Based on the typical dissection of various onshore tight oil fields in China,the tight oil migration and accumulation mechanism and enrichment-controlling factors in continental lake basins are analyzed through nuclea...Based on the typical dissection of various onshore tight oil fields in China,the tight oil migration and accumulation mechanism and enrichment-controlling factors in continental lake basins are analyzed through nuclear magnetic resonance(NMR)displacement physical simulation and Lattice Boltzmann numerical simulation by using the samples of source rock,reservoir rock and crude oil.In continental lake basins,the dynamic forces driving hydrocarbon generation and expulsion of high-quality source rocks are the foundational power that determines the charging efficiency and accumulation effect of tight oil,the oil migration resistance is a key element that influences the charging efficiency and accumulation effect of tight oil,and the coupling of charging force with pore-throat resistance in tight reservoir controls the tight oil accumulation and sweet spot enrichment.The degree of tight oil enrichment in continental lake basins is controlled by four factors:source rock,reservoir pore-throat size,anisotropy of reservoir structure,and fractures.The high-quality source rocks control the near-source distribution of tight oil,reservoir physical properties and pore-throat size are positively correlated with the degree of tight oil enrichment,the anisotropy of reservoir structure reveals that the parallel migration rate is the highest,and intralayer fractures can improve the migration and accumulation efficiency and the oil saturation.展开更多
In this study,organic geochemical and petrological analyses were conducted on 111 shale samples from a well to understand the retention,intraformational migration and segmented accumulation(shale oil enrichment in dif...In this study,organic geochemical and petrological analyses were conducted on 111 shale samples from a well to understand the retention,intraformational migration and segmented accumulation(shale oil enrichment in different intervals is unconnected)features of shale oil within the organic-rich shale in the Qingshankou Formation of the Gulong Sag.Our study shows that retained petroleum characteristics in the investigated succession are mainly influenced by three factors:organic richness,intraformational migration and segmented accumulation.Organic matter richness primarily controls the amount of retained petroleum,especially the‘live’component indicated by the S_(2)value rather than the total organic carbon(TOC)figure alone.The negative expulsion efficiencies determined by mass-balance calculations of hydrocarbons reveal that petroleum from adjacent organic-rich intervals migrates into the interval of about 2386-2408 m,which is characterized by high free hydrocarbon(S_(1)),OSI and saturated hydrocarbons content,along with a greater difference inδ^(13)C values between polar compounds(including resins and asphaltenes)and saturated hydrocarbons.The depth-dependent heterogeneity of carbon isotope ratios(δ^(13)C)of mud methane gas,δ^(13)C of extracts gross composition(SARA),δ^(13)C of kerogen and SARA content of extracts suggest that the studied succession can be subdivided into four intervals.The shale oil sealing enrichment character in each interval is further corroborated by the distinctδ^(13)C values of mud methane gas in different intervals.Due to the migration of petroleum into the 2386-2408 m interval,the S_(1),OSI and saturated hydrocarbons content of the interval show higher relative values.The maturity of organic matter in the 2471-2500 m interval is at the highest with the smaller size molecular components of the retained petroleum.Thus,favorable‘sweet spots’may be found in the 2386-2408 m interval and the 2471-2500 m interval,according to the experiment results in this study.展开更多
The relationships between permeability and dynamics in hydrocarbon accumulation determine oil- bearing potential (the potential oil charge) of low perme- ability reservoirs. The evolution of porosity and permeabilit...The relationships between permeability and dynamics in hydrocarbon accumulation determine oil- bearing potential (the potential oil charge) of low perme- ability reservoirs. The evolution of porosity and permeability of low permeability turbidite reservoirs of the middle part of the third member of the Shahejie Formation in the Dongying Sag has been investigated by detailed core descriptions, thin section analyses, fluid inclusion analyses, carbon and oxygen isotope analyses, mercury injection, porosity and permeability testing, and basin modeling. The cutoff values for the permeability of the reservoirs in the accumulation period were calculated after detailing the accumulation dynamics and reservoir pore structures, then the distribution pattern of the oil-bearing potential of reservoirs controlled by the matching relationship between dynamics and permeability during the accumulation period were summarized. On the basis of the observed diagenetic features and with regard to the paragenetic sequences, the reservoirs can be subdivided into four types of diagenetic facies. The reservoirs experienced two periods of hydro- carbon accumulation. In the early accumulation period, the reservoirs except for diagenetic facies A had middle to high permeability ranging from 10 × 10-3 gm2 to 4207 × 10-3 lain2. In the later accumulation period, the reservoirs except for diagenetic facies C had low permeability ranging from 0.015 × 10-3 gm2 to 62× 10-3 -3m2. In the early accumulation period, the fluid pressure increased by the hydrocarbon generation was 1.4-11.3 MPa with an average value of 5.1 MPa, and a surplus pressure of 1.8-12.6 MPa with an average value of 6.3 MPa. In the later accumulation period, the fluid pressure increased by the hydrocarbon generation process was 0.7-12.7 MPa with an average value of 5.36 MPa and a surplus pressure of 1.3-16.2 MPa with an average value of 6.5 MPa. Even though different types of reservoirs exist, all can form hydrocarbon accumulations in the early accumulation per- iod. Such types of reservoirs can form hydrocarbon accumulation with high accumulation dynamics; however, reservoirs with diagenetic facies A and diagenetic facies B do not develop accumulation conditions with low accumu- lation dynamics in the late accumulation period for very low permeability. At more than 3000 m burial depth, a larger proportion of turbidite reservoirs are oil charged due to the proximity to the source rock, Also at these depths, lenticular sand bodies can accumulate hydrocarbons. At shallower depths, only the reservoirs with oil-source fault development can accumulate hydrocarbons. For flat surfaces, hydrocarbons have always been accumulated in the reservoirs around the oil-source faults and areas near the center of subsags with high accumulation dynamics.展开更多
