The stability control of fissured rock is difficult,especially under static and dynamic loads in deep coal mines.In this paper,the dynamic mechanical properties,strain rate evolution and energy dissipation of fissured...The stability control of fissured rock is difficult,especially under static and dynamic loads in deep coal mines.In this paper,the dynamic mechanical properties,strain rate evolution and energy dissipation of fissured and anchored rocks were respectively obtained by SHPB tests.It was found that bolt can provide supporting efficiency-improving effect for fissured rock against dynamic disturbance,and this effect increased quadratically with decrease in anchoring angles.Then,the energy dissipation mechanism of anchored rock was obtained by slipping model.Furthermore,bolt energy-absorbing mechanism by instantaneous tensile-shear deformation was expressed based on material mechanics,which was the larger the anchoring angle,the smaller the energy absorption,and the less the contribution to supporting efficiency improvement.On this basis,the functional relationship between energy dissipation of anchored rock and energy absorption of bolt was established.Taking the coal-gangue separation system of Longgu coal mine as an example,the optimal anchoring angle can be determined as 57.5°–67.5°.Field monitoring showed fissured rock with the optimal anchoring angle,can not only effectively control the deformation,but also fully exert the energy-absorbing and efficiency-improving effect of bolt itself.This study provides guidance to the stability control and supporting design for deep engineering under the same or similar conditions.展开更多
This study explores the effects of dynamic and static loading on rock bolt performance a key factor in maintaining the structural safety of coal mine roadways susceptible to coal bursts.Employing a housemade load fram...This study explores the effects of dynamic and static loading on rock bolt performance a key factor in maintaining the structural safety of coal mine roadways susceptible to coal bursts.Employing a housemade load frame to simulate various failure scenarios,pretension-impact-pull tests on rock bolts were conducted to scrutinize their dynamic responses under varied static load conditions and their failure traits under combined loads.The experimental results denote that with increased impact energy,maximum and average impact loads on rock bolts escalate significantly under pretension,initiating plastic deformation beyond a certain threshold.Despite minor reductions in the yield load due to impactinduced damage,pretension aids in constraining post-impact deformation rate and fluctuation degree of rock bolts.Moreover,impact-induced plastic deformation causes internal microstructure dislocation,fortifying the stiffness of the rock bolt support system.The magnitude of this fortification is directly related to the plastic deformation induced by the impact.These findings provide crucial guidance for designing rock bolt support in coal mine roadway excavation,emphasizing the necessity to consider both static and dynamic loads for improved safety and efficiency.展开更多
In this paper, a novel design method, which is different from the traditional and empirical one (i. e., taking p and pv as the basic checking parameters) is presented for the fatigue strength design of dynamically loa...In this paper, a novel design method, which is different from the traditional and empirical one (i. e., taking p and pv as the basic checking parameters) is presented for the fatigue strength design of dynamically loaded journal bearings. The method makes it possible that dynamically loaded bearings can be desed as same as other machine elements by stress-strength criterion. The practical design results show that the method has high accuracy and reliability, and may open a new visa in bearing fatigue designs.展开更多
According to the established prediction model of internal solitary wave loads on FPSO in the previous work,the lumped mass model and the movement equations of finite displacement in time domain,the dynamic response mo...According to the established prediction model of internal solitary wave loads on FPSO in the previous work,the lumped mass model and the movement equations of finite displacement in time domain,the dynamic response model of interaction between internal solitary waves and FPSO with mooring lines were established.Through calculations and analysis,time histories of dynamic loads of FPSO exerted by internal solitary waves,FPSO’s motion and dynamic tension of mooring line were obtained.The effects of the horizontal pretension of mooring line,the amplitude of internal solitary wave and layer fluid depth on dynamic response behavior of FPSO were mastered.It was shown that the internal solitary waves had significant influence on FPSO,such as the large magnitude horizontal drift and a sudden tension increment.With internal solitary wave of −170 m amplitude in the ocean with upper and lower layer fluid depth ratio being 60:550,the dynamic loads reached 991.132 kN(horizontal force),18067.3 kN(vertical force)and−5042.92 kN·m(pitching moment).Maximum of FPSO’s horizontal drift was 117.56 m.Tension increment of upstream mooring line approached 401.48 kN and that of backflow mooring line was−140 kN.Moreover,the loads remained nearly constant with different pretension but increased obviously with the changing amplitude and layer fluid depth ratio.Tension increments of mooring lines also changed little with the pretension but increased rapidly when amplitude and layer fluid depth ratio increased.However,FPSO’s motion increased quickly with not only the horizontal pretension but also the amplitude of internal solitary wave and layer fluid depth ratio.展开更多
