For real-time dynamic substructure testing(RTDST),the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated.Therefore,this study prop...For real-time dynamic substructure testing(RTDST),the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated.Therefore,this study proposes to investigate the stability and accuracy of the central difference method(CDM)for RTDST considering the specimen mass participation coefficient.First,the theory of the CDM for RTDST is presented.Next,the stability and accuracy of the CDM for RTDST considering the specimen mass participation coefficient are investigated.Finally,numerical simulations and experimental tests are conducted for verifying the effectiveness of the method.The study indicates that the stability of the algorithm is affected by the mass participation coefficient of the specimen,and the stability limit first increases and then decreases as the mass participation coefficient increases.In most cases,the mass participation coefficient will increase the stability limit of the algorithm,but in specific circumstances,the algorithm may lose its stability.The stability and accuracy of the CDM considering the mass participation coefficient are verified by numerical simulations and experimental tests on a three-story frame structure with a tuned liquid damper.展开更多
Computational fluid dynamics(CFD)provides a powerful tool for investigating complicated fluid flows.This paper aims to study the applicability of CFD in the preliminary design of linear and nonlinear fluid viscous dam...Computational fluid dynamics(CFD)provides a powerful tool for investigating complicated fluid flows.This paper aims to study the applicability of CFD in the preliminary design of linear and nonlinear fluid viscous dampers.Two fluid viscous dampers were designed based on CFD models.The first device was a linear viscous damper with straight orifices.The second was a nonlinear viscous damper containing a one-way pressure-responsive valve inside its orifices.Both dampers were detailed based on CFD simulations,and their internal fluid flows were investigated.Full-scale specimens of both dampers were manufactured and tested under dynamic loads.According to the tests results,both dampers demonstrate stable cyclic behaviors,and as expected,the nonlinear damper generally tends to dissipate more energy compared to its linear counterpart.Good compatibility was achieved between the experimentally measured damper force-velocity curves and those estimated from CFD analyses.Using a thermography camera,a rise in temperature of the dampers was measured during the tests.It was found that output force of the manufactured devices was virtually independent of temperature even during long duration loadings.Accordingly,temperature dependence can be ignored in CFD models,because a reliable temperature compensator mechanism was used(or intended to be used)by the damper manufacturer.展开更多
The bamboo scrimber is an anisotropic material.The elastic constant values of the bamboo scrimber specimens measured by the dynamic and static methods are consistent,and the dynamic test method has the advantages of r...The bamboo scrimber is an anisotropic material.The elastic constant values of the bamboo scrimber specimens measured by the dynamic and static methods are consistent,and the dynamic test method has the advantages of rapidity,simplicity,good repeatability,and high precision.Bamboo scrimber has strong potential as a building material,and its elastic constant is an important index to measure its mechanical properties.To quickly,simply,non-destructively,and accurately detect the elastic constant of the bamboo scrimber,they were dynamically tested by the free plate transient excitation method and cantilever plate torsional vibration method.The static four-point bending method was used to verify the accuracy and reliability of the dynamic elastic modulus,shear modulus,and Poisson’s ratio of the bamboo scrimber.The mechanism analysis and evaluation of the quality grade,homogeneity,and size effect of the bamboo scrimber whole board were carried out.The main results show that the dynamic elastic modulus,shear modulus,and Poisson’s ratio of the bamboo scrimber are 12 GPa,1500 MPa,and 0.31,respectively,which meet the requirements of GB/T 40247-2021 for structural bamboo scrimber.展开更多
Expanded polystyrene(EPS)particle-based lightweight soil,which is a type of lightweight filler,is mainly used in road engineering.The stability of subgrades under dynamic loading is attracting increased research atten...Expanded polystyrene(EPS)particle-based lightweight soil,which is a type of lightweight filler,is mainly used in road engineering.The stability of subgrades under dynamic loading is attracting increased research attention.The traditional method for studying the dynamic strength characteristics of soils is dynamic triaxial testing,and the discrete element simulation of lightweight soils under cyclic load has rarely been considered.To study the meso-mechanisms of the dynamic failure processes of EPS particle lightweight soils,a discrete element numerical model is established using the particle flow code(PFC)software.The contact force,displacement field,and velocity field of lightweight soil under different cumulative compressive strains are studied.The results show that the hysteresis curves of lightweight soil present characteristics of strain accumulation,which reflect the cyclic effects of the dynamic load.When the confining pressure increases,the contact force of the particles also increases.The confining pressure can restrain the motion of the particle system and increase the dynamic strength of the sample.When the confining pressure is held constant,an increase in compressive strain causes minimal change in the contact force between soil particles.However,the contact force between the EPS particles decreases,and their displacement direction points vertically toward the center of the sample.Under an increase in compressive strain,the velocity direction of the particle system changes from a random distribution and points vertically toward the center of the sample.When the compressive strain is 5%,the number of particles deflected in the particle velocity direction increases significantly,and the cumulative rate of deformation in the lightweight soil accelerates.Therefore,it is feasible to use 5%compressive strain as the dynamic strength standard for lightweight soil.Discrete element methods provide a new approach toward the dynamic performance evaluation of lightweight soil subgrades.展开更多
A novel asymmetrical pitch system for rotary wing is presented. The pitch control characteristics are studied and analyzed. Because elastic linkage is a key part in whole asymmetrical pitch system, in order to obtain ...A novel asymmetrical pitch system for rotary wing is presented. The pitch control characteristics are studied and analyzed. Because elastic linkage is a key part in whole asymmetrical pitch system, in order to obtain the variation of the elastic linkage deformation, an experimental platform mainly based on the device of micro aerial vehicles (MAVs) and a new control system mounted on TMS320LF2407 are designed. This control system has its compacted configuration and reliability. Finally, using this system to control the MAV for simulating the flying forward, experimental results show the MAV's flight attitude can he controlled based on the variation of the elastic linkage.展开更多