Numerical simulation of oil migration and accumulation is to describe the history of oil migration and accumulation in basin evolution. It is of great value in the exploration of oil resources and their rational evalu...Numerical simulation of oil migration and accumulation is to describe the history of oil migration and accumulation in basin evolution. It is of great value in the exploration of oil resources and their rational evaluation. In this paper, from such actual conditions as the effects of mechanics of fluids in porous media and 3-dimensional geology characteristics, a kind of modified method of second order splitting-up implicit interactive scheme is pur forward. For the famous hydraulic experiment of secondary migration-accumulation, the numerical simulation test has been done, and both the computational and experimental results are basically identical. For the actual problem of Dongying hollow of Shengli Petroleum Oil Field, the numerical simulation test and the actual conditions are basically coincident. Thus the well-known problem has been solved.展开更多
Migration and accumulation simulation of oil and gas in carrier systems has always been a difficult subject in the quantitative study of petroleum geology. In view of the fact that the traditional geological modeling ...Migration and accumulation simulation of oil and gas in carrier systems has always been a difficult subject in the quantitative study of petroleum geology. In view of the fact that the traditional geological modeling technology can not establish the interrelation of carriers in three dimensional space, we have proposed a hybrid-dimensional mesh modeling technology consisting of body(stratum), surfaces(faults and unconformities), lines and points, which provides an important research method for the description of geometry of sand bodies, faults and unconformities, the 3 D geological modeling of complex tectonic areas, and the simulation of hydrocarbon migration and accumulation. Furthermore, we have advanced a 3 D hydrocarbon migration pathway tracking method based on the hybrid-dimensional mesh of the carrier system. The application of this technology in western Luliang Uplift of Junggar Basin shows that the technology can effectively characterize the transport effect of fault planes, unconformities and sand bodies, indicate the hydrocarbon migration pathways, simulate the process of oil accumulation, reservoir adjustment and secondary reservoir formation, predict the hydrocarbon distribution. It is found through the simulation that the areas around the paleo-oil reservoir and covered by migration pathways are favorable sites for oil and gas distribution.展开更多
The Yong'an-Meitai area is the focus of the present exploration in the Fushan Depression, Beibuwan Basin, South China Sea. All oils from this area are geochemically characterized by higher Pr/Ph ratio, higher proport...The Yong'an-Meitai area is the focus of the present exploration in the Fushan Depression, Beibuwan Basin, South China Sea. All oils from this area are geochemically characterized by higher Pr/Ph ratio, higher proportion of heavy molecular weight hydrocarbons, and higher proportion of C29 regular steranes, which indicate that the organic matter of source rocks might have been deposited in an oxidizing palaeoenvironment and be dominated by higher plant organic matter input. The oil from E3w2 (the second member of Weizhou Fro. of the Oligocene) has a much higher density, relatively higher Pr/nC17 and Ph/nC18 ratios, and a "UCM--unresolved complex mixture" on gas chromatograms, which indicate that it has been slightly biodegraded. CPI and other terpane and sterane isomer ratios suggest they are all mature oils. The timing of oil charging in E3w2 and E2I1 (the first member of the Liushagang Fro. of the Eocene) determined by the homogenization temperatures of fluid inclusions and thermal evolution history are from 9-3 Ma and 8-3 Ma, respectively. Thus, the interpretation of E3w2 as a secondary reservoir is unlikely. The timing of oil charging is later than that of hydrocarbon generating and expulsion of Liushagang Fin. source rocks and trap formation, which is favorable for oil accumulation in this area. All molecular parameters that are used for tracing oil filling direction decrease with shallower burial depth, which suggests vertical oil migration. The widely occurring faults that penetrate through the source rocks of the Liushagang Fro. may serve as a fine oil charging conduit.展开更多
Various factors controlling the accumulation of natural gas hydrates(NGHs)form various enrichment and accumulation modes through organic combination.This study mainly analyzes the geological and geophysical characteri...Various factors controlling the accumulation of natural gas hydrates(NGHs)form various enrichment and accumulation modes through organic combination.This study mainly analyzes the geological and geophysical characteristics of the NGHs occurrence in the uplifts and their slope zones within the deep-water area in the Qiongdongnan(QDN)Basin(also referred to as the study area).Furthermore,it investigates the dominant governing factors and models of NGHs migration and accumulation in the study area.The results are as follows.(1)The uplifts and their slope zones in the study area lie in the dominant pressure-relief direction of fluids in central hydrocarbon-rich sags in the area,which provide sufficient gas sources for the NGHs accumulation and enrichment through pathways such as gas chimneys and faults.(2)The top and flanks of gas chimneys below the bottom simulating reflectors(BSRs)show high-amplitude seismic reflections and pronounced transverse charging of free gas,indicating the occurrence of a large amount of gas accumulation at the heights of the uplifts.(3)Chimneys,faults,and high-porosity and high-permeability strata,which connect the gas hydrate temperature-pressure stability zones(GHSZs)with thermogenic gas and biogenic gas,form the main hydrate migration system.(4)The reservoir system in the study area comprises sedimentary interlayers consisting of mass transport deposits(MTDs)and turbidites.In addition,the reservoir system has developed fissure-and pore-filling types of hydrates in the pathways.The above well-matched controlling factors of hydrate accumulation enable the uplifts and their slope zones in the study area to become the favorable targets of NGHs exploration.展开更多
