期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
Experimental investigation of dynamic stall flow control using a microsecond-pulsed plasma actuator
1
作者 徐泽阳 武斌 +2 位作者 高超 王娜 贾天昊 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第3期193-203,共11页
To alleviate the performance deterioration caused by dynamic stall of a wind turbine airfoil,the flow control by a microsecond-pulsed dielectric barrier discharge(MP-DBD) actuator on the dynamic stall of a periodicall... To alleviate the performance deterioration caused by dynamic stall of a wind turbine airfoil,the flow control by a microsecond-pulsed dielectric barrier discharge(MP-DBD) actuator on the dynamic stall of a periodically pitching NACA0012 airfoil was investigated experimentally.Unsteady pressure measurements with high temporal accuracy were employed in this study,and the unsteady characteristics of the boundary layer were investigated by wavelet packet analysis and the moving root mean square method based on the acquired pressure.The experimental Mach number was 0.2,and the chord-based Reynolds number was 870 000.The dimensionless actuation frequencies F+ were chosen to be 0.5,1,2,and 3,respectively.For the light dynamic regime,the MP-DBD plasma actuator plays the role of suppressing flow separation from the trial edge and accelerating the flow reattachment due to the high-momentum freestream flow being entrained into the boundary layer.Meanwhile,actuation effects were promoted with the increasing dimensionless actuation frequency F+.The control effects of the deep dynamic stall were to delay the onset and reduce the strength of the dynamic stall vortex due to the accumulating vorticity near the leading edge being removed by the induced coherent vortex structures.The laminar fluctuation and Kelvin-Helmholtz(K-H) instabilities of transition and relaminarization were also mitigated by the MP-DBD actuation,and the alleviated K-H rolls led to the delay of the transition onset and earlier laminar reattachment,which improved the hysteresis effect of the dynamic stall.For the controlled cases of F+=2,and F+=3,the laminar fluctuation was replaced by relatively low frequency band disturbances corresponding to the harmonic responses of the MP-DBD actuation frequency. 展开更多
关键词 microsecond-pulsed plasma actuator dielectric barrier discharge flow control dynamic stall wind turbine wind tunnel experiment
下载PDF
Dynamic stall control over an airfoil by NS-DBD actuation 被引量:3
2
作者 杨鹤森 赵光银 +1 位作者 梁华 魏彪 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第10期370-379,共10页
The wind tunnel test was conducted with an NACA 0012 airfoil to explore the flow control effects on airfoil dynamic stall by NS-DBD plasma actuation. Firstly, light and deep dynamic stall states were set, based on the... The wind tunnel test was conducted with an NACA 0012 airfoil to explore the flow control effects on airfoil dynamic stall by NS-DBD plasma actuation. Firstly, light and deep dynamic stall states were set, based on the static stall characteristics of airfoil at a Reynolds number of 5.8 × 105. Then, the flow control effect of NS-DBD on dynamic stall was studied and the influence law of three typical reduced frequencies (k = 0.05, k = 0.05, and k = 0.15) was examined at various dimensionless actuation frequencies (F+ = 1, F+ = 2, and F+ = 3). For both light and deep dynamic stall states, NS-DBD had almost no effect on upstroke. However, the lift coefficients on downstroke were increased significantly and the flow control effect at F+ = 1 is the best. The flow control effect of the light stall state is more obvious than that of deep stall state under the same actuation conditions. For the same stall state, with the reduced frequency increasing, the control effect became worse. Based on the in being principles of flow separation control by NS-DBD, the mechanism of dynamic stall control was discussed and the influence of reduced frequency on the dynamic flow control was analyzed. Different from the static airfoil flow separation control, the separated angle of leading-edge shear layer for the airfoil in dynamic stall state is larger and flow control with dynamic oscillation is more difficult. The separated angle is closely related to the effective angle of attack, so the effect of dynamic stall control is greatly dependent on the history of angles of attack. 展开更多
关键词 flow control dynamic stall dielectric barrier discharge(DBD) nanosecond pulse reduced frequency
下载PDF
Experimental study on dynamic stall control based on AC-DBD actuation 被引量:2
3
作者 杨鹤森 梁华 +3 位作者 赵光银 王博 张圣武 孔维良 《Plasma Science and Technology》 SCIE EI CAS CSCD 2021年第11期96-109,共14页