Method of testing for dynamic output forces from jet elements is studied, the handwidth is large in testing with this method. By establishing a model of the test system and simulating it, principles of how inherent fe...Method of testing for dynamic output forces from jet elements is studied, the handwidth is large in testing with this method. By establishing a model of the test system and simulating it, principles of how inherent features of the test system affect the dynamic force test are found out. Thus a theoretical foundation is given for the design and error modification to the actual test system.展开更多
It is well-recognized that a transfer system response delay that reduces the test stability inevitably exists in real-time dynamic hybrid testing (RTDHT). This paper focuses on the delay-dependent stability and adde...It is well-recognized that a transfer system response delay that reduces the test stability inevitably exists in real-time dynamic hybrid testing (RTDHT). This paper focuses on the delay-dependent stability and added damping of SDOF systems in RTDHT. The exponential delay term is transferred into a rational fraction by the Pad6 approximation, and the delay-dependent stability conditions and instability mechanism of SDOF RTDHT systems are investigated by the root locus technique. First, the stability conditions are discussed separately for the cases of stiffness, mass, and damping experimental substructure. The use of root locus plots shows that the added damping effect and instability mechanism for mass are different from those for stiffness. For the stiffness experimental substructure case, the instability results from the inherent mode because of an obvious negative damping effect of the delay. For the mass case, the delay introduces an equivalent positive damping into the inherent mode, and instability occurs at an added high frequency mode. Then, the compound stability condition is investigated for a general case and the results show that the mass ratio may have both upper and lower limits to remain stable. Finally, a high-emulational virtual shaking table model is built to validate the stability conclusions.展开更多
A solution scheme is proposed in this paper for an existing RTDHT system to simulate large-scale finite element (FE) numerical substructures. The analysis of the FE numerical substructure is split into response anal...A solution scheme is proposed in this paper for an existing RTDHT system to simulate large-scale finite element (FE) numerical substructures. The analysis of the FE numerical substructure is split into response analysis and signal generation tasks, and executed in two different target computers in real-time. One target computer implements the response analysis task, wherein a large time-step is used to solve the FE substructure, and another target computer implements the signal generation task, wherein an interpolation program is used to generate control signals in a small time-step to meet the input demand of the controller. By using this strategy, the scale of the FE numerical substructure simulation may be increased significantly. The proposed scheme is initially verified by two FE numerical substructure models with 98 and 1240 degrees of freedom (DOFs). Thereafter, RTDHTs of a single frame-foundation structure are implemented where the foundation, considered as the numerical substructure, is simulated by the FE model with 1240 DOFs. Good agreements between the results of the RTDHT and those from the FE analysis in ABAQUS are obtained.展开更多
Modem dynamic tests such as networked collaborative pseudo-dynamic testing (PDT) provide new tools to study the dynamic performance of large and complex structures. In this paper, several networked collaborative PDT...Modem dynamic tests such as networked collaborative pseudo-dynamic testing (PDT) provide new tools to study the dynamic performance of large and complex structures. In this paper, several networked collaborative PDT systems established in China and abroad are introduced, including a detailed description of the first networked collaborative platform that involved the construction of a standardized demonstration procedure for networked collaborative PDT. The example is a multi-span bridge with RC piers retrofitted by FRP, and a networked structural laboratory (NetSLab) platform is used to link distributed laboratories located at several universities together. Substructure technology is also used in the testing. The characteristics, resource sharing and collaborative work of NetSLab are described, and the results illustrate that use of the NetSLab is feasible for studying the dynamic performance of multi-span bridge structures.展开更多
Impact drop tests are routinely used to examine the dynamic performance of rockbolts.Numerous impact tests have been carried out in the past decades on independently designed,constructed and operated testing rigs.Each...Impact drop tests are routinely used to examine the dynamic performance of rockbolts.Numerous impact tests have been carried out in the past decades on independently designed,constructed and operated testing rigs.Each laboratory has developed testing procedures;thus,the results are often reported in different ways by various laboratories.The inconsistency in testing procedures and reporting formats presents a challenge when comparing results from different laboratories.A series of impact tests of identical rockbolts was carried out using the direct impact method(i.e.the mass free-fall method)on the rigs in four laboratories in different countries.The purpose of these tests was to investigate the level of consistency in the results from the four rigs.Each rig demonstrated a high level of repeatability,but differences existed between the various rigs.The differences would suggest that there is noticeable equipment-dependent bias when test results obtained from different laboratories are compared.It was also observed that the energy dissipated for the plastic displacement of the bolt was smaller than the impact energy in the tests.The average impact load(AIL)and the ultimate plastic displacement(D)of the bolt describe the ultimate dynamic performance of the bolt.In the case where the bolt does not rupture,the specific plastic energy(SPE)is an appropriate parameter in describing the impact performance of the bolt.Two other relevant parameters are the first peak load(FPL)and the initial stiffness(K)of the bolt sample.The information from this test series will guide the formulation of standardised testing procedures for dynamic impact tests of rockbolts.展开更多
China’s high-speed railways are always facing the potential damage risk induced by strong earthquakes.And the route design concept of“using bridge instead of embankment”has also greatly increased the probability of...China’s high-speed railways are always facing the potential damage risk induced by strong earthquakes.And the route design concept of“using bridge instead of embankment”has also greatly increased the probability of high speed trains moving on bridges when a strong earthquake happens.In the past decades,a bunch of theoretical and numerical studies have been conducted in the seismic dynamic field of high-speed railway.However,the effective dynamic test system for verifying the given method and theoretical results is still lacking.Therefore,a novel dynamic test system(DTS)consisting of a shaking table array and a train-pass-bridge reduced-scale model is proposed in this paper.Through some crucial technical problems discussion,the effectiveness of similar design scheme and the feasibility of reduced-scale DTS are elaborated,and then the detailed DTS structures are given and displayed as part-by-part.On this basis,the demonstration tests are conducted and compared with the numerical simulation.The results show that the proposed DTS is accurate and effective.Therefore,the DTS can provide a new physical simulation approach to study the high-speed train’s running safety on bridges under earthquakes and can also provide a reference for the construction of related systems.展开更多
