期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Mechanical properties and fracture surface roughness of thermally damaged granite under dynamic splitting
1
作者 Yijin Qian Peng Jia +1 位作者 Songze Mao Jialiang Lu 《Deep Underground Science and Engineering》 2024年第1期103-116,共14页
In order to understand the mechanical properties and the fracture surface roughness characteristics of thermally damaged granite under dynamic splitting,dynamic Brazilian splitting tests were conducted on granite samp... In order to understand the mechanical properties and the fracture surface roughness characteristics of thermally damaged granite under dynamic splitting,dynamic Brazilian splitting tests were conducted on granite samples after thermal treatment at 25,200,400,and 600℃.Results show that the dynamic peak splitting strength of thermally damaged granite samples increases with increasing strain rate,showing obvious strain‐rate sensitivity.With increasing temperature,thermally induced cracks in granite transform from intergranular cracks to intragranular cracks,and to a transgranular crack network.Thermally induced damages reduce the dynamic peak splitting strength and the maximum absorbed energy while increasing the peak radial strain.The fracture mode of the thermally damaged granite under dynamic loads is mode Ⅱ splitting failure.By using the axial roughness index Z2 a,the distribution ranges of the wedge‐shaped failure zones and the tensile failure zones in the fracture surfaces under dynamic Brazilian splitting can be effectively identified.The radial roughness index Z_(2)^(r)is sensitive to the strain rate and temperature.It shows a linear correlation with the peak splitting strength and the maximum absorbed energy and a linear negative correlation with the peak radial strain.Z_(2)^(r)can be used to quantitatively estimate the dynamic parameters based on the models proposed. 展开更多
关键词 dynamic splitting fracture surface roughness GRANITE strain rate thermal treatment
下载PDF
Dynamic splitting and merging of an atom cloud on an atom chip
2
作者 柯敏 颜波 +1 位作者 程峰 王育竹 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第11期4823-4828,共6页
Chip-based atom interferometers bring together the advantages of atom chips and Bose-Einstein condensates. Their central prerequisite is that a condensate can be coherently split into two halves with a determined rela... Chip-based atom interferometers bring together the advantages of atom chips and Bose-Einstein condensates. Their central prerequisite is that a condensate can be coherently split into two halves with a determined relative phase. This paper demonstrates the dynamical splitting and merging of an atom cloud with two U-wires on an atom chip. Symmetrical and asymmetrical splittings are realized by applying a bias field with different directions and magnitudes. The trajectories of the splitting are consistent with theoretical calculations. The atom chip is a good candidate for constructing an atom interferometer. 展开更多
关键词 atom chip dynamic splitting and merging chip-based atom interferometers
下载PDF
Fracturing damage process in dynamic split experiments of a brittle glass
3
作者 Ning Cui Linmao Ye Kaixin Liu 《Theoretical & Applied Mechanics Letters》 2012年第6期9-14,共6页
In this study, the 3-dimensional discrete element method is firstly introduced to explain the fracturing damage process of the dynamic split experiment of a special brittle glass ZnS. The corresponding dynamic split e... In this study, the 3-dimensional discrete element method is firstly introduced to explain the fracturing damage process of the dynamic split experiment of a special brittle glass ZnS. The corresponding dynamic split experiment is also performed by using the split Hopkinson pressure bar. Then the numerical results correspond closely to those obtained by experiments, and the fracturing damage mode shows that the sample under high strain rate loading would crack along vertical diameter in the band region between two loading edges, which differs from the static damage mode. Furthermore, by comparing a group of contrast numerical tests, the numerical results prove that loading area upon the top side of samples would influence the fracture mode of dynamic split experiments, which indicates that the narrow loading plane is better. 展开更多
关键词 discrete element method dynamic split test brittle material crack band
下载PDF
Acoustic emissions evaluation of the dynamic splitting tensile properties of steel fiber reinforced concrete under freeze-thaw cycling
4
作者 Hua ZHANG Xinyue LIU +3 位作者 Lingyu BAI Shanshan JI Luoyu PAN Xuechen LI 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2023年第9期1341-1356,共16页
This study empirically investigated the influence of freeze-thaw cycling on the dynamic splitting tensile properties of steel fiber reinforced concrete(SFRC).Brazilian disc splitting tests were conducted using four lo... This study empirically investigated the influence of freeze-thaw cycling on the dynamic splitting tensile properties of steel fiber reinforced concrete(SFRC).Brazilian disc splitting tests were conducted using four loading rates(0.002,0.02,0.2,and 2 mm/s)on specimens with four steel fiber contents(0%,0.6%,1.2%,and 1.8%)subjected to 0 and 50 freeze-thaw cycles.The dynamic splitting tensile damage characteristics were evaluated using acoustic emission(AE)parameter analysis and Fourier transform spectral analysis.The results quantified using the freeze-thaw damage factor defined in this paper indicate that the degree of damage to SFRC caused by freeze-thaw cycling was aggravated with increasing loading rate but mitigated by increasing fiber content.The percentage of low-frequency AE signals produced by the SFRC specimens during loading decreased with increasing loading rate,whereas that of high-frequency AE signals increased.Freeze-thaw action had little effect on the crack types observed during the early and middle stages of the loading process;however,the primary crack type observed during the later stage of loading changed from shear to tensile after the SFRC specimens were subjected to freeze-thaw cycling.Notably,the results of this study indicate that the freeze-thaw damage to SFRC reduces AE signal activity at low frequencies. 展开更多
关键词 steel fiber reinforced concrete freeze-thaw cycling Brazilian disc splitting test acoustic emission technique dynamic splitting tensile acoustic emission properties
原文传递
Dynamic rock tests using split Hopkinson (Kolsky) bar system - A review 被引量:88