To explore AC-DBD's ability in controlling dynamic stall,a practical SC-1095 airfoil of a helicopter was selected,and systematic wind tunnel experiments were carried out through direct aerodynamic measurements.The... To explore AC-DBD's ability in controlling dynamic stall,a practical SC-1095 airfoil of a helicopter was selected,and systematic wind tunnel experiments were carried out through direct aerodynamic measurements.The effectiveness of dynamic stall control under steady and unsteady actuation is verified.The influence of parameters such as constant actuation voltage,pulsed actuation voltage,pulsed actuation frequency and duty ratio on dynamic stall control effect is studied under the flow condition of k=0.15 above the airfoil,and the corresponding control mechanism is discussed.Steady actuation can effectively reduce the hysteresis loop area of dynamic lift,and control the peak drag and moment coefficient.For unsteady actuation,there is an optimal duty ratio DC=50%,which has the best effect in improving the lift and drag characteristics,and there is a threshold of pulsed actuation voltage in dynamic stall control.The optimal dimensionless frequency will not be found;different F+have different control advantages in different aerodynamic coefficients of different pitching stages.Unsteady actuation has obvious control advantages in improving the lift-drag characteristics and hysteresis,while steady actuation can better control the large nose-down moment. 展开更多
关键词 dynamic stall plasma flow control AC-DBD PARAMETER control law
下载PDF
Modeling three-dimensional dynamic stall 被引量:1
4
作者 吕超 王同光 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第4期393-400,共8页
The dynamic stall process in three-dimensional (3D) cases on a rectangular wing undergoing a constant rate ramp-up motion is introduced to provide a qualitative analysis about the onset and development of the stall ... The dynamic stall process in three-dimensional (3D) cases on a rectangular wing undergoing a constant rate ramp-up motion is introduced to provide a qualitative analysis about the onset and development of the stall phenomenon. Based on the enhanced understanding of the mechanism of dynamic stalls, a 3D dynamic stall model is constructed with the emphasis of the onset, the growth, and the convection of the dynamic stall vortex on the 3D wing surface. The results show that this engineering dynamic stall model can simulate the 3D unsteady aerodynamic performance appropriately. 展开更多
关键词 unsteady flow 3D dynamic stall separation flow vortex motion
下载PDF
Dynamic Stall on High-Lift Airfoil 30P30N in Ground Proximity
5
作者 Mohamed Sereez Umayr Zaffar 《Open Journal of Fluid Dynamics》 2021年第3期135-152,共18页
Computational prediction of stall aerodynamics in free air and in close proximity to the ground considering the 30P30N three-element high-lift configuration is carried out based on CFD simulations using the OpenFOAM c... Computational prediction of stall aerodynamics in free air and in close proximity to the ground considering the 30P30N three-element high-lift configuration is carried out based on CFD simulations using the OpenFOAM code and Fluent software. Both the attached and separated flow regimes are simulated using the Reynolds Averaged Navier-Stokes (RANS) equations closed with the Spalart-Allamaras (SA) turbulence model for static conditions and pitch oscillations at Reynolds number, <em>Re</em> = 5 x 10<sup>6</sup> and Mach number, <em>M</em> = 0.2. The effects of closeness to the ground and dynamic stall are investigated and the reduction in the lift force in close proximity to the ground is discussed. 展开更多
关键词 dynamic stall High-Lift Airfoil Ground Effect
下载PDF
Aerodynamic shape optimization for alleviating dynamic stall characteristics of helicopter rotor airfoil 被引量:9
6
作者 Wang Qing Zhao Qijun Wu Qi 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第2期346-356,共11页
In order to alleviate the dynamic stall effects in helicopter rotor, the sequential quadratic programming (SQP) method is employed to optimize the characteristics of airfoil under dynamic stall conditions based on t... In order to alleviate the dynamic stall effects in helicopter rotor, the sequential quadratic programming (SQP) method is employed to optimize the characteristics of airfoil under dynamic stall conditions based on the SC1095 airfoil. The geometry of airfoil is parameterized by the class-shape-transformation (CST) method, and the C-topology body-fitted mesh is then automati- cally generated around the airfoil by solving the Poisson equations. Based on the grid generation technology, the unsteady Reynolds-averaged Navier-Stokes (RANS) equations are chosen as the governing equations for predicting airfoil