Stress waves propagate along vertical,radial and circumferential directions when a non-uniformly distributed load is applied at one end of a three-dimensional shaft.As a result,the receiving signals are usually mixed ...Stress waves propagate along vertical,radial and circumferential directions when a non-uniformly distributed load is applied at one end of a three-dimensional shaft.As a result,the receiving signals are usually mixed with undesired interference components,often featuring as high-frequency fluctuations.Previous studies have revealed that sectional geometry(shape and size)greatly affects the high-frequency interference.In this study,low strain dynamic testing on full-scale X-section concrete is conducted in order to investigate the influences of high-frequency interference on velocity responses at the pile head.Emphasis is placed on the frequency and peak value of interference waves at various receiving points.Additionally,the effects of the geometrical,and mechanical properties of the pile shaft on high-frequency interference are elaborated on through the three-dimensional finite element method.The results show that the measured wave is obscured by interference waves superposed by two types of high-frequency components.The modulus and cross-sectional area are contributing factors to the frequency and peak value of the interference waves.On the other hand,the position with the least interference is determined,to some extent,by the accurate shape of the X-section.展开更多
As a widely-applied engineering material in cold regions, the frozen subgrade soils are usually subjected to seismic loading, which are also dramatically influenced by the freeze-thaw(F-T)cycles due to the varying tem...As a widely-applied engineering material in cold regions, the frozen subgrade soils are usually subjected to seismic loading, which are also dramatically influenced by the freeze-thaw(F-T)cycles due to the varying temperature. A series of dynamic cyclic triaxial experiments were conducted through a cryogenic triaxial apparatus for exploring the influences of F-T cycles on the dynamic mechanical properties of frozen subgrade clay.According to the experimental results of frozen clay at the temperature of-10℃, the dynamic responses and microstructure variation at different times of F-T cycles(0, 1, 5, and 20 cycles) were explored in detail.It is experimentally demonstrated that the dynamic stress-strain curves and dynamic volumetric strain curves of frozen clay are significantly sparse after 20F-T cycles. Meanwhile, the cyclic number at failure(Nf) of the frozen specimen reduces by 89% after 20freeze-thaw cycles at a low ratio of the dynamic stress amplitude. In addition, with the increasing F-T cycles,the axial accumulative strain, residual deformation,and the value of damage variable of frozen clay increase, while the dynamic resilient modulus and dynamic strength decrease. Finally, the influence of the F-T cycles on the failure mechanisms of frozen clay was discussed in terms of the microstructure variation. These studies contribute to a better understanding of the fundamental changes in the dynamic mechanical of frozen soils exposed to F-T cycles in cold and seismic regions.展开更多
In this paper, the issue of actuator-structure interaction in dynamic testing of structures is considered. The problem is approached from the novel standpoint of impedance control. It is shown that an effective strate...In this paper, the issue of actuator-structure interaction in dynamic testing of structures is considered. The problem is approached from the novel standpoint of impedance control. It is shown that an effective strategy to design controls for dynamic testing is by designing the test system impedance. It is also shown that this can be achieved using feedforward compensation. The analysis is carried out in the context of displacement controlled dynamic testing, when the tested structure has a high and nonlinear stiffness. It is demonstrated that stable and accurate dynamic testing can be achieved using the proposed strategy, when this is not possible using traditional feedback control techniques. Furthermore, the impedance control and feedforward strategies are applied in the context of hybrid simulation, a technique of coupling computational and physical substructures applied in earthquake engineering. Here, a delay compensation scheme is necessary in addition to feedforward. Experimental results are presented that demonstrate both improved dynamic testing performance when impedance control is employed, and its applicability in hybrid simulation.展开更多
Dynamic tensile failure is a common phenomenon in deep rock practices,and thus accurately evaluating the dynamic tensile responses of rocks under triaxial pressures is of great significance.The Brazilian disc(BD)test ...Dynamic tensile failure is a common phenomenon in deep rock practices,and thus accurately evaluating the dynamic tensile responses of rocks under triaxial pressures is of great significance.The Brazilian disc(BD)test is the suggested method by the International Society for Rock Mechanics and Rock Engineering(ISRM)for measuring both the static and dynamic tensile strengths of rock-like materials.However,due to the overload phenomenon and the complex preloading conditions,the dynamic tensile strengths of rocks measured by the BD tests tend to be overestimated.To address this issue,the dynamic BD tensile strength(BTS)of Fangshan marble(FM)under different preloading conditions were measured through a triaxial split Hopkinson pressure bar(SHPB).The fracture onset in BD specimen was captured through a strain gage around the disc center.The discrepancy between the traditional tensile strength(TTS,determined by the peak load P_(f) of the BD specimen)and the nominal tensile strength(NTS,obtained from the load P_(i) when the diametral fracture commences in the tested BD specimen)was applied to quantitatively evaluating the overload phenomenon.The Griffith criterion was used to rectify the calculation of the tensile stress at the disc center under triaxial stress states.The results demonstrate that the overload ratio(s)increases with the loading rate(σ)and decreases with the hydrostatic pressure(σ_(s)).The TTS corrected by the Griffith criterion is independent of theσ_(s)due to the overload phenomenon,while the NTS corrected by the Griffith criterion is sensitive to both the andσ.Therefore,it is essential to modify the tensile stress in dynamic confined BD tests using both the overload correction and the Griffith criterion rectification to obtain the accurate dynamic BTS of rocks.展开更多