The oblique transfer zone in the Fushan Sag, a syndepositional dome sandwiched between the Bailian and Huangtong sub-sags, has been the most important exploration target. The major oil observation occurs in the E_2l_1...The oblique transfer zone in the Fushan Sag, a syndepositional dome sandwiched between the Bailian and Huangtong sub-sags, has been the most important exploration target. The major oil observation occurs in the E_2l_1^(L+M) and the E_2l_3~U. 46 oil and rock samples reveal that the oil in the transfer zone is mostly contributed by the Bailian sub-sag, though the source rock conditions, hydrocarbon generation and expulsion histories of the Bailian and Huangtong sub-sags are similar. The E_2l_3~U oil, characterized by high maturity, Pr/Ph ratio and oleanane/C_(30)-hopane ratio, shows a close genetic affinity with the E_2l_3~b source rocks, while the E_2l_1^(L+M) oil, characterized by lower maturity, Pr/Ph ratio and oleanane/C_(30)-hopane ratio, is suggested to be derived from the E_2l_(1+2)~b source rocks. The homogenization temperatures of aqueous fluid inclusions, taking the burial history of the reservoirs into account, reflect that the oil charge mainly occurred from mid-Miocene to Pliocene in the oblique transfer zone. The oil transporting passages include connected sand bodies, unconformities and faults in the Fushan Sag. Of these, the faults are the most complicated and significant. The faults differ sharply in the west area, the east area and the oblique transfer zone, resulting in different influence on the oil migration and accumulation. During the main hydrocarbon charge stage, the faults in the west area are characterized by bad vertical sealing and spatially dense distribution. As a result, the oil generated by the Huangtong source rocks is mostly lost along the faults during the vertical migration in the west area. This can be the mechanism proposed to explain the little contribution of the Huangtong source rocks to the oil in the oblique transfer zone. Eventually, an oil migration and accumulation model is built in the oblique transfer zone, which may provide theoretical and practical guides for the oil exploration.展开更多
Quantitative characterization of tight sandstone oil migration and accumulation is an emerging research frontier in the field of oil and gas exploration.In this study,a conceptual model containing multiple basic geolo...Quantitative characterization of tight sandstone oil migration and accumulation is an emerging research frontier in the field of oil and gas exploration.In this study,a conceptual model containing multiple basic geological elements is developed,and a nonlinear seepage numerical model for tight sandstone oil migration and accumulation is established.The effects of the slip effect,overpressure driving force,buoyancy,and capillary force on the migration and accumulation of tight oil are examined.The results showed that(1)the differences in oil migration and accumulation between tight and conventional reservoirs are reflected in the growth mode of oil saturation,distribution characteristics of oil and water,and extent of the effect of the formation dip angle;(2)the slip effect has a significant impact when the average pore throat radius is less than 150 nm and the overpressure driving force and capillary force are the main mechanical mechanisms controlling oil migration and accumulation in tight sandstone,while the coupling effect of buoyancy,capillary force,and overpressure driving force controls the upper and lower limits of oil saturation.Finally,a dimensional and dimensionless identification chart for rapidly predicting the oil saturation of tight sandstone is proposed and verified using the measured data.This study provides a basis for analyzing the migration and accumulation mechanisms of tight sandstone oil and a new approach for predicting oil saturation.Additionally,we developed digital and visual analysis methods for the migration results,enriching the expression of the dynamics of hydrocarbon accumulation.展开更多
The produced oils in central Junggar Basin are commonly mixed in origin.In this paper,in order to reveal this complexity and thereby provide valuable clues to the study of oil source and formation mechanism,genetic gr...The produced oils in central Junggar Basin are commonly mixed in origin.In this paper,in order to reveal this complexity and thereby provide valuable clues to the study of oil source and formation mechanism,genetic groups of the mixed oils were classified and their migration/accumulation was investigated.Based on the artificial oil mixing experiments,some representative biomarkers of the mixed oils showed varying tendencies according to mixing ratios of the oils.Hence,these biomarkers are useful for determining the origin of the mixed oils.According to the criteria,oils in the area were divided into four basic groups,i.e.,the Lower Permian Fengcheng oil,the Middle Permian Lower Wuerhe oil,the Jurassic source derived oil,and the mixed oil(including the Lower and Middle Permian mixed oil and the Permian and Jurassic mixed oil).Oil migration and accumulation were discussed in combination with the geological background.展开更多
Taking the Wufeng–Longmaxi shale gas in the Sichuan Basin as a typical example,based on the new progress in exploration and development,this study re-examines the"unconventional"of unconventional oil and ga...Taking the Wufeng–Longmaxi shale gas in the Sichuan Basin as a typical example,based on the new progress in exploration and development,this study re-examines the"unconventional"of unconventional oil and gas from two aspects:oil and gas formation and accumulation mechanisms,and main features of oil and gas layers.The oil and gas of continuous accumulation and distribution from integrated source and reservoir is unconventional oil and gas,and the study focusing on shale oil and gas in comparison with conventional oil and gas has made progress in five aspects:(1)Unconventional oil and gas have source-reservoir-in-one and in-situ accumulation;according to the theory of continuous oil and gas accumulation,the accumulation power of oil and gas is overpressure and diffusion;for conventional oil and gas,the source and reservoir are different formations,the trapping accumulation is its theoretical foundation,and the accumulation power is characterized by buoyancy and capillary force.(2)The unconventional oil and gas reservoirs are mainly formed in the low-energy oxygen-anaerobic environment,dominantly semi-deep to deep shelf facies and the semi-deep to deep lake facies,simple in lithology,rich in organic matter and clay minerals;conventional oil and gas mainly occur in coarse-grained sedimentary rocks formed in high-energy waters with complex lithology.(3)The unconventional oil and gas reservoirs have mainly nano-scale pores,of which organic matter pores take a considerable proportion;conventional oil and gas reservoirs mainly have micron-millimeter pores and no organic matter pores.(4)Unconventional shale oil and gas reservoirs have oil and gas in uniform distribution,high oil and gas saturation,low or no water content,and no obvious oil and gas water boundary;conventional oil and gas reservoirs have oil and gas of complex properties,moderate oil and gas saturation,slightly higher water content,and obvious oil,gas and water boundaries.(5)Organic-rich shale is the main target of unconventional oil and gas exploration;the sedimentary environment controls high organic matter abundance zone and organic matter content controls oil and gas abundance;positive structure and high porosity control the yields of shale wells;bedding and fracture development are important factors deciding high yield.展开更多