For expedited transportation,vehicular tunnels are often designed as two adjacent tunnels,which frequently experience dynamic stress waves from various orientations during blasting excavation.To analyze the impact of ...For expedited transportation,vehicular tunnels are often designed as two adjacent tunnels,which frequently experience dynamic stress waves from various orientations during blasting excavation.To analyze the impact of dynamic loading orientation on the stability of the twin-tunnel,a split Hopkinson pressure bar(SHPB)apparatus was used to conduct a dynamic test on the twin-tunnel specimens.The two tunnels were rotated around the specimen’s center to consider the effect of dynamic loading orientation.LS-DYNA software was used for numerical simulation to reveal the failure properties and stress wave propagation law of the twin-tunnel specimens.The findings indicate that,for a twin-tunnel exposed to a dynamic load from different orientations,the crack initiation position appears most often at the tunnel corner,tunnel spandrel,and tunnel floor.As the impact direction is created by a certain angle(30°,45°,60°,120°,135°,and 150°),the fractures are produced in the middle of the line between the left tunnel corner and the right tunnel spandrel.As the impact loading angle(a)is 90°,the tunnel sustains minimal damage,and only tensile fractures form in the surrounding rocks.The orientation of the impact load could change the stress distribution in the twin-tunnel,and major fractures are more likely to form in areas where the tensile stress is concentrated.展开更多
Owing to the integration of energy digitization and artificial intelligence technology,smart energy grids can realize the stable,efficient and clean operation of power systems.However,the emergence of cyber-physical a...Owing to the integration of energy digitization and artificial intelligence technology,smart energy grids can realize the stable,efficient and clean operation of power systems.However,the emergence of cyber-physical attacks,such as dynamic load-altering attacks(DLAAs)has introduced great challenges to the security of smart energy grids.Thus,this study developed a novel cyber-physical collaborative security framework for DLAAs in smart energy grids.The proposed framework integrates attack prediction in the cyber layer with the detection and localization of attacks in the physical layer.First,a data-driven method was proposed to predict the DLAA sequence in the cyber layer.By designing a double radial basis function network,the influence of disturbances on attack prediction can be eliminated.Based on the prediction results,an unknown input observer-based detection and localization method was further developed for the physical layer.In addition,an adaptive threshold was designed to replace the traditional precomputed threshold and improve the detection performance of the DLAAs.Consequently,through the collaborative work of the cyber-physics layer,injected DLAAs were effectively detected and located.Compared with existing methodologies,the simulation results on IEEE 14-bus and 118-bus power systems verified the superiority of the proposed cyber-physical collaborative detection and localization against DLAAs.展开更多
The dynamic load distribution within in-service axlebox bearings of high-speed trains is crucial for the fatigue reliability assessment and forward design of axlebox bearings. This paper presents an in situ measuremen...The dynamic load distribution within in-service axlebox bearings of high-speed trains is crucial for the fatigue reliability assessment and forward design of axlebox bearings. This paper presents an in situ measurement of the dynamic load distribution in the four rows of two axlebox bearings on a bogie wheelset of a high-speed train under polygonal wheel–rail excitation. The measurement employed an improved strain-based method to measure the dynamic radial load distribution of roller bearings. The four rows of two axlebox bearings on a wheelset exhibited different ranges of loaded zones and different means of distributed loads. Besides, the mean value and standard deviation of measured roller–raceway contact loads showed non-monotonic variations with the frequency of wheel–rail excitation. The fatigue life of the four bearing rows under polygonal wheel–rail excitation was quantitatively predicted by compiling the measured roller–raceway contact load spectra of the most loaded position and considering the load spectra as input.展开更多