Degradability of bone tissue engineering scaffold that matching the regeneration rate could allow a complete replacement of host tissue.However,the porous structure of biodegradable Mg scaffolds certainly generated hi...Degradability of bone tissue engineering scaffold that matching the regeneration rate could allow a complete replacement of host tissue.However,the porous structure of biodegradable Mg scaffolds certainly generated high specific surface area,and the three-dimensional interconnected pores provided fast pervasive invasion entrance for the corrosive medium,rising concern of the structural integrity during the degradation.To clarify the structural evolution of the three-dimensional(3D)porous structure,semi-static immersion tests were carried out to evaluate the degradation performance in our previous study.Nevertheless,dynamic immersion tests mimicking the in vivo circulatory fluid through the interconnected porous structure have yet been investigated.Moreover,the effects of dynamic flow rates on the degradation deposition behavior of 3D porous Mg scaffolds were rarely reported.In this study,Mg scaffolds degraded at three flow rates exhibited different degradation rates and deposition process.A flow rate of 0.5 m L/min introduced maximum drop of porosity by accumulated deposition products.The deposition products provided limited protection against the degradation process at a flow rate of 1.0 m L/min.The three-dimensional interconnected porous structure of Mg scaffold degraded at 2.0 m L/min well retained after 14 days showing the best interconnectivity resistance to the degradation deposition process.The dynamic immersion tests disclosed the reason for the different degradation rates on account of flow rates,which may bring insight into understanding of varied in vivo degradation rates related to implantation sites.展开更多
The hydrostatic or confining pressure of deep rocks has a significant impact on the mechanical behavior of brittle materials.Especially when confining pressure is applied,the mechanical properties of rock materials will ...The hydrostatic or confining pressure of deep rocks has a significant impact on the mechanical behavior of brittle materials.Especially when confining pressure is applied,the mechanical properties of rock materials will undergo significant changes.Considering that the process of shale sample subjected to impact load is in a closed container in the dynamic triaxial SHPB test,the failure process of the sample cannot be observed.Meanwhile,the activation volume of the shale sample would be large and local failure would occur in the test under the high strain rate loading.Therefore,thefinite element model of shale considering the bedding effect under confining pressure was established in this study.Taking shale materials with different bedding dip angles as simulation objects,the dynamic failure characteristics of shale were studied using the dynamic analysis software ANSYS/LS‐DYNA from three aspects:stress‐strain curve,failure growth process,and failure morphology.The research results obtained can serve as the key technical parameters for deep resource extraction.展开更多
Rock drilling machine,INSTRON testing system,and SHPB device are updated to investigate the characteristics of rocks at great depth,with high loads from overburden,tectonic stresses and dynamic impacts due to blasting...Rock drilling machine,INSTRON testing system,and SHPB device are updated to investigate the characteristics of rocks at great depth,with high loads from overburden,tectonic stresses and dynamic impacts due to blasting and boring.It is verified that these testing systems can be used to study the mechanical properties of rock material under coupled static and dynamic loading condition and give useful guidance for the deep mining and underground cavern excavation.Various tests to determine the rock strength,fragmentation behavior,and energy absorption were conducted using the updated testing systems.It is shown that under coupled static-dynamic loads,if the axial prestress is lower than its elastic limit,the rock strength is higher than the individual static or dynamic strength.At the same axial prestress,rock strength under coupled loads rises with the increasing strain rates.Under coupled static and dynamic loads,rock is observed to fail with tensile mode.While shear failure may exist if axial prestress is high enough.In addition,it is shown that the percentage of small particles increases with the increasing axial prestress and impact load based on the analysis of the particle-size distribution of fragments.It is also suggested that the energy absorption ratio of a specimen varies with coupled loads,and the maximum energy absorption ratio for a rock can be obtained with an appropriate combination of static and dynamic loads.展开更多
[Objective]The aim was to research on construction of yield formation model of winter wheat.[Method]In the case of variety Shijiazhuang 8,the process of yield trait formation was studied by the dynamic ideal and unifo...[Objective]The aim was to research on construction of yield formation model of winter wheat.[Method]In the case of variety Shijiazhuang 8,the process of yield trait formation was studied by the dynamic ideal and uniform experimental design;the differences between plant dry weight and population indexes were analyzed by using multiple comparison analysis,and the yield formation model was developed by multiple regression analysis.[Result]The results showed that multiple correlation coefficients of yield formation model ranged from 0.91 to 0.97.[Conclusion]The model was significant which provide certain theoretical base for high yield and high efficiency cultivation of winter wheat.展开更多
In deep underground engineering,rock burst and other dynamic disasters are prone to occur due to stress concentration and energy accumulation in surrounding rock.The control of dynamic disasters requires bolts and cab...In deep underground engineering,rock burst and other dynamic disasters are prone to occur due to stress concentration and energy accumulation in surrounding rock.The control of dynamic disasters requires bolts and cables with high strength,high elongation,and high energy-absorbing capacity.Therefore,a constant resistance energy-absorbing(CREA)material is developed.In this study,the dynamic characteristics of the new material are obtained via the drop hammer tests and the Split Hopkinson Pressure Bar(SHPB)tests of the new material and two common bolt(CB)materials widely used in the field.The test results of drop hammer test and SHPB test show that the percentage elongation of CREA material is more than 2.64 and 3.22 times those of the CB material,and the total impact energy acting on CREA material is more than 18.50 and 21.84 times,respectively,indicating that the new material has high elongation and high energy-absorbing capacity.Subsequently,the CREA bolts and cables using the new material are developed,which are applied in roadways with high stress and strong dynamic disturbance.The field monitoring results show that CREA bolts and cables can effectively control the surrounding rock deformation and ensure engineering safety.展开更多
基金National Natural Science Foundation of China under Grant Nos.51978213 and 51778190the National Key Research and Development Program of China under Grant Nos.2017YFC0703605 and 2016YFC0701106。
文摘For real-time dynamic substructure testing(RTDST),the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated.Therefore,this study proposes to investigate the stability and accuracy of the central difference method(CDM)for RTDST considering the specimen mass participation coefficient.First,the theory of the CDM for RTDST is presented.Next,the stability and accuracy of the CDM for RTDST considering the specimen mass participation coefficient are investigated.Finally,numerical simulations and experimental tests are conducted for verifying the effectiveness of the method.The study indicates that the stability of the algorithm is affected by the mass participation coefficient of the specimen,and the stability limit first increases and then decreases as the mass participation coefficient increases.In most cases,the mass participation coefficient will increase the stability limit of the algorithm,but in specific circumstances,the algorithm may lose its stability.The stability and accuracy of the CDM considering the mass participation coefficient are verified by numerical simulations and experimental tests on a three-story frame structure with a tuned liquid damper.