flow field and the highly-efficient implicit scheme of lower-upper symmetric Gauss-Seidel (LU-SGS) is adopted for temporal discretization. To capture the dynamic stall phenomenon of the rotor more accurately, the Spalart-Allmaras turbulence model is employed to close the RANS equations. The optimized airfoil with a larger leading edge radius and camber is obtained. The leading edge vortex and trailing edge separation of the opti- mized airfoil under unsteady conditions are obviously weakened, and the dynamic stall character- istics of optimized airfoil at different Mach numbers, reduced frequencies and angles of attack are also obviously improved compared with the baseline SC1095 airfoil. It is demonstrated that the optimized method is effective and the optimized airfoil is suitable as the helicopter rotor airfoil. 展开更多
关键词 AIRFOIL Computational fluiddynamics dynamic stall HELICOPTER OPTIMIZATION ROTOR
原文传递
Parametric analyses on dynamic stall control of rotor airfoil via synthetic jet 被引量:10
7
作者 Qijun ZHAO Yiyang MA Guoqing ZHAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第6期1818-1834,共17页
The effects of synthetic jet control on unsteady dynamic stall over rotor airfoil are investigated numerically. A moving-embedded grid method and an Unsteady Reynolds Averaged Navier-Stokes(URANS) solver coupled wit... The effects of synthetic jet control on unsteady dynamic stall over rotor airfoil are investigated numerically. A moving-embedded grid method and an Unsteady Reynolds Averaged Navier-Stokes(URANS) solver coupled with k-x Shear Stress Transport(SST) turbulence model are established for predicting the complex flowfields of oscillatory airfoil under jet control. Additionally, a velocity boundary condition modeled by sinusoidal function has been developed to fulfill the perturbation effect of periodic jet. The validity of present CFD method is evaluated by comparisons of the calculated results of baseline dynamic stall case for rotor airfoil and jet control case for VR-7 B airfoil with experimental data. Then, parametric analyses are conducted emphatically for an OA212 rotor airfoil to investigate the effects of jet control parameters(jet location, dimensionless frequency, momentum coefficient, jet angle, jet type and dual-jet) on dynamic stall characteristics of rotor airfoil. It is demonstrated by the calculated results that efficiency of jet control could be improved with specific momentum coefficient and jet angle when the jet is located near separation point of rotor airfoil. Furthermore, the dual-jet could improve control efficiency more obviously on dynamic stall of rotor airfoil with respect to the unique jet, and the influence laws of dual-jet's angles and momentum coefficients on control effects are similar to those of the unique jet. Finally,unsteady aerodynamic characteristics of rotor via synthetic jet which is located on the upper surface of rotor blade in forward flight are calculated, and as a result, the aerodynamic characteristics of rotor are improved compared with the baseline. The results indicate that synthetic jet has the capability in improving aerodynamic characteristics of rotor. 展开更多
关键词 AIRFOIL dynamic stall characteristics:Flow control Moving-embedded gridmethodology Navier-Stokes equations Parametric analyses ROTOR Synthetic jet
原文传递
Experiments on unsteady vortex flowfield of typical rotor airfoils under dynamic stall conditions 被引量:4
8
作者 Wang Qing Zhao Qijun 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第2期358-374,共17页
A new experiment for airfoil dynamic stall is conducted by employing the advanced par- ticle image velocimetry (PIV) technology in an open-return wind tunnel. The aim of this experimen- tal investigation is to demon... A new experiment for airfoil dynamic stall is conducted by employing the advanced par- ticle image velocimetry (PIV) technology in an open-return wind tunnel. The aim of this experimen- tal investigation is to demonstrate the influences of different motion parameters on the convection velocity, position and strength of leading edge vortex (LEV) of airfoil under different dynamic stall conditions. Two different typical rotor airfoils, OA209 and SC1095, are measured at different free stream velocities, oscillation frequencies, and angles of attack. It is demonstrated by the measured data that the airfoil with larger leading edge radius could notably decrease the strength of LEV. The angle of attack (AoA) of airfoil can obviously influence the dynamic stall characteristics of airfoil, and the LEV would be effectively inhibited by decreasing the mean pitch angle. In addition, the con- vection velocity of LEV is estimated in this measurement, and the results demonstrate that the influ- ence of airfoil shape on convection velocity of LEV is limited, but the convection velocity of LEV would be increased by enlarging the oscillation frequency. Meanwhile, the convection velocity of LEV is a time variant value, and this value would increase as the LEV convects to the trailing edge of airfoil. 展开更多