Industry foundation classes(IFC)is an open and neutral data format specification for building information modeling(BIM)that plays a crucial role in facilitating interoperability.With increases in web-based BIM applica...Industry foundation classes(IFC)is an open and neutral data format specification for building information modeling(BIM)that plays a crucial role in facilitating interoperability.With increases in web-based BIM applications,there is an urgent need for fast loading large IFC models on a web browser.However,the task of fully loading large IFC models typically consumes a large amount of memory of a web browser or even crashes the browser,and this significantly limits further BIM applications.In order to address the issue,a method is proposed for dynamically loading IFC models based on spatial semantic partitioning(SSP).First,the spatial semantic structure of an input IFC model is partitioned via the extraction of story information and establishing a component space index table on the server.Subsequently,based on user interaction,only the model data that a user is interested in is transmitted,loaded,and displayed on the client.The presented method is implemented via Web Graphics Library,and this enables large IFC models to be fast loaded on the web browser without requiring any plug-ins.When compared with conventional methods that load all IFC model data for display purposes,the proposed method significantly reduces memory consumption in a web browser,thereby allowing the loading of large IFC models.When compared with the existing method of spatial partitioning for 3D data,the proposed SSP entirely uses semantic information in the IFC file itself,and thereby provides a better interactive experience for users.展开更多
The damage properties of two types of rocks under dynamic loading are studied. The shock induced experiments are done using planar impact technique on the one? stage light gas gun, and the ultrasonic tests on the da...The damage properties of two types of rocks under dynamic loading are studied. The shock induced experiments are done using planar impact technique on the one? stage light gas gun, and the ultrasonic tests on the damaged rocks have been made by use of the ultrasonic pulse? transmission method. The shock induced damage of rock is related to the shock speed and the attenuation coefficient of sonic wave, and the latter reflects the damage degree in rock fairly well. The attenuation coefficient α can be used as main damage parameter for constructing damage model of rock under dynamic loading.展开更多
For the integration network of a cellular network and a wireless local area network (WLAN), a priority-based dynamic load transfer (PDLT) algorithm is proposed. The dynamic vertical handoffs by call admission cont...For the integration network of a cellular network and a wireless local area network (WLAN), a priority-based dynamic load transfer (PDLT) algorithm is proposed. The dynamic vertical handoffs by call admission control are jointly determined by the network conditions and the traffic characteristics in combination with the location-condition of mobile terminals. When there is no bandwidth resource available in the cellular network or WLAN, the proposed PDLT algorithm allows an incoming voice call or data call within the overlapping area of the cellular network and the WLAN to be directed to the spare network; meanwhile, by dynamically computing the occupancy of the bandwidth resource, the proposed PDLT algorithm also allows an ongoing voice call or data communication to be transferred to the network with a sufficient bandwidth resource according to the given threshold to balance the number of voice/data calls in the two networks. The analysis results of a two-dimensional Markov model and the simulation results show that the PDLT algorithm can effectively enhance the whole integrated network' s traffic, reduce the blocking probability of new calls and increase the data throughput, and thus decrease the response time for various services.展开更多
To solve the load balancing problem in a triplet-based hierarchical interconnection network(THIN) system, a dynamic load balancing (DLB)algorithm--THINDLBA, which adopts multicast tree (MT)technology to improve ...To solve the load balancing problem in a triplet-based hierarchical interconnection network(THIN) system, a dynamic load balancing (DLB)algorithm--THINDLBA, which adopts multicast tree (MT)technology to improve the efficiency of interchanging load information, is presented. To support the algorithm, a complete set of DLB messages and a schema of maintaining DLB information in each processing node are designed. The load migration request messages from the heavily loaded node (HLN)are spread along an MT whose root is the HLN. And the lightly loaded nodes(LLNs) covered by the MT are the candidate destinations of load migration; the load information interchanged between the LLNs and the HLN can be transmitted along the MT. So the HLN can migrate excess loads out as many as possible during a one time execution of the THINDLBA, and its load state can be improved as quickly as possible. To avoid wrongly transmitted or redundant DLB messages due to MT overlapping, the MT construction is restricted in the design of the THINDLBA. Through experiments, the effectiveness of four DLB algorithms are compared, and the results show that the THINDLBA can effectively decrease the time costs of THIN systems in dealing with large scale computeintensive tasks more than others.展开更多
