The growing demand for wireless services coupled with the limited availability of suitable electromagnetic spectrum is increasing the need for more efficient RF spectrum utilization. Spectrum allocated to TV operators...The growing demand for wireless services coupled with the limited availability of suitable electromagnetic spectrum is increasing the need for more efficient RF spectrum utilization. Spectrum allocated to TV operators can potentially be shared by wireless data services, either when the primary service is switched off or by exploiting spatial reuse opportunities. This paper describes a dynamic spectrum access scheme for use in the TV bands which uses cognitive radio techniques to determine the spectrum availability. The approach allows secondary users (SU) to operate in the presence of the primary users (PU) and the OPNET simulation and modelling software has been used to model the performance of the scheme. An analysis of the results shows that the proposed scheme protects the primary users from harmful interference from the secondary users. In comparison with the 802.11 MAC protocol, the scheme improves spectrum utilization by about 27% while limiting the interference imposed on the primary receiver.展开更多
Cognitive radio (CR) is found to be an emerging key for efficient spectrum utilization. In this paper, spectrum sharing among service providers with the help of cognitive radio has been investigated. The technique o...Cognitive radio (CR) is found to be an emerging key for efficient spectrum utilization. In this paper, spectrum sharing among service providers with the help of cognitive radio has been investigated. The technique of spectrum sharing among service providers to share the licensed spectrum of licensed service providers in a dynamic manner is considered. The performance of the wireless network with opportunistic spectrum sharing techniques is analyzed. Thus, the spectral utilization and efficiency of sensing is increased, the interference is minimized, and the call blockage is reduced.展开更多
由于认知无线网络(cognitive radio network,简称CRN)固有"二次利用"的特性,使其日益得到重视.而作为CRN核心构成的MAC(medium access control)协议,业已成为当前各研究机构的一个热点.主要对频谱感测技术、信道接入技术等MA...由于认知无线网络(cognitive radio network,简称CRN)固有"二次利用"的特性,使其日益得到重视.而作为CRN核心构成的MAC(medium access control)协议,业已成为当前各研究机构的一个热点.主要对频谱感测技术、信道接入技术等MAC层核心设计问题进行了探讨,并针对认知无线网络MAC的特性及需求进行了分析,然后对设计MAC频谱感知技术、信道接入技术、频谱共享技术等相关研究进展进行了归类总结.最后指出了当前面临的主要研究难点及挑战,并提出了一些方向性建议.展开更多
The rapid growth in demand for broadband wireless services coupled with the recent developmental work on wireless communications technology and the static allocation of the spectrum have led to the artificial scarcity...The rapid growth in demand for broadband wireless services coupled with the recent developmental work on wireless communications technology and the static allocation of the spectrum have led to the artificial scarcity of the radio spectrum. The traditional command and control model (Static allocation) of spectrum allocation policy allows for severe spectrum underutilization. Spectrum allocated to TV operators can potentially be shared by wireless data services, either when the primary service is switched off or by exploiting spatial reuse opportunities. This paper describes a hybrid access scheme based on CSMA/CA and TDMA MAC protocols for use in the TV bands. The approach allows secondary users (SU) to operate in the presence of the primary users (PU) and the OPNET simulation and modelling software has been used to model the performance of the scheme. An analysis of the results shows that, the proposed schemes protect the primary user from harmful Interference from the secondary user. In terms of delay, it was found that packet arrival rates, data rates and the number of secondary users have significant effects on delay.展开更多
This paper presents an in-depth analysis of the interference strength and required guardband width between coexistent users for distributed orthogonal frequency division multiple access (OFDMA). In dynamic spectrum ...This paper presents an in-depth analysis of the interference strength and required guardband width between coexistent users for distributed orthogonal frequency division multiple access (OFDMA). In dynamic spectrum access networks, the cross-band interference between spectrally adjacent users is considered harmful with frequency guardbands inserted between spectrum blocks to eliminate the interference. However, the strength of the cross-band interference depends heavily on the user heterogeneity in different OFDM configurations. The cross-band interference due to the three user heterogeneity artifacts of power heterogeneity, sampling rate heterogeneity, and symbol length heterogeneity is investigated to determine the required guardband width. Analytical and simulation results show that the greater user heterogeneity requires larger guardbands with the sampling rate heterogeneity having the greatest effect. These results can be used to assist the design of spectrum allocation strategies.展开更多
文摘The growing demand for wireless services coupled with the limited availability of suitable electromagnetic spectrum is increasing the need for more efficient RF spectrum utilization. Spectrum allocated to TV operators can potentially be shared by wireless data services, either when the primary service is switched off or by exploiting spatial reuse opportunities. This paper describes a dynamic spectrum access scheme for use in the TV bands which uses cognitive radio techniques to determine the spectrum availability. The approach allows secondary users (SU) to operate in the presence of the primary users (PU) and the OPNET simulation and modelling software has been used to model the performance of the scheme. An analysis of the results shows that the proposed scheme protects the primary users from harmful interference from the secondary users. In comparison with the 802.11 MAC protocol, the scheme improves spectrum utilization by about 27% while limiting the interference imposed on the primary receiver.