关键词 Convection velocity dynamic stall Leading edge vortex PIV Rotor airfoil
原文传递
Numerical investigation of dynamic stall suppression of rotor airfoil via improved co-flow jet 被引量:4
9
作者 Jiaqi LIU Rongqian CHEN +1 位作者 Yancheng YOU Zheyu SHI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第3期169-184,共16页
The decrease in aerodynamic performance caused by the shock-induced dynamic stall of an advancing blade and the dynamic stall of a retreating blade at low speed and high angles of attack limits the flight speed of a h... The decrease in aerodynamic performance caused by the shock-induced dynamic stall of an advancing blade and the dynamic stall of a retreating blade at low speed and high angles of attack limits the flight speed of a helicopter.However,little research has been carried on the flow control methods employed to suppress both the dynamic stall induced by a shock wave and the dynamic stall occurring at high angles of attack.The dynamic stall suppression of a rotor airfoil by Co-Flow Jet(CFJ)is numerically investigated in this work.The flowfield of the airfoil is simulated by solving Reynolds Averaged Navier-Stokes equations based on the sliding mesh technique.Firstly,to improve the effect of a traditional CFJ on suppressing rotor airfoil shock-induced dynamic stall,an improved CFJ—a CFJ-sloping slot is proposed.Research shows that the CFJsloping slot suppresses the shock-induced dynamic stall more effectively than a traditional CFJ.Moreover,the improved CFJ can also suppress the dynamic stall of rotor airfoil at low speed and high angles of attack.The improved CFJ proposed in this paper is an effective flow control method that simultaneously suppresses the dynamic stall of the advancing and retreating blades.The mechanism of the improved CFJ in suppressing the dynamic stall of the rotor airfoil is studied,and a comparison is made between the improved CFJ and the traditional CFJ in terms of dynamic stall suppression at high and low speed.Finally,the effect of improved CFJ parameters(the jet momentum coefficient,the position of the injection/suction slot,and the size of the injection/suction slot)on shock-induced dynamic stall suppression is analyzed. 展开更多
关键词 Co-flow jet dynamic stall Flow control Parameter analysis Rotor airfoil
原文传递
Individual influence of pitching and plunging motions on flow structures over an airfoil during dynamic stall 被引量:1
10
作者 Zhenyao LI Lihao FENG Jinjun WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第3期840-851,共12页
The individual influence of pitching and plunging motions on flow structures is studied experimentally by changing the phase lag between the geometrical angle of attack and the plunging angle of attack.Five phase lags... The individual influence of pitching and plunging motions on flow structures is studied experimentally by changing the phase lag between the geometrical angle of attack and the plunging angle of attack.Five phase lags are chosen as the experimental parameters,while the Strouhal number,the reduced frequency and the Reynolds number are fixed.During the motion of the airfoil,the leading edge vortex,the reattached vortex and the secondary vortex are observed in the flow field.The leading edge vortex is found to be the main flow structure through the proper orthogonal decomposition.The increase of phase lag results in the increase of the leading edge velocity,which strongly influences the leading edge shear layer and the leading edge vortex.The plunging motion contributes to the development of the leading edge shear layer,while the pitching motion is the key reason for instability of the leading edge shear layer.It is also found that a certain increase of phase lag,around 34.15°in this research,can increase the airfoil lift. 展开更多
关键词 dynamic stall Leading edge vortex Phase lag Pitching and plunging airfoil Vortex dynamics
原文传递
Numerical studies of undulation control on dynamic stall for reverse flows
11
作者 Biao Wang Jian Liu +1 位作者 Yunjun Yang Zhixiang Xiao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2020年第2期290-305,共16页