In order to investigate the mechanical response of reflective cracking in asphalt concrete pavement under dynamic vehicle loading, a finite element model is established in ABAQUS. The viscoelastic behavior is describe...In order to investigate the mechanical response of reflective cracking in asphalt concrete pavement under dynamic vehicle loading, a finite element model is established in ABAQUS. The viscoelastic behavior is described by a prony series which is calculated through nonlinear fitting to the creep test data obtained in the laboratory. Based on the viscoelastic theory, the time-temperature equivalence principle, fracture mechanics and the dynamic finite element method, both the Jintegral and the mix-mode stress intensity factor are utilized as fracture evaluation parameters, and a half-sine dynamic loading is used to simulate the vehicle loading. Finally, the mechanical response of the pavement reflective cracking is analyzed under different vehicle speeds, different environmental conditions and various damping factors. The results indicate that increasing either the vehicle speed or the structure damping factor decreases the maximum values of fracture parameters, while the structure temperature has little effect on the fracture parameters. Due to the fact that the vehicle speed can be enhanced by improving the road traffic conditions, and the pavement damping factor can become greater by modifying the components of materials, the development of reflective cracking can be delayed and the asphalt pavement service life can be effectively extended through both of these ways.展开更多
It is not uncommon that backfill material used in underground mining being exposed to repetitive dynamic stresses induced by blasting operations or rockburst events. Understanding the strength and fracture evolution o...It is not uncommon that backfill material used in underground mining being exposed to repetitive dynamic stresses induced by blasting operations or rockburst events. Understanding the strength and fracture evolution of backfilled stopes is critical to maintain the long-term stope stability and ensure safe mining activities. This paper aims to study the damage evolution of the backfill material and its host rock behaviour under three-dimensional(3D) dynamic loading. Using a true-triaxial testing machine, multiple samples of backfill material enclosed by country rock were fabricated and tested under various dynamic loadings with different true-triaxial confining stress conditions. In addition, the nuclear magnetic resonance(NMR) measurement was conducted on the samples before and after exerting static and dynamic loading to obtain their porosity distribution changes. The experiment results suggested that with the increase of the dynamic loading, the porosity of the backfill sample goes through a two-stage process,which shows a slightly linear decrease and then followed by an exponential increase. The research findings can help understand the damage mechanism and fracture development of backfilled stopes and its host rock in deep underground mines, which are constantly subject to the combination of 3D static confining stress and dynamic loading.展开更多
The stability control of surrounding rock for large or super-large section chamber is a difficult technical problem in deep mining condition.Based on the in-site geological conditions of Longgu coal mine,this paper us...The stability control of surrounding rock for large or super-large section chamber is a difficult technical problem in deep mining condition.Based on the in-site geological conditions of Longgu coal mine,this paper used the dynamic module of FLAC3D to study the response characteristics of deep super-large section chamber under dynamic and static combined loading condition.Results showed that under the static loading condition,the maximum vertical stress,deformation and failure range are large,where the stress concentration coefficient is 1.64.The maximum roof-to-floor and two-sides deformations are 54.6 mm and 53.1 mm,respectively.Then,under the dynamic and static combined loading condition:(1)The influence of dynamic load frequency on the two-sides is more obvious;(2)The dynamic load amplitude has the greatest influence on the stress concentration degree,and the plastic failure tends to develop to the deeper;(3)With the dynamic load source distance increase,the response of surrounding rock is gradually attenuated.On this basis,empirical equations for each dynamic load conditions were obtained by using regression analysis method,and all correlation coefficients are greater than 0.99.This research provided reference for the supporting design of deep super-large section chamber under same or similar conditions.展开更多