文摘Cognitive radio (CR) is found to be an emerging key for efficient spectrum utilization. In this paper, spectrum sharing among service providers with the help of cognitive radio has been investigated. The technique of spectrum sharing among service providers to share the licensed spectrum of licensed service providers in a dynamic manner is considered. The performance of the wireless network with opportunistic spectrum sharing techniques is analyzed. Thus, the spectral utilization and efficiency of sensing is increased, the interference is minimized, and the call blockage is reduced.
文摘由于认知无线网络(cognitive radio network,简称CRN)固有"二次利用"的特性,使其日益得到重视.而作为CRN核心构成的MAC(medium access control)协议,业已成为当前各研究机构的一个热点.主要对频谱感测技术、信道接入技术等MAC层核心设计问题进行了探讨,并针对认知无线网络MAC的特性及需求进行了分析,然后对设计MAC频谱感知技术、信道接入技术、频谱共享技术等相关研究进展进行了归类总结.最后指出了当前面临的主要研究难点及挑战,并提出了一些方向性建议.
文摘The rapid growth in demand for broadband wireless services coupled with the recent developmental work on wireless communications technology and the static allocation of the spectrum have led to the artificial scarcity of the radio spectrum. The traditional command and control model (Static allocation) of spectrum allocation policy allows for severe spectrum underutilization. Spectrum allocated to TV operators can potentially be shared by wireless data services, either when the primary service is switched off or by exploiting spatial reuse opportunities. This paper describes a hybrid access scheme based on CSMA/CA and TDMA MAC protocols for use in the TV bands. The approach allows secondary users (SU) to operate in the presence of the primary users (PU) and the OPNET simulation and modelling software has been used to model the performance of the scheme. An analysis of the results shows that, the proposed schemes protect the primary user from harmful Interference from the secondary user. In terms of delay, it was found that packet arrival rates, data rates and the number of secondary users have significant effects on delay.
基金Supported in part by the National High-Tech Research and Development (863) Program of China(Nos. 2006AA10Z261,2006AA10A301,and 2007AA100408)
文摘This paper presents an in-depth analysis of the interference strength and required guardband width between coexistent users for distributed orthogonal frequency division multiple access (OFDMA). In dynamic spectrum access networks, the cross-band interference between spectrally adjacent users is considered harmful with frequency guardbands inserted between spectrum blocks to eliminate the interference. However, the strength of the cross-band interference depends heavily on the user heterogeneity in different OFDM configurations. The cross-band interference due to the three user heterogeneity artifacts of power heterogeneity, sampling rate heterogeneity, and symbol length heterogeneity is investigated to determine the required guardband width. Analytical and simulation results show that the greater user heterogeneity requires larger guardbands with the sampling rate heterogeneity having the greatest effect. These results can be used to assist the design of spectrum allocation strategies.