Subtle traps or oil pools have become an important exploration play in the Dongying Depression, Bohai Bay Basin, east China. Despite recent successes in exploration, the formation mechanisms of subtle traps are still ...Subtle traps or oil pools have become an important exploration play in the Dongying Depression, Bohai Bay Basin, east China. Despite recent successes in exploration, the formation mechanisms of subtle traps are still not well understood. The majority of subtle oil pools in the Dongying Depression are developed in the middle interval of the Es3 Member of the Paleogene Shahejie Formation with the subtle traps being primarily of lenticular basin-floor turbidite sands encompassed in mudstones. Oil in the subtle traps was previously thought to have migrated directly from the surrounding source rocks of the same formation (Es3). Detailed geochemical investigation of 41 oils and 41 rock samples from the depression now indicates that the oils from the subtle traps cannot be correlated well with the surrounding Es3 source rocks, which are characterized by high Pr/ Ph (〉1), low Gammacerane/C30hopane, representing a freshwater lacustrine setting. In contrast the oils features low Pr/Ph (〈1) and relatively high Gammacerane content, showing a genetic affinity with the underlying Es4 source rocks, which also have the same qualities, indicating a brackish lacustrine setting. Oils in the Es3 subtle traps are probably derived from mixed sources with the contribution from the upper Es4 source rocks predominating. Therefore unconventional oil migration and accumulation mechanisms need to be invoked to explain the pooling of oils from the ES4 source rocks, which probably came through a thick low interval of the Es3 source rocks with no apparent structural or stratigraphic pathways. We suggest that the subtle oil migration pathway probably plays an important role here. This finding may have significant implications for future exploration and the remaining resource evaluation in the Dongying Depression.展开更多
The micromigration of oil-drive-water and gas-drive-water in oil and gas fields was studied,by using core slices and micro-experimental technology,and the migration processes and characteristics of oil and gas in pore...The micromigration of oil-drive-water and gas-drive-water in oil and gas fields was studied,by using core slices and micro-experimental technology,and the migration processes and characteristics of oil and gas in pores and throats were observed,as well as entry pressures of oil/gas migration.Research shows that entry pressures of both oil-drive-water and gas-drive-water increase obviously as porosity decreases,and the statistical regularity observes the power function variation.However,there is a complex changing relationship between porosity and different entry pressure values of the two replacement processes,forming three curve sections,each representing a different accumulation significance.When the porosity is over 10%-12%,the difference between oil-drive-water and gas-drive-water entry pressures is small.Both oil and gas can migrate and accumulate in this kind of reservoir.The probabilities of oil and gas reservoir formation are nearly equal,forming conventional oil/gas pools.When porosity is between 5% and 10%-12%,the difference between the two is obvious,which indicates that this kind of reservoir can seal oil,but can also be a reservoir for gas,easily forming unconventional hydrocarbon pools(deep-basin gas pools).When porosity is less than 5%,the difference is indistinct and the entry capillary pressures show the same sealing function for oil and gas.In this condition,both oil and gas pools are difficult to form.Experimental results give a rational explanation for the difference of accumulation probability between deep-basin gas and deep-basin oil,and also for the mechanism of tight sand acting as cap rock.展开更多
Numerical simulation of oil migration and accumulation is to describe the history of oil migration and accumulation in basin evolution. It is of great value in evaluation of oil resources and determination of the loca...Numerical simulation of oil migration and accumulation is to describe the history of oil migration and accumulation in basin evolution. It is of great value in evaluation of oil resources and determination of the location and amount of oil deposits. Based on such actual conditions as the effects of fluid mechanics in porous media and 3-dimensional geology characteristics,a kind of modified method of second order upwind finite difference fractional steps implicit interactive scheme was put forward. As for the actual problem of Dongying hollow,Huimin hollow,Tanhai region and Yangxin hollow in Shengli Petroleum Oil Field,a numerical simulation test was carried out,and the result is basically coincident with the actual conditions. For the model problem,optimal order estimates were derived. Thus the well-known problem on oil resources was solved.展开更多
Different driving forces govern the formation of distinct types of oil and gas accumulation and yield diverse oil and gas distributions.Complex oil and gas reservoirs in basins are commonly formed by the combination o...Different driving forces govern the formation of distinct types of oil and gas accumulation and yield diverse oil and gas distributions.Complex oil and gas reservoirs in basins are commonly formed by the combination of multiple forces.It is very difficult but essential to identify driving forces and evaluate their contributions in predicting the type and distribution of oil and gas reservoirs.In this study,a novel method is proposed to identify driving forces and evaluate their contribution based on the critical conditions of porosity and permeability corresponding to buoyancy-driven hydrocarbon accumulation depth(BHAD).The application of this method to the Nanpu Sag of the Bohai Bay Basin shows that all oil and gas accumulations in the reservoirs are jointly formed by four driving forces:buoyance(Ⅰ),non-buoyance(Ⅱ),tectonic stress(Ⅲ1)and geofluid activity(Ⅲ2).Their contributions to all proven reserves are approxi-mately 63.8%,16.2%,2.9%,and 17.0%,respectively.The contribution of the driving forces is related to the depth,distance to faults and unconformity surfaces.Buoyancy dominates the formation of conven-tional reservoirs above BHAD,non-buoyant dominate the formation of unconventional reservoirs below BHAD,tectonic stress dominates the formation of fractured reservoirs within 300 m of a fault,and geoflu-ids activity dominates the formation of vuggy reservoirs within 100 m of an unconformity surface.展开更多
综合利用地球化学、扫描电镜、岩心薄片、测井等资料以及油井生产数据等,对鄂尔多斯盆地陕北地区三叠系延长组7段储层特征、烃源岩特征和致密油分布特征进行了分析,从烃源岩展布、输导体系和源-储组合关系3个方面对致密油差异富集控制...综合利用地球化学、扫描电镜、岩心薄片、测井等资料以及油井生产数据等,对鄂尔多斯盆地陕北地区三叠系延长组7段储层特征、烃源岩特征和致密油分布特征进行了分析,从烃源岩展布、输导体系和源-储组合关系3个方面对致密油差异富集控制因素进行了探讨,并总结了成藏模式。研究结果表明:(1)陕北地区长7段致密砂岩储层主要分布在一亚段(长71)和二亚段(长72),以灰色—灰白色长石砂岩和岩屑长石砂岩为主,长71和长72平均孔隙度分别为5.56%和7.32%,平均渗透率分别为0.097 m D和0.110 m D,长72储层物性更好;孔隙空间以溶孔为主,发育少量粒间孔。(2)研究区烃类主要来源于本地长72顶部和长73这2套烃源岩,平均厚度大于20 m,有机质丰度高,平均TOC值为3.02%,干酪根类型以Ⅰ型和Ⅱ1型为主,处于生烃高峰期,平均生烃量为270.2×10^(4)t/km^(2),长73烃源岩生烃潜力更大,供烃至长72储层,长71致密油来源于长72烃源岩;新安边地区三角洲前缘亚相末端的长72储层中致密油由湖盆烃源岩侧向供烃。(3)研究区致密油富集受烃源岩展布、砂体连通性以及源-储组合共同控制,在长72更富集,在新安边地区分布面积最大,安塞地区无大规模致密油聚集;纵向上和平面上致密油的聚集差异受控于烃源岩厚度和源-储组合关系,下生上储、上下生油而中间储集和砂泥互层时含油性更好;新安边地区三角洲前缘亚相末端的长72致密油聚集规模大于三角洲前缘主体,是由于三角洲前缘末端发育的局部连通砂体阻碍了湖盆烃类物质的侧向运移。(4)研究区致密油为“源控-砂控”成藏模式,远源河道优势砂体尖灭处和近源局部连通的砂体是有利勘探区。展开更多
基金Supported by the National Science and Technology Major Project of China(2016ZX05046-001).