5
作者 Kaiwen Xia Wei Yao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第1期27-59,共33页
Dynamic properties of rocks are important in a variety of rock mechanics and rock engineering problems. Due to the transient nature of the loading, dynamic tests of rock materials are very different from and much more... Dynamic properties of rocks are important in a variety of rock mechanics and rock engineering problems. Due to the transient nature of the loading, dynamic tests of rock materials are very different from and much more challenging than their static counterparts. Dynamic tests are usually conducted using the split Hopkinson bar or Kolsl^j bar systems, which include both split Hopkinson pressure bar (SHPB) and split Hopkinson tension bar (SHTB) systems. Significant progress has been made on the quantification of various rock dynamic properties, owing to the advances in the experimental techniques of SHPB system. This review aims to fully describe and critically assess the detailed procedures and principles of tech- niques for dynamic rock tests using split Hopkinson bars. The history and principles of SHPB are outlined, followed by the key loading techniques that are useful for dynamic rock tests with SHPB (i.e. pulse shaping, momentum-trap and multi-axial loading techniques). Various measurement techniques for rock tests in SHPB (i.e. X-ray micro computed tomography (CT), laser gap gauge (LGG), digital image corre- lation (DIC), Moir~ method, caustics method, photoelastic coating method, dynamic infrared thermog- raphy) are then discussed. As the main objective of the review, various dynamic measurement techniques for rocks using SHPB are described, including dynamic rock strength measurements (i.e. dynamic compression, tension, bending and shear tests), dynamic fracture measurements (i.e. dynamic imitation and propagation fracture toughness, dynamic fracture energy and fracture velocity), and dy- namic techniques for studying the influences of temperature and pore water. 展开更多
关键词 Rock split Hopkinson pressure bar (SHPB) dynamic testsRock dynamic properties Loading rate
下载PDF
The Application of Dynamic Shock Mechanics Test in Engineering Blasting 被引量:1
6
作者 Lin Cheng Junfeng Liu 《Journal of World Architecture》 2020年第4期13-15,共3页
With the continuous advancement of China’s infrastructure construction to the west,according to the geographic situation in the southwest region,such as mountainous areas and complex terrain,the road construction pro... With the continuous advancement of China’s infrastructure construction to the west,according to the geographic situation in the southwest region,such as mountainous areas and complex terrain,the road construction process is inevitably accompanied by earth and rock blasting.To improve the quality and safety of the project,this paper addresses the problems of land and rock blasting faced in the construction of mountain road projects,taking the research of rock dynamic mechanics test as the starting point,and using a combination of theoretical analysis and experimental research methods.The specific research content includes the following parts:dynamic impact compression test(SHPB),dynamic splitting tensile test,and stress-strain curve analysis of the test results,which provides the theoretical basis and numerical parameters for the numerical simulation of future engineering blasting. 展开更多
关键词 Earth and stone blasting dynamic impact compression test(SHPB) dynamic splitting tensile test Stress-strain curve analysis
下载PDF
Zeeman splitting and dynamical mass generation in Dirac semimetal ZrTe_5
7
《Science Foundation in China》 CAS 2016年第4期45-45,共1页
With the support by the Thousand Talents Program and the National Natural Science Foundation of China,the research team led by Prof.Xiu Faxian(修发贤)at the State Key Laboratory of Surface Physics,Department of Phys... With the support by the Thousand Talents Program and the National Natural Science Foundation of China,the research team led by Prof.Xiu Faxian(修发贤)at the State Key Laboratory of Surface Physics,Department of Physics,Fudan University,uncovered the dynamical mass generation in the Dirac semimetal ZrTe5,which was published in Nature Communications(2016,DOI:10.1038/NCOMMS12516). 展开更多
关键词 Zeeman splitting and dynamical mass generation in Dirac semimetal ZrTe5
原文传递
Dynamic mechanical behavior of ultra-high strength steel 30CrMnSiNi2A at high strain rates and elevated temperatures 被引量:8
8
作者 Qiu-lin Niu Wei-wei Ming +2 位作者 Ming Chen Si-wen Tang Peng-nan Li 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2017年第7期724-729,共6页
During high speed machining in the field of manufacture,chip formation is a severe plastic deformation process including large strain,high strain rate and high temperature.And the strain rate in high speed cutting pro... During high speed machining in the field of manufacture,chip formation is a severe plastic deformation process including large strain,high strain rate and high temperature.And the strain rate in high speed cutting process can be achieved to 105 s^(-1).30CrMnSiNi2Asteel is a kind of important high-strength low-alloy structural steel with wide application range.Obtaining the dynamic mechanical properties of30CrMnSiNi2Aunder the conditions of high strain rate and high temperature is necessary to construct the constitutive relation model for high speed machining.The dynamic compressive mechanical properties of30CrMnSiNi2Asteel were studied using split Hopkinson pressure bar(SHPB)tests at 30-700°C and3000-10000s^(-1).The stress-strain curves of 30CrMnSiNi2Asteel at different temperatures and strain rates were investigated,and the strain hardening effect and temperature effect were discussed.Experimental results show that 30CrMnSiNi2Ahas obvious temperature sensitivity at 300°C.Moreover,the flow stress decreased significantly with the increase of temperature.The strain hardening effect of the material at high strain rate is not significant with the increase of strain.The strain rate hardening effect is obvious with increasing the temperature.According to the experimental results,the established Johnson-Cook(J-C)constitutive model of 30CrMnSiNi2Asteel could be used at high strain rate and high temperature. 展开更多
关键词 30CrMnSiNi2A steel dynamic mechanical behavior split Hopkinson pressure bar High temperature High strain rate Ultra-high strength steel
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部