The deep fissured rock mass is affected by coupled effects of initial ground stress and external dynamic disturbance.In order to study the effect of internal flaw on pre-stressed rock mechanical responses and failure ...The deep fissured rock mass is affected by coupled effects of initial ground stress and external dynamic disturbance.In order to study the effect of internal flaw on pre-stressed rock mechanical responses and failure behavior under impact loading,intact granite specimens and specimens with different flaw inclinations are tested by a modified split Hopkinson pressure bar(SHPB)and digital image correlation(DIC)method.The results show that peak strain and dynamic strength of intact specimens and specimens with different flaw angles(α)decrease with the increase of axial static pressure.The 90°flaw has weak reduction effect on peak strain,dynamic strength and combined strength,while 45°and 0°flaws have remarkable reduction effect.Specimens with 90°flaw are suffered combined shear and tensile failure under middle and low axial static pre-stresses,and suffered shear failure under high axial static pre-stresses.Specimens with 45°and 0°flaws are suffered oblique shear failure caused by pre-existing flaw under different axial static pre-stresses.Besides,based on digital image correlation method,it is found that micro-cracks before formation of macro fractures(include shear and tensile fractures)belong to tensile cracks.Tensile and shear strain localizations at pre-existing flaw tip for specimen with 45°and 0°flaws are produced much earlier than that at other positions.展开更多
The failure characteristics under coupled static and dynamic loading were investigated by the improved split Hopkinson pressure bar (SHPB) with axial pre-pressure and confining pressure. The results show that the st...The failure characteristics under coupled static and dynamic loading were investigated by the improved split Hopkinson pressure bar (SHPB) with axial pre-pressure and confining pressure. The results show that the stress—strain curve of the rock under static-dynamic coupled loading is a typical class I curve when the dynamic load is comparatively high; With the decrease of the dynamic load, the stress—strain curve transforms to a typical class II curve. The dynamic failure process was recorded by high-speed photography. Analyses of fracture surface morphology show that the failure modes of specimens are tensile failure or combined shear failure when the impact load energy is low, but the failure modes of specimens become tensile failure when the impact load energy is high. The results of fractal dimension show that the elastic potential energy release leads to increase in the degree of crushing of samples when the energy of impact load is low under coupled static and dynamic loads with high stress.展开更多
For understanding the damage and failure rule of rock under different uniaxial compressive loads and dynamic loads, tests on red sandstone were carried out on Instron 1342 electro-servo controlled testing system with ...For understanding the damage and failure rule of rock under different uniaxial compressive loads and dynamic loads, tests on red sandstone were carried out on Instron 1342 electro-servo controlled testing system with different uniaxial compressive loads of 0, 2, 4 and 6 MPa. It is found that peak stress, peak strain, elastic modulus and total strain energy decrease with the increase of static compressive stress. Based on the test results, the mechanism on damage and failure of rock was analyzed, and according to the equivalent strain hypothesis, a new constitutive model of elastic-plastic damage was established, and then the calculated results with the established model were compared with test results to show a good agreement. Furthermore the rule of releasing ratio of damage strain energy was discussed.展开更多
A dynamic marine propeller simulation system was developed, which is utilized for meeting the experimental requirement of theory research and engineering design of marine electric propulsion system. By applying an act...A dynamic marine propeller simulation system was developed, which is utilized for meeting the experimental requirement of theory research and engineering design of marine electric propulsion system. By applying an actual ship parameter and its accurate propeller J' -KT' and J' - Kp' curve data, functional experiments based on the simulation system were carried out. The experiment results showed that the system can correctly emulate the propeller characteristics, produce the dynamic and steady performances of the propeller under different navigation modes, and present actual load torque for electric propulsion motor.展开更多
The determination of the dynamic load is one of the indispensable technologies for structure design and health monitoring for aerospace vehicles.However,it is a significant challenge to measure the external excitation...The determination of the dynamic load is one of the indispensable technologies for structure design and health monitoring for aerospace vehicles.However,it is a significant challenge to measure the external excitation directly.By contrast,the technique of dynamic load identification based on the dynamic model and the response information is a feasible access to obtain the dynamic load indirectly.Furthermore,there are multi-source uncertainties which cannot be neglected for complex systems in the load identification process,especially for aerospace vehicles.In this paper,recent developments in the dynamic load identification field for aerospace vehicles considering multi-source uncertainties are reviewed,including the deterministic dynamic load identification and uncertain dynamic load identification.The inversion methods with different principles of concentrated and distributed loads,and the quantification and propagation analysis for multi-source uncertainties are discussed.Eventually,several possibilities remaining to be explored are illustrated in brief.展开更多