The delayed detached-eddy simulation with adaptive coefficient(DDES-AC)method is used to simulate the baseline and leading-edge undulation control of dynamic stall for the reverse flow past a finite-span wing with NAC... The delayed detached-eddy simulation with adaptive coefficient(DDES-AC)method is used to simulate the baseline and leading-edge undulation control of dynamic stall for the reverse flow past a finite-span wing with NACA0012 airfoil.The numerical results of the baseline configuration are compared with available measurements.DDES and DDES-AC perform differently when predicting the primary and secondary dynamic stalls.Overall,DDES-AC performs better owing to the decrease of grey area between the strong shear layer and the fully three-dimensional separated flow.Moreover,the effects of the undulating leading-edge on the forces,lift gradients,and instantaneous flow structures are explored.Compared with the uncontrolled case,the lift gradient in the primary dynamic stall is reduced from 18.4 to 8.5,and the secondary dynamic stall disappears.Therefore,periodic unsteady air-loads are also reduced.Additionally,the control mechanism of the wavy leading edge(WLE)is also investigated by comparison with the straight leading edge(SLE).No sudden breakdown of strong vortices is the main cause for WLE control. 展开更多
关键词 DDES-AC model dynamic stall Reverse flow Undulating leading edge Flow control
原文传递
Dynamic stall control over a rotor airfoil based on AC DBD plasma actuation
12
作者 Guangyin Zhao Yong Huang +2 位作者 Yongdong Yang Guoqiang Li Hesen Yang 《Advances in Aerodynamics》 2021年第1期153-165,共13页
At present,the control capability of dielectric barrier discharge(DBD)plasma actuation covers the flow velocity range of helicopter’s retreating blades,so it is necessary to extend it to the dynamic stall control of ... At present,the control capability of dielectric barrier discharge(DBD)plasma actuation covers the flow velocity range of helicopter’s retreating blades,so it is necessary to extend it to the dynamic stall control of rotor airfoils.A DBD plasma actuator was adopted to control the dynamic stall of an oscillating CRA309 airfoil in this paper.The effectiveness of alternating current(AC)DBD plasma actuation on reducing the area of lift hysteresis loop of the oscillating airfoil was verified through pressure measurements at a Reynolds number of 5.2×10^(5).The influence of actuation parameters on the airfoil’s lift and moment coefficients was studied.Both steady and unsteady actuation could effectively reduce the hysteresis loop area of the lift coefficients.The flow control effect of dynamic stall was strongly dependent on the history of angle of attack.Compared with the steady actuation,unsteady actuation had more obvious advantages in dynamic stall control,with reducing the area of lift hysteresis loop by more than 30%.The effects of plasma actuation on the airfoil’s flow field at both upward and downward stages were discussed at last. 展开更多
关键词 Plasma actuation Flow separation dynamic stall HYSTERESIS Dielectric barrier discharge
原文传递
A brief review on wind turbine aerodynamics 被引量:5
13
作者 TongguangWang 《Theoretical & Applied Mechanics Letters》 CAS 2012年第6期1-8,共8页
This article briefly reviews wind turbine aerodynamics, which follows an explanation of the aerodynamic complexity. The aerodynamic models including blade momentum theory, vortex wake model, dynamic stall and rotation... This article briefly reviews wind turbine aerodynamics, which follows an explanation of the aerodynamic complexity. The aerodynamic models including blade momentum theory, vortex wake model, dynamic stall and rotational effect, and their applications in wind turbine aerodynamic performance prediction are discussed and documented. Recent progress in computational fluid dynamics for wind turbine is addressed. Wind turbine aerodynamic experimental studies are also selectively introduced. 展开更多
关键词 AEROdynamicS wind turbines computational fluid dynamics rotational argumentation dynamic stall
下载PDF
Causal mechanism behind the stall delay by airfoil's pitching-up motion 被引量:1
14
作者 Shufan Zou Ankang Gao +1 位作者 Yipeng Shi Jiezhi Wu 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2017年第5期311-315,共5页
Why the stall of an airfoil can be significantly delayed by its pitching-up motion? Various attempts have been proposed to answer this question over the past half century, but none is satisfactory. In this letter we ... Why the stall of an airfoil can be significantly delayed by its pitching-up motion? Various attempts have been proposed to answer this question over the past half century, but none is satisfactory. In this letter we prove that a chain of vorticity-dynamics processes at accelerating boundary is fully responsible for the causal mechanism underlying this peculiar phenomenon. The local flow behavior is explained by a simple potential-flow model. 展开更多
关键词 dynamic stall Boundary vorticity flux Unsteady aerodynamics
