期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of isotope doping on phonon thermal conductivity of silicene nanoribbons: A molecular dynamics study
1
作者 徐润峰 韩奎 李海鹏 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第2期496-501,共6页
Silicene, a silicon analogue of graphene, has attracted increasing research attention in recent years because of its unique electrical and thermal conductivities. In this study, phonon thermal conductivity and its iso... Silicene, a silicon analogue of graphene, has attracted increasing research attention in recent years because of its unique electrical and thermal conductivities. In this study, phonon thermal conductivity and its isotopic doping effect in silicene nanoribbons(SNRs) are investigated by using molecular dynamics simulations. The calculated thermal conductivities are approximately 32 W/mK and 35 W/mK for armchair-edged SNRs and zigzag-edged SNRs, respectively, which show anisotropic behaviors. Isotope doping induces mass disorder in the lattice, which results in increased phonon scattering, thus reducing the thermal conductivity. The phonon thermal conductivity of isotopic doped SNR is dependent on the concentration and arrangement pattern of dopants. A maximum reduction of about 15% is obtained at 50% randomly isotopic doping with ^(30)Si. In addition, ordered doping(i.e., isotope superlattice) leads to a much larger reduction in thermal conductivity than random doping for the same doping concentration. Particularly, the periodicity of the doping superlattice structure has a significant influence on the thermal conductivity of SNR. Phonon spectrum analysis is also used to qualitatively explain the mechanism of thermal conductivity change induced by isotopic doping. This study highlights the importance of isotopic doping in tuning the thermal properties of silicene, thus guiding defect engineering of the thermal properties of two-dimensional silicon materials. 展开更多
关键词 silicene phonon thermal conductivity isotope doping molecular dynamics simulations
下载PDF
Lattice Thermal Conductivity of Boron Nitride Nanoribbon from Molecular Dynamics Simulation
2
作者 ZHANG Yuan ZHU Yongdan LI Meiya 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2016年第6期461-465,共5页
The lattice thermal conductivity of boron nitride nanoribbon(BNNR) is calculated by using equilibrium molecular dynamics(EMD) simulation method. The Green–Kubo relation derived from linear response theory is used... The lattice thermal conductivity of boron nitride nanoribbon(BNNR) is calculated by using equilibrium molecular dynamics(EMD) simulation method. The Green–Kubo relation derived from linear response theory is used to acquire the thermal conductivity from heat current auto-correlation function(HCACF). HCACF of the selected BNNR system shows a tendency of a very fast decay and then be followed by a very slow decay process,finally,approaching zero approximately within 3 ps. The convergence of lattice thermal conductivity demonstrates that the thermal conductivity of BNNR can be simulated by EMD simulation using several thousands of atoms with periodic boundary conditions. The results show that BNNR exhibit lower thermal conductivity than that of boron nitride(BN) monolayer,which indicates that phonons boundary scatting significantly suppresses the phonons transport in BNNR. Vacancies in BNNR greatly affect the lattice thermal conductivity,in detail,only 1% concentration of vacancies in BNNR induce a 60% reduction of the lattice thermal conductivity at room temperature. 展开更多
关键词 equilibrium molecular dynamics(EMD) simulation lattice thermal conductivity boron nitride nanoribbon(BNNR) boundary scatting
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部