文摘Based on the typical dissection of various onshore tight oil fields in China,the tight oil migration and accumulation mechanism and enrichment-controlling factors in continental lake basins are analyzed through nuclear magnetic resonance(NMR)displacement physical simulation and Lattice Boltzmann numerical simulation by using the samples of source rock,reservoir rock and crude oil.In continental lake basins,the dynamic forces driving hydrocarbon generation and expulsion of high-quality source rocks are the foundational power that determines the charging efficiency and accumulation effect of tight oil,the oil migration resistance is a key element that influences the charging efficiency and accumulation effect of tight oil,and the coupling of charging force with pore-throat resistance in tight reservoir controls the tight oil accumulation and sweet spot enrichment.The degree of tight oil enrichment in continental lake basins is controlled by four factors:source rock,reservoir pore-throat size,anisotropy of reservoir structure,and fractures.The high-quality source rocks control the near-source distribution of tight oil,reservoir physical properties and pore-throat size are positively correlated with the degree of tight oil enrichment,the anisotropy of reservoir structure reveals that the parallel migration rate is the highest,and intralayer fractures can improve the migration and accumulation efficiency and the oil saturation.
基金the support from the Scientific Research Project from RIPED(2021ycq01)the Scientific Research and Technological Development Project of CNPC(2021DJ0107)the Basic Research and Strategic Reserve Technology Research Project of CNPC(2020D-5008-01)。
文摘In this study,organic geochemical and petrological analyses were conducted on 111 shale samples from a well to understand the retention,intraformational migration and segmented accumulation(shale oil enrichment in different intervals is unconnected)features of shale oil within the organic-rich shale in the Qingshankou Formation of the Gulong Sag.Our study shows that retained petroleum characteristics in the investigated succession are mainly influenced by three factors:organic richness,intraformational migration and segmented accumulation.Organic matter richness primarily controls the amount of retained petroleum,especially the‘live’component indicated by the S_(2)value rather than the total organic carbon(TOC)figure alone.The negative expulsion efficiencies determined by mass-balance calculations of hydrocarbons reveal that petroleum from adjacent organic-rich intervals migrates into the interval of about 2386-2408 m,which is characterized by high free hydrocarbon(S_(1)),OSI and saturated hydrocarbons content,along with a greater difference inδ^(13)C values between polar compounds(including resins and asphaltenes)and saturated hydrocarbons.The depth-dependent heterogeneity of carbon isotope ratios(δ^(13)C)of mud methane gas,δ^(13)C of extracts gross composition(SARA),δ^(13)C of kerogen and SARA content of extracts suggest that the studied succession can be subdivided into four intervals.The shale oil sealing enrichment character in each interval is further corroborated by the distinctδ^(13)C values of mud methane gas in different intervals.Due to the migration of petroleum into the 2386-2408 m interval,the S_(1),OSI and saturated hydrocarbons content of the interval show higher relative values.The maturity of organic matter in the 2471-2500 m interval is at the highest with the smaller size molecular components of the retained petroleum.Thus,favorable‘sweet spots’may be found in the 2386-2408 m interval and the 2471-2500 m interval,according to the experiment results in this study.
基金supported by the National Natural Science Foundation of China(Grant No.U1262203)the National Science and Technology Special Grant(No.2011ZX05006-003)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.14CX06070A)the Chinese Scholarship Council(No.201506450029)
文摘The relationships between permeability and dynamics in hydrocarbon accumulation determine oil- bearing potential (the potential oil charge) of low perme- ability reservoirs. The evolution of porosity and permeability of low permeability turbidite reservoirs of the middle part of the third member of the Shahejie Formation in the Dongying Sag has been investigated by detailed core descriptions, thin section analyses, fluid inclusion analyses, carbon and oxygen isotope analyses, mercury injection, porosity and permeability testing, and basin modeling. The cutoff values for the permeability of the reservoirs in the accumulation period were calculated after detailing the accumulation dynamics and reservoir pore structures, then the distribution pattern of the oil-bearing potential of reservoirs controlled by the matching relationship between dynamics and permeability during the accumulation period were summarized. On the basis of the observed diagenetic features and with regard to the paragenetic sequences, the reservoirs can be subdivided into four types of diagenetic facies. The reservoirs experienced two periods of hydro- carbon accumulation. In the early accumulation period, the reservoirs except for diagenetic facies A had middle to high permeability ranging from 10 × 10-3 gm2 to 4207 × 10-3 lain2. In the later accumulation period, the reservoirs except for diagenetic facies C had low permeability ranging from 0.015 × 10-3 gm2 to 62× 10-3 -3m2. In the early accumulation period, the fluid pressure increased by the hydrocarbon generation was 1.4-11.3 MPa with an average value of 5.1 MPa, and a surplus pressure of 1.8-12.6 MPa with an average value of 6.3 MPa. In the later accumulation period, the fluid pressure increased by the hydrocarbon generation process was 0.7-12.7 MPa with an average value of 5.36 MPa and a surplus pressure of 1.3-16.2 MPa with an average value of 6.5 MPa. Even though different types of reservoirs exist, all can form hydrocarbon accumulations in the early accumulation per- iod. Such types of reservoirs can form hydrocarbon accumulation with high accumulation dynamics; however, reservoirs with diagenetic facies A and diagenetic facies B do not develop accumulation conditions with low accumu- lation dynamics in the late accumulation period for very low permeability. At more than 3000 m burial depth, a larger proportion of turbidite reservoirs are oil charged due to the proximity to the source rock, Also at these depths, lenticular sand bodies can accumulate hydrocarbons. At shallower depths, only the reservoirs with oil-source fault development can accumulate hydrocarbons. For flat surfaces, hydrocarbons have always been accumulated in the reservoirs around the oil-source faults and areas near the center of subsags with high accumulation dynamics.