文摘Computational fluid dynamics(CFD)provides a powerful tool for investigating complicated fluid flows.This paper aims to study the applicability of CFD in the preliminary design of linear and nonlinear fluid viscous dampers.Two fluid viscous dampers were designed based on CFD models.The first device was a linear viscous damper with straight orifices.The second was a nonlinear viscous damper containing a one-way pressure-responsive valve inside its orifices.Both dampers were detailed based on CFD simulations,and their internal fluid flows were investigated.Full-scale specimens of both dampers were manufactured and tested under dynamic loads.According to the tests results,both dampers demonstrate stable cyclic behaviors,and as expected,the nonlinear damper generally tends to dissipate more energy compared to its linear counterpart.Good compatibility was achieved between the experimentally measured damper force-velocity curves and those estimated from CFD analyses.Using a thermography camera,a rise in temperature of the dampers was measured during the tests.It was found that output force of the manufactured devices was virtually independent of temperature even during long duration loadings.Accordingly,temperature dependence can be ignored in CFD models,because a reliable temperature compensator mechanism was used(or intended to be used)by the damper manufacturer.
文摘The bamboo scrimber is an anisotropic material.The elastic constant values of the bamboo scrimber specimens measured by the dynamic and static methods are consistent,and the dynamic test method has the advantages of rapidity,simplicity,good repeatability,and high precision.Bamboo scrimber has strong potential as a building material,and its elastic constant is an important index to measure its mechanical properties.To quickly,simply,non-destructively,and accurately detect the elastic constant of the bamboo scrimber,they were dynamically tested by the free plate transient excitation method and cantilever plate torsional vibration method.The static four-point bending method was used to verify the accuracy and reliability of the dynamic elastic modulus,shear modulus,and Poisson’s ratio of the bamboo scrimber.The mechanism analysis and evaluation of the quality grade,homogeneity,and size effect of the bamboo scrimber whole board were carried out.The main results show that the dynamic elastic modulus,shear modulus,and Poisson’s ratio of the bamboo scrimber are 12 GPa,1500 MPa,and 0.31,respectively,which meet the requirements of GB/T 40247-2021 for structural bamboo scrimber.
基金supported by the National Natural Science Foundation of China (No. 51509211)the China Postdoctoral Science Foundation (No. 2016M602863)+5 种基金the Natural Science Foundation of Shaanxi Province (Nos. 2024JC-YBMS-354 and 2021JLM-51)the Excellent Science and Technology Activities Foundation for Returned Overseas Teachers of Shaanxi Province (No. 2018031)the Social Development Foundation of Shaanxi Province (No. 2015SF260)the Postdoctoral Science Foundation of Shaanxi Province (No. 2017BSHYDZZ50)Shaanxi Key Laboratory of Safety and Durability of Concrete Structures, Xijing University (No. SZ02306)Xi’an Key Laboratory of Geotechnical and Underground Engineering, Xi’an University of Science and Technology (No. XKLGUEKF21-02)
文摘Expanded polystyrene(EPS)particle-based lightweight soil,which is a type of lightweight filler,is mainly used in road engineering.The stability of subgrades under dynamic loading is attracting increased research attention.The traditional method for studying the dynamic strength characteristics of soils is dynamic triaxial testing,and the discrete element simulation of lightweight soils under cyclic load has rarely been considered.To study the meso-mechanisms of the dynamic failure processes of EPS particle lightweight soils,a discrete element numerical model is established using the particle flow code(PFC)software.The contact force,displacement field,and velocity field of lightweight soil under different cumulative compressive strains are studied.The results show that the hysteresis curves of lightweight soil present characteristics of strain accumulation,which reflect the cyclic effects of the dynamic load.When the confining pressure increases,the contact force of the particles also increases.The confining pressure can restrain the motion of the particle system and increase the dynamic strength of the sample.When the confining pressure is held constant,an increase in compressive strain causes minimal change in the contact force between soil particles.However,the contact force between the EPS particles decreases,and their displacement direction points vertically toward the center of the sample.Under an increase in compressive strain,the velocity direction of the particle system changes from a random distribution and points vertically toward the center of the sample.When the compressive strain is 5%,the number of particles deflected in the particle velocity direction increases significantly,and the cumulative rate of deformation in the lightweight soil accelerates.Therefore,it is feasible to use 5%compressive strain as the dynamic strength standard for lightweight soil.Discrete element methods provide a new approach toward the dynamic performance evaluation of lightweight soil subgrades.
基金supported by the National Natural Science Foundation of China (Grant No.60605028)the National High-Technology Research and Development Program of China (Grant No.2007AA04Z225)+2 种基金the Shanghai Rising-Star Program (Grant Nos.07QA14024, 07QH14006)the Shanghai Shuguang Program (Grant No.07SG47)the Shanghai Leading Key Laboratory of Mechanical Automation and Robotics Science Foundation (Grant No.ZZ0805)
文摘A novel asymmetrical pitch system for rotary wing is presented. The pitch control characteristics are studied and analyzed. Because elastic linkage is a key part in whole asymmetrical pitch system, in order to obtain the variation of the elastic linkage deformation, an experimental platform mainly based on the device of micro aerial vehicles (MAVs) and a new control system mounted on TMS320LF2407 are designed. This control system has its compacted configuration and reliability. Finally, using this system to control the MAV for simulating the flying forward, experimental results show the MAV's flight attitude can he controlled based on the variation of the elastic linkage.