下载PDF
Stall flutter prediction based on multi-layer GRU neural network 被引量:2
15
作者 Yuting DAI Haoran RONG +2 位作者 You WU Chao YANG Yuntao XU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第1期75-90,共16页
The modeling of dynamic stall aerodynamics is essential to stall flutter, due to the flow separation in a large-amplitude pitching oscillation process. A newly neural network based Reduced Order Model(ROM) framework f... The modeling of dynamic stall aerodynamics is essential to stall flutter, due to the flow separation in a large-amplitude pitching oscillation process. A newly neural network based Reduced Order Model(ROM) framework for predicting the aerodynamic forces of an airfoil undergoing large-amplitude pitching oscillation at various velocities is presented in this work. First, the dynamic stall aerodynamics is calculated by solving RANS equations and the transitional SST-γ model. Afterwards, the stall flutter bifurcation behavior is calculated by the above CFD solver coupled with structural dynamic equation. The critical flutter speed and limit-cycle oscillation amplitudes are consistent with those obtained by experiments. A newly multi-layer Gated Recurrent Unit(GRU) neural network based ROM is constructed to accelerate the calculation of aerodynamic forces. The training and validation process are carried out upon the unsteady aerodynamic data obtained by the proposed CFD method. The well-trained ROM is then coupled with the structure equation at a specific velocity, the Limit-Cycle Oscillation(LCO) of stall flutter under this flow condition is predicted precisely and more quickly. In order to predict both the critical flutter velocity and LCO amplitudes after bifurcation at different velocities, a new ROM with GRU neural network considering the variation of flow velocities is developed. The stall flutter results predicted by ROM agree well with the CFD ones at different velocities. Finally, a brief sensitivity analysis of two structural parameters of ROM is carried out. It infers the potential of the presented modeling method to depict the nonlinearity of dynamic stall and stall flutter phenomenon. 展开更多
关键词 Deep learning dynamic stall Limit-cycle oscillation Reduced order model stall flutter
原文传递
Aeroelastic Responses for Wind Turbine Blade Considering Bend-Twist Coupled Effect
16
作者 Li Yijin Wang Tongguang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第1期16-25,共10页
The Euler-Bernoulli beam model coupled with the sectional properties obtained by the variational asymptotic beam sectional analysis(VABS)method is used to construct the blade structure model.Combined the aerodynamic l... The Euler-Bernoulli beam model coupled with the sectional properties obtained by the variational asymptotic beam sectional analysis(VABS)method is used to construct the blade structure model.Combined the aerodynamic loads calculated by unsteady blade element momentum model with a dynamic inflow and the dynamic stall correction,the dynamics equations of blade are built.The Newmark implicit algorithm is used to solve the dynamics equations.Results of the sectional properties and blade structure model are compared with the multi-cell beam method and the ANSYS using shell elements.It is proved that the method is effective with high precision.Moreover,the effects on the aeroelastic response caused by bend-twist coupling are analyzed.Torsional direction is deflected toward the upwind direction as a result of coupling effects.The aerodynamic loads and the displacement are reduced. 展开更多
关键词 variational asymptotic beam sectional analysis(VABS) wind turbine unsteady blade element momen tum theory dynamic stall aeroelastic responses
下载PDF
Aerodynamic load control on a dynamically pitching wind turbine airfoil using leading-edge protuberance method 被引量:3
17
作者 Y.N.Zhang M.M.Zhang +1 位作者 C.Cai J.Z.Xu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2020年第2期275-289,共15页
The aerodynamic loads of wind turbine blades are substantially affected by dynamic stall induced by the variations of the angle of attack of local airfoil sections.The purpose of the present study is to explore the ef... The aerodynamic loads of wind turbine blades are substantially affected by dynamic stall induced by the variations of the angle of attack of local airfoil sections.The purpose of the present study is to explore the effect of leading-edge protuberances on the fluctuation of the aerodynamic performances for wind turbine airfoil during dynamic stall.An experimental investigation is carried out by a direct force measurement technique employing force balance at a Reynolds number Re=2×105.The phase-averaged and instantaneous