文摘Numerical simulation of oil migration and accumulation is to describe the history of oil migration and accumulation in basin evolution. It is of great value in the exploration of oil resources and their rational evaluation. In this paper, from such actual conditions as the effects of mechanics of fluids in porous media and 3-dimensional geology characteristics, a kind of modified method of second order splitting-up implicit interactive scheme is pur forward. For the famous hydraulic experiment of secondary migration-accumulation, the numerical simulation test has been done, and both the computational and experimental results are basically identical. For the actual problem of Dongying hollow of Shengli Petroleum Oil Field, the numerical simulation test and the actual conditions are basically coincident. Thus the well-known problem has been solved.
基金Supported by the China National Science and Technology Major Project(2017ZX05008-006)
文摘Migration and accumulation simulation of oil and gas in carrier systems has always been a difficult subject in the quantitative study of petroleum geology. In view of the fact that the traditional geological modeling technology can not establish the interrelation of carriers in three dimensional space, we have proposed a hybrid-dimensional mesh modeling technology consisting of body(stratum), surfaces(faults and unconformities), lines and points, which provides an important research method for the description of geometry of sand bodies, faults and unconformities, the 3 D geological modeling of complex tectonic areas, and the simulation of hydrocarbon migration and accumulation. Furthermore, we have advanced a 3 D hydrocarbon migration pathway tracking method based on the hybrid-dimensional mesh of the carrier system. The application of this technology in western Luliang Uplift of Junggar Basin shows that the technology can effectively characterize the transport effect of fault planes, unconformities and sand bodies, indicate the hydrocarbon migration pathways, simulate the process of oil accumulation, reservoir adjustment and secondary reservoir formation, predict the hydrocarbon distribution. It is found through the simulation that the areas around the paleo-oil reservoir and covered by migration pathways are favorable sites for oil and gas distribution.
基金This research was financially supported by the Natural Science Foundation of China(Grant No.40672093)CNPC Innovation Fund(07El001)the ESS-China Hydrocarborn Geoscience Collaboration Project under Natural Resources Canada's International 0pportunities Program.We extend our thanks to South 0il Exploration and Development Company of PetroChina for samples collection.
文摘The Yong'an-Meitai area is the focus of the present exploration in the Fushan Depression, Beibuwan Basin, South China Sea. All oils from this area are geochemically characterized by higher Pr/Ph ratio, higher proportion of heavy molecular weight hydrocarbons, and higher proportion of C29 regular steranes, which indicate that the organic matter of source rocks might have been deposited in an oxidizing palaeoenvironment and be dominated by higher plant organic matter input. The oil from E3w2 (the second member of Weizhou Fro. of the Oligocene) has a much higher density, relatively higher Pr/nC17 and Ph/nC18 ratios, and a "UCM--unresolved complex mixture" on gas chromatograms, which indicate that it has been slightly biodegraded. CPI and other terpane and sterane isomer ratios suggest they are all mature oils. The timing of oil charging in E3w2 and E2I1 (the first member of the Liushagang Fro. of the Eocene) determined by the homogenization temperatures of fluid inclusions and thermal evolution history are from 9-3 Ma and 8-3 Ma, respectively. Thus, the interpretation of E3w2 as a secondary reservoir is unlikely. The timing of oil charging is later than that of hydrocarbon generating and expulsion of Liushagang Fin. source rocks and trap formation, which is favorable for oil accumulation in this area. All molecular parameters that are used for tracing oil filling direction decrease with shallower burial depth, which suggests vertical oil migration. The widely occurring faults that penetrate through the source rocks of the Liushagang Fro. may serve as a fine oil charging conduit.
基金funded by the projects initiated by the China Geological Survey(DD20190217 and DD20190230)the key special project for introduced talent team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML2019ZD0102)Guangdong Major project of Basic and Applied Basic Research(2020B0301030003).
文摘Various factors controlling the accumulation of natural gas hydrates(NGHs)form various enrichment and accumulation modes through organic combination.This study mainly analyzes the geological and geophysical characteristics of the NGHs occurrence in the uplifts and their slope zones within the deep-water area in the Qiongdongnan(QDN)Basin(also referred to as the study area).Furthermore,it investigates the dominant governing factors and models of NGHs migration and accumulation in the study area.The results are as follows.(1)The uplifts and their slope zones in the study area lie in the dominant pressure-relief direction of fluids in central hydrocarbon-rich sags in the area,which provide sufficient gas sources for the NGHs accumulation and enrichment through pathways such as gas chimneys and faults.(2)The top and flanks of gas chimneys below the bottom simulating reflectors(BSRs)show high-amplitude seismic reflections and pronounced transverse charging of free gas,indicating the occurrence of a large amount of gas accumulation at the heights of the uplifts.(3)Chimneys,faults,and high-porosity and high-permeability strata,which connect the gas hydrate temperature-pressure stability zones(GHSZs)with thermogenic gas and biogenic gas,form the main hydrate migration system.(4)The reservoir system in the study area comprises sedimentary interlayers consisting of mass transport deposits(MTDs)and turbidites.In addition,the reservoir system has developed fissure-and pore-filling types of hydrates in the pathways.The above well-matched controlling factors of hydrate accumulation enable the uplifts and their slope zones in the study area to become the favorable targets of NGHs exploration.
基金Project(41272122)supported by the National Natural Science Foundation of China
文摘The oblique transfer zone in the Fushan Sag, a syndepositional dome sandwiched between the Bailian and Huangtong sub-sags, has been the most important exploration target. The major oil observation occurs in the E_2l_1^(L+M) and the E_2l_3~U. 46 oil and rock samples reveal that the oil in the transfer zone is mostly contributed by the Bailian sub-sag, though the source rock conditions, hydrocarbon generation and expulsion histories of the Bailian and Huangtong sub-sags are similar. The E_2l_3~U oil, characterized by high maturity, Pr/Ph ratio and oleanane/C_(30)-hopane ratio, shows a close genetic affinity with the E_2l_3~b source rocks, while the E_2l_1^(L+M) oil, characterized by lower maturity, Pr/Ph ratio and oleanane/C_(30)-hopane ratio, is suggested to be derived from the E_2l_(1+2)~b source rocks. The homogenization temperatures of aqueous fluid inclusions, taking the burial history of the reservoirs into account, reflect that the oil charge mainly occurred from mid-Miocene to Pliocene in the oblique transfer zone. The oil transporting passages include connected sand bodies, unconformities and faults in the Fushan Sag. Of these, the faults are the most complicated and significant. The faults differ sharply in the west area, the east area and the oblique transfer zone, resulting in different influence on the oil migration and accumulation. During the main hydrocarbon charge stage, the faults in the west area are characterized by bad vertical sealing and spatially dense distribution. As a result, the oil generated by the Huangtong source rocks is mostly lost along the faults during the vertical migration in the west area. This can be the mechanism proposed to explain the little contribution of the Huangtong source rocks to the oil in the oblique transfer zone. Eventually, an oil migration and accumulation model is built in the oblique transfer zone, which may provide theoretical and practical guides for the oil exploration.