文摘Method of testing for dynamic output forces from jet elements is studied, the handwidth is large in testing with this method. By establishing a model of the test system and simulating it, principles of how inherent features of the test system affect the dynamic force test are found out. Thus a theoretical foundation is given for the design and error modification to the actual test system.
基金State Key Laboratory of Hydroscience and Engineering Under Grant No.2008-TC-2National Natural Science Foundation of China Under Grant No.90510018,50779021 and 90715041
文摘It is well-recognized that a transfer system response delay that reduces the test stability inevitably exists in real-time dynamic hybrid testing (RTDHT). This paper focuses on the delay-dependent stability and added damping of SDOF systems in RTDHT. The exponential delay term is transferred into a rational fraction by the Pad6 approximation, and the delay-dependent stability conditions and instability mechanism of SDOF RTDHT systems are investigated by the root locus technique. First, the stability conditions are discussed separately for the cases of stiffness, mass, and damping experimental substructure. The use of root locus plots shows that the added damping effect and instability mechanism for mass are different from those for stiffness. For the stiffness experimental substructure case, the instability results from the inherent mode because of an obvious negative damping effect of the delay. For the mass case, the delay introduces an equivalent positive damping into the inherent mode, and instability occurs at an added high frequency mode. Then, the compound stability condition is investigated for a general case and the results show that the mass ratio may have both upper and lower limits to remain stable. Finally, a high-emulational virtual shaking table model is built to validate the stability conclusions.
基金National Natural Science Foundation under Grant Nos.51179093,91215301 and 41274106the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20130002110032Tsinghua University Initiative Scientific Research Program under Grant No.20131089285
文摘A solution scheme is proposed in this paper for an existing RTDHT system to simulate large-scale finite element (FE) numerical substructures. The analysis of the FE numerical substructure is split into response analysis and signal generation tasks, and executed in two different target computers in real-time. One target computer implements the response analysis task, wherein a large time-step is used to solve the FE substructure, and another target computer implements the signal generation task, wherein an interpolation program is used to generate control signals in a small time-step to meet the input demand of the controller. By using this strategy, the scale of the FE numerical substructure simulation may be increased significantly. The proposed scheme is initially verified by two FE numerical substructure models with 98 and 1240 degrees of freedom (DOFs). Thereafter, RTDHTs of a single frame-foundation structure are implemented where the foundation, considered as the numerical substructure, is simulated by the FE model with 1240 DOFs. Good agreements between the results of the RTDHT and those from the FE analysis in ABAQUS are obtained.
基金The Key Project of the Major Research Plan of Natural Science Foundation of China Under Grant No.90715036the Key Project of the Natural Science Foundation of China Under Grant No.50338020
文摘Modem dynamic tests such as networked collaborative pseudo-dynamic testing (PDT) provide new tools to study the dynamic performance of large and complex structures. In this paper, several networked collaborative PDT systems established in China and abroad are introduced, including a detailed description of the first networked collaborative platform that involved the construction of a standardized demonstration procedure for networked collaborative PDT. The example is a multi-span bridge with RC piers retrofitted by FRP, and a networked structural laboratory (NetSLab) platform is used to link distributed laboratories located at several universities together. Substructure technology is also used in the testing. The characteristics, resource sharing and collaborative work of NetSLab are described, and the results illustrate that use of the NetSLab is feasible for studying the dynamic performance of multi-span bridge structures.
文摘Impact drop tests are routinely used to examine the dynamic performance of rockbolts.Numerous impact tests have been carried out in the past decades on independently designed,constructed and operated testing rigs.Each laboratory has developed testing procedures;thus,the results are often reported in different ways by various laboratories.The inconsistency in testing procedures and reporting formats presents a challenge when comparing results from different laboratories.A series of impact tests of identical rockbolts was carried out using the direct impact method(i.e.the mass free-fall method)on the rigs in four laboratories in different countries.The purpose of these tests was to investigate the level of consistency in the results from the four rigs.Each rig demonstrated a high level of repeatability,but differences existed between the various rigs.The differences would suggest that there is noticeable equipment-dependent bias when test results obtained from different laboratories are compared.It was also observed that the energy dissipated for the plastic displacement of the bolt was smaller than the impact energy in the tests.The average impact load(AIL)and the ultimate plastic displacement(D)of the bolt describe the ultimate dynamic performance of the bolt.In the case where the bolt does not rupture,the specific plastic energy(SPE)is an appropriate parameter in describing the impact performance of the bolt.Two other relevant parameters are the first peak load(FPL)and the initial stiffness(K)of the bolt sample.The information from this test series will guide the formulation of standardised testing procedures for dynamic impact tests of rockbolts.
基金Projects(51878674,52108433,52022113) supported by the National Natural Science Foundation of ChinaProject(2019RS3009) supported by the Hunan Innovative Provincial Construction,China+2 种基金Project(2021JJ40587) supported by the Hunan Provincial Natural Science Foundation of ChinaProject(21B0309) supported by the Research Foundation of Education Bureau of Hunan Province,ChinaProject(HSR202004) supported by the Open Foundation of National Engineering Research Center of High-Speed Railway Construction Technology,China。
文摘China’s high-speed railways are always facing the potential damage risk induced by strong earthquakes.And the route design concept of“using bridge instead of embankment”has also greatly increased the probability of high speed trains moving on bridges when a strong earthquake happens.In the past decades,a bunch of theoretical and numerical studies have been conducted in the seismic dynamic field of high-speed railway.However,the effective dynamic test system for verifying the given method and theoretical results is still lacking.Therefore,a novel dynamic test system(DTS)consisting of a shaking table array and a train-pass-bridge reduced-scale model is proposed in this paper.Through some crucial technical problems discussion,the effectiveness of similar design scheme and the feasibility of reduced-scale DTS are elaborated,and then the detailed DTS structures are given and displayed as part-by-part.On this basis,the demonstration tests are conducted and compared with the numerical simulation.The results show that the proposed DTS is accurate and effective.Therefore,the DTS can provide a new physical simulation approach to study the high-speed train’s running safety on bridges under earthquakes and can also provide a reference for the construction of related systems.
