is given.
基金supported by the National Natural Science Foundation of China (Grant No 10372053)the Natural Science Foundation of Henan Province,China (Grant Nos 082300410330 and 082300410370)
文摘This paper discusses in detail the conformal invariance by infinitesimal transformations of a dynamical system of relative motion. The necessary and sufficient conditions of conformal invariance and Lie symmetry are given simultaneously by the action of infinitesimal transformations. Then it obtains the conserved quantities of conformal invariance by the infinitesimal transformations. Finally an example is given to illustrate the application of the results.
文摘Special Lie symmetry and the Hojman conserved quantity for Appell equations in a dynamical system of relative motion are investigated. The definition and the criterion of the special Lie symmetry of Appell equations in a dynamical system of relative motion under infinitesimal group transformation are presented. The expression of the equation for the special Lie symmetry of Appell equations and the Hojman conserved quantity, deduced directly from the special Lie symmetry in a dynamical system of relative motion, are obtained. An example is given to illustrate the application of the results.
基金funded by National Natural Science Foundation of China(Grant No.51978039)the Fundamental Research Funds for the Central Universities(Grant No.2021YJS115)。
文摘The rapid development of traffic engineering in cold regions and its consequent problems need to be considered.In this paper,the dynamic response characteristics of the tunnel portal section in cold regions with harmonic load acting on the lining were studied in the frequency domain.The lining is in close contact with the frozen soil,and there is relative movement between the frozen and unfrozen soil due to the phase change.The analytical solution of the vibration of tunnel portal section caused by the harmonic load acting on the lining was derived under the consideration of the anisotropy frost heave of overlying soil.Based on the continuity conditions and boundary conditions,the undetermined coefficients were obtained,and the analytical solutions for different medium displacements and stresses of the cold-region tunnel system were acquired.The vertical pressure coefficient was equivalently simplified as a variable that could be used to replace the thickness of the overlying soil above the tunnel.The analysis of the parameter model shows that the change of the medium parameters(lining,frozen,and unfrozen soil)affects the circumferential stresses,the radial displacements and their peak frequencies of the soil.For example,the increase of density ratio of tunnel lining to frozen soil decreases the radial stresses of the frozen and unfrozen soil;the increase of volumetric frost heaving strain of the frozen soil increases the radial displacements of the frozen surface and decreases the stability of the frozen surface;the increasing of thickness of the frozen soil significantly reduces the radial displacement of unfrozen soil at dimensionless radius η=4.5 compared with that of frozen soil at η=1.5.
基金supported by the National Natural Science Foundation of China (Grant No. 10972151)
文摘This paper focuses on studying the Poisson theory and the integration method of dynamics of relative motion. Equations of a dynamical system of relative motion in phase space are given. Poisson theory of the system is established. The Jacobi last multiplier of the system is defined, and the relation between the Jacobi last multiplier and the first integrals of the system is studied. Our research shows that for a dynamical system of relative motion, whose configuration is determined by n generalized coordinates, the solution of the system can be found by using the Jacobi last multiplier if (2n-1) first integrals of the system are known. At the end of the paper, an example is given to illustrate the application of the results.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11142014)the Scientific Research and Innovation Plan for College Graduates of Jiangsu Province,China (Grant No. CXLX12_0720)
文摘Lie symmetry and conserved quantity deduced from Lie symmetry of Appell equations in a dynamical system of relative motion with Chetaev-type nonholonomic constraints are studied.The differential equations of motion of the Appell equation for the system,the definition and criterion of Lie symmetry,the condition and the expression of generalized Hojman conserved quantity deduced from Lie symmetry for the system are obtained.The condition and the expression of Hojman conserved quantity deduced from special Lie symmetry for the system under invariable time are further obtained.An example is given to illustrate the application of the results.
基金supported by the National Natural Science Foundation of China (Grant No.60704037)the Natural Science Foundation of Hebei Province,China (Grant No.F2010001317)the Doctor Foundation of Yanshan University of China (Grant No.B451)
文摘This paper studies the chaotic behaviours of a relative rotation nonlinear dynamical system under parametric excitation and its control. The dynamical equation of relative rotation nonlinear dynamical system under parametric excitation is deduced by using the dissipation Lagrange equation. The. criterion of existence of chaos under parametric excitation is given by using the Melnikov theory. The chaotic behaviours are detected by numerical simulations including bifurcation diagrams, Poincare map and maximal Lyapunov exponent. Furthermore, it implements chaotic control using nomfeedback method. It obtains the parameter condition of chaotic control by the Melnikov theory. Numerical simulation results show the consistence with the theoretical analysis. The chaotic motions can be controlled to periodmotions by adding an excitation term.