基金This work was financially supported by the National Natural Science Foundation of China(Grant Nos.42030808,41690132,41872163 and 52242402)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA14010304).
文摘Quantitative characterization of tight sandstone oil migration and accumulation is an emerging research frontier in the field of oil and gas exploration.In this study,a conceptual model containing multiple basic geological elements is developed,and a nonlinear seepage numerical model for tight sandstone oil migration and accumulation is established.The effects of the slip effect,overpressure driving force,buoyancy,and capillary force on the migration and accumulation of tight oil are examined.The results showed that(1)the differences in oil migration and accumulation between tight and conventional reservoirs are reflected in the growth mode of oil saturation,distribution characteristics of oil and water,and extent of the effect of the formation dip angle;(2)the slip effect has a significant impact when the average pore throat radius is less than 150 nm and the overpressure driving force and capillary force are the main mechanical mechanisms controlling oil migration and accumulation in tight sandstone,while the coupling effect of buoyancy,capillary force,and overpressure driving force controls the upper and lower limits of oil saturation.Finally,a dimensional and dimensionless identification chart for rapidly predicting the oil saturation of tight sandstone is proposed and verified using the measured data.This study provides a basis for analyzing the migration and accumulation mechanisms of tight sandstone oil and a new approach for predicting oil saturation.Additionally,we developed digital and visual analysis methods for the migration results,enriching the expression of the dynamics of hydrocarbon accumulation.
基金funded by the National Natural Science Foundation of China (Grant Nos. 40602014 and 40872086)
文摘The produced oils in central Junggar Basin are commonly mixed in origin.In this paper,in order to reveal this complexity and thereby provide valuable clues to the study of oil source and formation mechanism,genetic groups of the mixed oils were classified and their migration/accumulation was investigated.Based on the artificial oil mixing experiments,some representative biomarkers of the mixed oils showed varying tendencies according to mixing ratios of the oils.Hence,these biomarkers are useful for determining the origin of the mixed oils.According to the criteria,oils in the area were divided into four basic groups,i.e.,the Lower Permian Fengcheng oil,the Middle Permian Lower Wuerhe oil,the Jurassic source derived oil,and the mixed oil(including the Lower and Middle Permian mixed oil and the Permian and Jurassic mixed oil).Oil migration and accumulation were discussed in combination with the geological background.
基金Supported by National Science and Technology Major Project(2017ZX05035).
文摘Taking the Wufeng–Longmaxi shale gas in the Sichuan Basin as a typical example,based on the new progress in exploration and development,this study re-examines the"unconventional"of unconventional oil and gas from two aspects:oil and gas formation and accumulation mechanisms,and main features of oil and gas layers.The oil and gas of continuous accumulation and distribution from integrated source and reservoir is unconventional oil and gas,and the study focusing on shale oil and gas in comparison with conventional oil and gas has made progress in five aspects:(1)Unconventional oil and gas have source-reservoir-in-one and in-situ accumulation;according to the theory of continuous oil and gas accumulation,the accumulation power of oil and gas is overpressure and diffusion;for conventional oil and gas,the source and reservoir are different formations,the trapping accumulation is its theoretical foundation,and the accumulation power is characterized by buoyancy and capillary force.(2)The unconventional oil and gas reservoirs are mainly formed in the low-energy oxygen-anaerobic environment,dominantly semi-deep to deep shelf facies and the semi-deep to deep lake facies,simple in lithology,rich in organic matter and clay minerals;conventional oil and gas mainly occur in coarse-grained sedimentary rocks formed in high-energy waters with complex lithology.(3)The unconventional oil and gas reservoirs have mainly nano-scale pores,of which organic matter pores take a considerable proportion;conventional oil and gas reservoirs mainly have micron-millimeter pores and no organic matter pores.(4)Unconventional shale oil and gas reservoirs have oil and gas in uniform distribution,high oil and gas saturation,low or no water content,and no obvious oil and gas water boundary;conventional oil and gas reservoirs have oil and gas of complex properties,moderate oil and gas saturation,slightly higher water content,and obvious oil,gas and water boundaries.(5)Organic-rich shale is the main target of unconventional oil and gas exploration;the sedimentary environment controls high organic matter abundance zone and organic matter content controls oil and gas abundance;positive structure and high porosity control the yields of shale wells;bedding and fracture development are important factors deciding high yield.
基金provided by National Natural Science Foundation of China(Grant No.#40772077/D0206)an opening project of the Key Laboratory for Hydrocarbon Accumulation,Ministry of Education(China University of Petroleum)(2001-2).
文摘Subtle traps or oil pools have become an important exploration play in the Dongying Depression, Bohai Bay Basin, east China. Despite recent successes in exploration, the formation mechanisms of subtle traps are still not well understood. The majority of subtle oil pools in the Dongying Depression are developed in the middle interval of the Es3 Member of the Paleogene Shahejie Formation with the subtle traps being primarily of lenticular basin-floor turbidite sands encompassed in mudstones. Oil in the subtle traps was previously thought to have migrated directly from the surrounding source rocks of the same formation (Es3). Detailed geochemical investigation of 41 oils and 41 rock samples from the depression now indicates that the oils from the subtle traps cannot be correlated well with the surrounding Es3 source rocks, which are characterized by high Pr/ Ph (〉1), low Gammacerane/C30hopane, representing a freshwater lacustrine setting. In contrast the oils features low Pr/Ph (〈1) and relatively high Gammacerane content, showing a genetic affinity with the underlying Es4 source rocks, which also have the same qualities, indicating a brackish lacustrine setting. Oils in the Es3 subtle traps are probably derived from mixed sources with the contribution from the upper Es4 source rocks predominating. Therefore unconventional oil migration and accumulation mechanisms need to be invoked to explain the pooling of oils from the ES4 source rocks, which probably came through a thick low interval of the Es3 source rocks with no apparent structural or stratigraphic pathways. We suggest that the subtle oil migration pathway probably plays an important role here. This finding may have significant implications for future exploration and the remaining resource evaluation in the Dongying Depression.