基金National Natural Science Foundation of China under Grant Nos.51622803 and 51878103China Postdoctoral Science Foundation under Grant No.2021M692689。
文摘Stress waves propagate along vertical,radial and circumferential directions when a non-uniformly distributed load is applied at one end of a three-dimensional shaft.As a result,the receiving signals are usually mixed with undesired interference components,often featuring as high-frequency fluctuations.Previous studies have revealed that sectional geometry(shape and size)greatly affects the high-frequency interference.In this study,low strain dynamic testing on full-scale X-section concrete is conducted in order to investigate the influences of high-frequency interference on velocity responses at the pile head.Emphasis is placed on the frequency and peak value of interference waves at various receiving points.Additionally,the effects of the geometrical,and mechanical properties of the pile shaft on high-frequency interference are elaborated on through the three-dimensional finite element method.The results show that the measured wave is obscured by interference waves superposed by two types of high-frequency components.The modulus and cross-sectional area are contributing factors to the frequency and peak value of the interference waves.On the other hand,the position with the least interference is determined,to some extent,by the accurate shape of the X-section.
基金the National Natural Science Foundation of China (NSFC)(Grant Nos.U22A20596 and 41771066)the Science and Technology Project of Qinghai-Tibet Railway Company (QZ2021-G03)。
文摘As a widely-applied engineering material in cold regions, the frozen subgrade soils are usually subjected to seismic loading, which are also dramatically influenced by the freeze-thaw(F-T)cycles due to the varying temperature. A series of dynamic cyclic triaxial experiments were conducted through a cryogenic triaxial apparatus for exploring the influences of F-T cycles on the dynamic mechanical properties of frozen subgrade clay.According to the experimental results of frozen clay at the temperature of-10℃, the dynamic responses and microstructure variation at different times of F-T cycles(0, 1, 5, and 20 cycles) were explored in detail.It is experimentally demonstrated that the dynamic stress-strain curves and dynamic volumetric strain curves of frozen clay are significantly sparse after 20F-T cycles. Meanwhile, the cyclic number at failure(Nf) of the frozen specimen reduces by 89% after 20freeze-thaw cycles at a low ratio of the dynamic stress amplitude. In addition, with the increasing F-T cycles,the axial accumulative strain, residual deformation,and the value of damage variable of frozen clay increase, while the dynamic resilient modulus and dynamic strength decrease. Finally, the influence of the F-T cycles on the failure mechanisms of frozen clay was discussed in terms of the microstructure variation. These studies contribute to a better understanding of the fundamental changes in the dynamic mechanical of frozen soils exposed to F-T cycles in cold and seismic regions.
基金Dept.of Civil,Structural and Architectural Engineering and the College of Engineering and Applied Sciences of the University of Colorado at Boulder,USA
文摘In this paper, the issue of actuator-structure interaction in dynamic testing of structures is considered. The problem is approached from the novel standpoint of impedance control. It is shown that an effective strategy to design controls for dynamic testing is by designing the test system impedance. It is also shown that this can be achieved using feedforward compensation. The analysis is carried out in the context of displacement controlled dynamic testing, when the tested structure has a high and nonlinear stiffness. It is demonstrated that stable and accurate dynamic testing can be achieved using the proposed strategy, when this is not possible using traditional feedback control techniques. Furthermore, the impedance control and feedforward strategies are applied in the context of hybrid simulation, a technique of coupling computational and physical substructures applied in earthquake engineering. Here, a delay compensation scheme is necessary in addition to feedforward. Experimental results are presented that demonstrate both improved dynamic testing performance when impedance control is employed, and its applicability in hybrid simulation.
基金We acknowledge the funding support from the National Natural Science Foundation of China(Grant Nos.42141010,51879184 and 12172253).
文摘Dynamic tensile failure is a common phenomenon in deep rock practices,and thus accurately evaluating the dynamic tensile responses of rocks under triaxial pressures is of great significance.The Brazilian disc(BD)test is the suggested method by the International Society for Rock Mechanics and Rock Engineering(ISRM)for measuring both the static and dynamic tensile strengths of rock-like materials.However,due to the overload phenomenon and the complex preloading conditions,the dynamic tensile strengths of rocks measured by the BD tests tend to be overestimated.To address this issue,the dynamic BD tensile strength(BTS)of Fangshan marble(FM)under different preloading conditions were measured through a triaxial split Hopkinson pressure bar(SHPB).The fracture onset in BD specimen was captured through a strain gage around the disc center.The discrepancy between the traditional tensile strength(TTS,determined by the peak load P_(f) of the BD specimen)and the nominal tensile strength(NTS,obtained from the load P_(i) when the diametral fracture commences in the tested BD specimen)was applied to quantitatively evaluating the overload phenomenon.The Griffith criterion was used to rectify the calculation of the tensile stress at the disc center under triaxial stress states.The results demonstrate that the overload ratio(s)increases with the loading rate(σ)and decreases with the hydrostatic pressure(σ_(s)).The TTS corrected by the Griffith criterion is independent of theσ_(s)due to the overload phenomenon,while the NTS corrected by the Griffith criterion is sensitive to both the andσ.Therefore,it is essential to modify the tensile stress in dynamic confined BD tests using both the overload correction and the Griffith criterion rectification to obtain the accurate dynamic BTS of rocks.