aerodynamic loads of the pitching airfoil,including the baseline and the wavy airfoil,are presented and analyzed.The phase-averaged results indicate that the effects of dynamic stall for the wavy airfoil can be delayed or minimized compared to the baseline airfoil,and the negative damping area of the wavy airfoil is significant decreased in full-stall condition.These effects of leading-edge protuberances are more notable at a higher reduced frequency.For the instantaneous aerodynamic loads of the wavy airfoil,there is an observable reduction in fluctuations compared with baseline case.Furthermore,spectral analysis is applied to quantitatively undercover the nonstationary features of the instantaneous aerodynamic loads.It is found that the leading edge protuberances can reduce the harmonics of the aerodynamic force signal,and enhance the stability of the aerodynamic loads under different reduced frequencies.In conclusion,leading-edge protuberances are found effective to reduce the fluctuation characteristics of the aerodynamic loads during the dynamic stall process,and help to improve the stability and prolong the service life of the wind turbine blades. 展开更多
关键词 Wind turbine airfoil dynamic stall Loads control Leading-edge protuberance Aerodynamic experiment
原文传递
A high-order model of rotating stall in axial compressors with inlet distortion 被引量:5
18
作者 Peng LIN Cong WANG Yong WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第3期898-906,共9页
In this paper,a high-order distortion model is proposed for analyzing the rotating stall inception process induced by inlet distortion in axial compressors.A distortion-generating screen in the compressor inlet is con... In this paper,a high-order distortion model is proposed for analyzing the rotating stall inception process induced by inlet distortion in axial compressors.A distortion-generating screen in the compressor inlet is considered.By assuming a quadratic function for the local flow total pressure-drop,the existing Mansoux model is extended to include the effects of static inlet distortion,and a new high-order distortion model is derived.To illustrate the effectiveness of the distortion model,numerical simulations are performed on an eighteenth-order model.It is demonstrated that long length-scale disturbances emerge out of the distorted background flow,and further induce the onset of rotating stall in advance.In addition,the circumferential non-uniform distribution and time evolution of the axial flow are also shown to be consistent with the existing features.It is thus shown that the high-order distortion model is capable of describing the transient behavior of stall inception and will contribute further to stall detection under inlet distortion. 展开更多
关键词 Axial compressors dynamic modeling Flow instability Inlet distortion Rotating stall stall inception
原文传递
Nonlinear Aeroelastic Response of High-aspect-ratio Flexible Wings 被引量:15
19
作者 Zhang Jian,Xiang Jinwu School of Aeronautic Science and Engineering,Beijing University of Aeronautics and Astronautics,Beijing 100191,China 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2009年第4期355-363,共9页
The aeroelastic analysis of high-altitude, long-endurance (HALE) aircraft that features high-aspect-ratio flexible wings needs take into account structural geometrical nonlinearities and dynamic stall. For a generic... The aeroelastic analysis of high-altitude, long-endurance (HALE) aircraft that features high-aspect-ratio flexible wings needs take into account structural geometrical nonlinearities and dynamic stall. For a generic nonlinear aeroelastic system, besides the stability boundary, the characteristics of the limit-cycle oscillation (LCO) should also be accurately predicted. In order to conduct nonlinear aeroelastic analysis of high-aspect-ratio flexible wings, a first-order, state-space model is developed by combining a geometrically exact, nonlinear anisotropic beam model with nonlinear ONERA (Edlin) dynamic stall model. The present investigations focus on the initiation and sustaining mechanism of the LCO and the effects of flight speed and drag on aeroelastic behaviors. Numerical results indicate that structural geometrical nonlinearities could lead to the LCO without stall occurring. As flight speed increases, dynamic stall becomes dominant and the LCO increasingly complicated. Drag could be negligible for LCO type, but should be considered to exactly predict the onset speed of flutter or LCO of high-aspect-ratio flexible wings. 展开更多
关键词 nonlinear aeroelasticity limit-cycle oscillation Galerkin methods geometrical nonlinearities dynamic stall HALEaircraft
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部