基金Projects(4067208740472073) supported by the National Natural Science Foundation of China
文摘The micromigration of oil-drive-water and gas-drive-water in oil and gas fields was studied,by using core slices and micro-experimental technology,and the migration processes and characteristics of oil and gas in pores and throats were observed,as well as entry pressures of oil/gas migration.Research shows that entry pressures of both oil-drive-water and gas-drive-water increase obviously as porosity decreases,and the statistical regularity observes the power function variation.However,there is a complex changing relationship between porosity and different entry pressure values of the two replacement processes,forming three curve sections,each representing a different accumulation significance.When the porosity is over 10%-12%,the difference between oil-drive-water and gas-drive-water entry pressures is small.Both oil and gas can migrate and accumulate in this kind of reservoir.The probabilities of oil and gas reservoir formation are nearly equal,forming conventional oil/gas pools.When porosity is between 5% and 10%-12%,the difference between the two is obvious,which indicates that this kind of reservoir can seal oil,but can also be a reservoir for gas,easily forming unconventional hydrocarbon pools(deep-basin gas pools).When porosity is less than 5%,the difference is indistinct and the entry capillary pressures show the same sealing function for oil and gas.In this condition,both oil and gas pools are difficult to form.Experimental results give a rational explanation for the difference of accumulation probability between deep-basin gas and deep-basin oil,and also for the mechanism of tight sand acting as cap rock.
基金the National Basic Research Program of China (Grant No. 1999032803)the National Program for Tackling Key Problems (Grant No. 20050200069)+1 种基金the National Natural Science Foundation of China (Grant Nos. 10771124 and 10372052)the Doctorate Foundation of the Ministry of Education of China (Grant No. 20030422047)
文摘Numerical simulation of oil migration and accumulation is to describe the history of oil migration and accumulation in basin evolution. It is of great value in evaluation of oil resources and determination of the location and amount of oil deposits. Based on such actual conditions as the effects of fluid mechanics in porous media and 3-dimensional geology characteristics,a kind of modified method of second order upwind finite difference fractional steps implicit interactive scheme was put forward. As for the actual problem of Dongying hollow,Huimin hollow,Tanhai region and Yangxin hollow in Shengli Petroleum Oil Field,a numerical simulation test was carried out,and the result is basically coincident with the actual conditions. For the model problem,optimal order estimates were derived. Thus the well-known problem on oil resources was solved.
基金financially supported by the National Natural Science Foundation of China(Grant No.U19B6003-02-04)the Mechanism of Unconventional Oil and Gas Self-Sealing and Reservoir Formation(No.2021DJ0101)the State Key Basic Research Program(Grant Nos.2006CB202300,2011CB2011).
文摘Different driving forces govern the formation of distinct types of oil and gas accumulation and yield diverse oil and gas distributions.Complex oil and gas reservoirs in basins are commonly formed by the combination of multiple forces.It is very difficult but essential to identify driving forces and evaluate their contributions in predicting the type and distribution of oil and gas reservoirs.In this study,a novel method is proposed to identify driving forces and evaluate their contribution based on the critical conditions of porosity and permeability corresponding to buoyancy-driven hydrocarbon accumulation depth(BHAD).The application of this method to the Nanpu Sag of the Bohai Bay Basin shows that all oil and gas accumulations in the reservoirs are jointly formed by four driving forces:buoyance(Ⅰ),non-buoyance(Ⅱ),tectonic stress(Ⅲ1)and geofluid activity(Ⅲ2).Their contributions to all proven reserves are approxi-mately 63.8%,16.2%,2.9%,and 17.0%,respectively.The contribution of the driving forces is related to the depth,distance to faults and unconformity surfaces.Buoyancy dominates the formation of conven-tional reservoirs above BHAD,non-buoyant dominate the formation of unconventional reservoirs below BHAD,tectonic stress dominates the formation of fractured reservoirs within 300 m of a fault,and geoflu-ids activity dominates the formation of vuggy reservoirs within 100 m of an unconformity surface.
文摘综合利用地球化学、扫描电镜、岩心薄片、测井等资料以及油井生产数据等,对鄂尔多斯盆地陕北地区三叠系延长组7段储层特征、烃源岩特征和致密油分布特征进行了分析,从烃源岩展布、输导体系和源-储组合关系3个方面对致密油差异富集控制因素进行了探讨,并总结了成藏模式。研究结果表明:(1)陕北地区长7段致密砂岩储层主要分布在一亚段(长71)和二亚段(长72),以灰色—灰白色长石砂岩和岩屑长石砂岩为主,长71和长72平均孔隙度分别为5.56%和7.32%,平均渗透率分别为0.097 m D和0.110 m D,长72储层物性更好;孔隙空间以溶孔为主,发育少量粒间孔。(2)研究区烃类主要来源于本地长72顶部和长73这2套烃源岩,平均厚度大于20 m,有机质丰度高,平均TOC值为3.02%,干酪根类型以Ⅰ型和Ⅱ1型为主,处于生烃高峰期,平均生烃量为270.2×10^(4)t/km^(2),长73烃源岩生烃潜力更大,供烃至长72储层,长71致密油来源于长72烃源岩;新安边地区三角洲前缘亚相末端的长72储层中致密油由湖盆烃源岩侧向供烃。(3)研究区致密油富集受烃源岩展布、砂体连通性以及源-储组合共同控制,在长72更富集,在新安边地区分布面积最大,安塞地区无大规模致密油聚集;纵向上和平面上致密油的聚集差异受控于烃源岩厚度和源-储组合关系,下生上储、上下生油而中间储集和砂泥互层时含油性更好;新安边地区三角洲前缘亚相末端的长72致密油聚集规模大于三角洲前缘主体,是由于三角洲前缘末端发育的局部连通砂体阻碍了湖盆烃类物质的侧向运移。(4)研究区致密油为“源控-砂控”成藏模式,远源河道优势砂体尖灭处和近源局部连通的砂体是有利勘探区。