基金supported by grants from National&Local Joint Engineering Research Center of Orthopaedic Biomaterials(XMHT20190204007)Shenzhen Key Medical Discipline Construction Fund(No.SZXK023)+4 种基金Shenzhen“San-Ming”Project of Medicine(No.SZSM201612092)Shenzhen Research and Development Project(No.Z2021N054)Guangdong Basic and Applied Basic Research Foundations(No.2019A1515011290,2021A1515012586,2019A1515110983)China Postdoctoral Science Foundation(No.2020M672756)Bethune Charitable Foundation and CSPC Osteoporosis Research Project(No.G-X-2020–1107–21)。
文摘Degradability of bone tissue engineering scaffold that matching the regeneration rate could allow a complete replacement of host tissue.However,the porous structure of biodegradable Mg scaffolds certainly generated high specific surface area,and the three-dimensional interconnected pores provided fast pervasive invasion entrance for the corrosive medium,rising concern of the structural integrity during the degradation.To clarify the structural evolution of the three-dimensional(3D)porous structure,semi-static immersion tests were carried out to evaluate the degradation performance in our previous study.Nevertheless,dynamic immersion tests mimicking the in vivo circulatory fluid through the interconnected porous structure have yet been investigated.Moreover,the effects of dynamic flow rates on the degradation deposition behavior of 3D porous Mg scaffolds were rarely reported.In this study,Mg scaffolds degraded at three flow rates exhibited different degradation rates and deposition process.A flow rate of 0.5 m L/min introduced maximum drop of porosity by accumulated deposition products.The deposition products provided limited protection against the degradation process at a flow rate of 1.0 m L/min.The three-dimensional interconnected porous structure of Mg scaffold degraded at 2.0 m L/min well retained after 14 days showing the best interconnectivity resistance to the degradation deposition process.The dynamic immersion tests disclosed the reason for the different degradation rates on account of flow rates,which may bring insight into understanding of varied in vivo degradation rates related to implantation sites.
基金National Key Research and Development Project of China,Grant/Award Number:2020YFA0711800National Natural Science Foundation of China,Grant/Award Numbers:12072363,12372373。
文摘The hydrostatic or confining pressure of deep rocks has a significant impact on the mechanical behavior of brittle materials.Especially when confining pressure is applied,the mechanical properties of rock materials will undergo significant changes.Considering that the process of shale sample subjected to impact load is in a closed container in the dynamic triaxial SHPB test,the failure process of the sample cannot be observed.Meanwhile,the activation volume of the shale sample would be large and local failure would occur in the test under the high strain rate loading.Therefore,thefinite element model of shale considering the bedding effect under confining pressure was established in this study.Taking shale materials with different bedding dip angles as simulation objects,the dynamic failure characteristics of shale were studied using the dynamic analysis software ANSYS/LS‐DYNA from three aspects:stress‐strain curve,failure growth process,and failure morphology.The research results obtained can serve as the key technical parameters for deep resource extraction.
基金Supported by the National Natural Science Foundation of China (10872218,50934006,50534030)Research Foundation for the Doctoral Program of Higher Education of China (200805331143)
文摘Rock drilling machine,INSTRON testing system,and SHPB device are updated to investigate the characteristics of rocks at great depth,with high loads from overburden,tectonic stresses and dynamic impacts due to blasting and boring.It is verified that these testing systems can be used to study the mechanical properties of rock material under coupled static and dynamic loading condition and give useful guidance for the deep mining and underground cavern excavation.Various tests to determine the rock strength,fragmentation behavior,and energy absorption were conducted using the updated testing systems.It is shown that under coupled static-dynamic loads,if the axial prestress is lower than its elastic limit,the rock strength is higher than the individual static or dynamic strength.At the same axial prestress,rock strength under coupled loads rises with the increasing strain rates.Under coupled static and dynamic loads,rock is observed to fail with tensile mode.While shear failure may exist if axial prestress is high enough.In addition,it is shown that the percentage of small particles increases with the increasing axial prestress and impact load based on the analysis of the particle-size distribution of fragments.It is also suggested that the energy absorption ratio of a specimen varies with coupled loads,and the maximum energy absorption ratio for a rock can be obtained with an appropriate combination of static and dynamic loads.
基金Supported by the National Support Project (2006BAD29B04)National High Technology Research and Development (863)Projects(2006AA10A303-1)~~
文摘[Objective]The aim was to research on construction of yield formation model of winter wheat.[Method]In the case of variety Shijiazhuang 8,the process of yield trait formation was studied by the dynamic ideal and uniform experimental design;the differences between plant dry weight and population indexes were analyzed by using multiple comparison analysis,and the yield formation model was developed by multiple regression analysis.[Result]The results showed that multiple correlation coefficients of yield formation model ranged from 0.91 to 0.97.[Conclusion]The model was significant which provide certain theoretical base for high yield and high efficiency cultivation of winter wheat.
基金This work was supported by the National Natural Science Foundation of China(Nos.41941018,52074164,and 42077267);the Natural Science Foundation of Shandong Province,China(Nos.2019SDZY04 and ZR2020JQ23)the Project of Shandong Province Higher Educational Youth Innovation Science and Technology Program,China(No.2019KJG013).
文摘In deep underground engineering,rock burst and other dynamic disasters are prone to occur due to stress concentration and energy accumulation in surrounding rock.The control of dynamic disasters requires bolts and cables with high strength,high elongation,and high energy-absorbing capacity.Therefore,a constant resistance energy-absorbing(CREA)material is developed.In this study,the dynamic characteristics of the new material are obtained via the drop hammer tests and the Split Hopkinson Pressure Bar(SHPB)tests of the new material and two common bolt(CB)materials widely used in the field.The test results of drop hammer test and SHPB test show that the percentage elongation of CREA material is more than 2.64 and 3.22 times those of the CB material,and the total impact energy acting on CREA material is more than 18.50 and 21.84 times,respectively,indicating that the new material has high elongation and high energy-absorbing capacity.Subsequently,the CREA bolts and cables using the new material are developed,which are applied in roadways with high stress and strong dynamic disturbance.The field monitoring results show that CREA bolts and cables can effectively control the surrounding rock deformation and ensure engineering safety.