Although the dynamic properties of subgrade soils in seasonally frozen areas have already been studied, few researchers have considered the influence of shallow groundwater during the freeze–thaw(F–T) cycles. So a m...Although the dynamic properties of subgrade soils in seasonally frozen areas have already been studied, few researchers have considered the influence of shallow groundwater during the freeze–thaw(F–T) cycles. So a multifunctional F–T cycle system was developed to imitate the groundwater recharge in the subgrade during the freezing process and a large number of dynamic triaxial experiments were conducted after the F–T cycles. Some significant factors including the F–T cycle number, compaction degree, confining pressure, cyclic deviator stress, loading frequency, and water content were investigated for the resilient modulus of soils. The experimental results indicated that the dynamic resilient modulus of the subgrade was negatively correlated with the cyclic deviator stress, F–T cycle number, and initial water content, whereas the degree of compaction, confining pressure, and loading frequency could enhance the resilient modulus. Furthermore, a modified model considering the F–T cycle number and stress state was established to predict the dynamic resilient modulus. The calculated results of this modified model were very close to the experimental results. Consequently, calculation of the resilient modulus for F–T cycles considering the dynamic load was appropriate. This study provides reference for research focusing on F–T cycles with groundwater supply and the dynamic resilient moduli of subgrade soils in seasonally frozen areas.展开更多
基金the financial support from the National Natural Science Foundation of China(Nos.52374094,52174122 and 52374218)Excellent Youth Fund of Shandong Natural Science Foundation(No.ZR2022YQ49)Taishan Scholar Project in Shandong Province(Nos.tspd20210313 and tsqn202211150)。
文摘The stability control of fissured rock is difficult,especially under static and dynamic loads in deep coal mines.In this paper,the dynamic mechanical properties,strain rate evolution and energy dissipation of fissured and anchored rocks were respectively obtained by SHPB tests.It was found that bolt can provide supporting efficiency-improving effect for fissured rock against dynamic disturbance,and this effect increased quadratically with decrease in anchoring angles.Then,the energy dissipation mechanism of anchored rock was obtained by slipping model.Furthermore,bolt energy-absorbing mechanism by instantaneous tensile-shear deformation was expressed based on material mechanics,which was the larger the anchoring angle,the smaller the energy absorption,and the less the contribution to supporting efficiency improvement.On this basis,the functional relationship between energy dissipation of anchored rock and energy absorption of bolt was established.Taking the coal-gangue separation system of Longgu coal mine as an example,the optimal anchoring angle can be determined as 57.5°–67.5°.Field monitoring showed fissured rock with the optimal anchoring angle,can not only effectively control the deformation,but also fully exert the energy-absorbing and efficiency-improving effect of bolt itself.This study provides guidance to the stability control and supporting design for deep engineering under the same or similar conditions.
基金supported by the National Natural Science Foundation of China(Nos.52074151,51927807,and 52274123)Tiandi Science and Technology Co.,Ltd.(No.2022-2-TDMS012)。
文摘This study explores the effects of dynamic and static loading on rock bolt performance a key factor in maintaining the structural safety of coal mine roadways susceptible to coal bursts.Employing a housemade load frame to simulate various failure scenarios,pretension-impact-pull tests on rock bolts were conducted to scrutinize their dynamic responses under varied static load conditions and their failure traits under combined loads.The experimental results denote that with increased impact energy,maximum and average impact loads on rock bolts escalate significantly under pretension,initiating plastic deformation beyond a certain threshold.Despite minor reductions in the yield load due to impactinduced damage,pretension aids in constraining post-impact deformation rate and fluctuation degree of rock bolts.Moreover,impact-induced plastic deformation causes internal microstructure dislocation,fortifying the stiffness of the rock bolt support system.The magnitude of this fortification is directly related to the plastic deformation induced by the impact.These findings provide crucial guidance for designing rock bolt support in coal mine roadway excavation,emphasizing the necessity to consider both static and dynamic loads for improved safety and efficiency.
文摘In this paper, a novel design method, which is different from the traditional and empirical one (i. e., taking p and pv as the basic checking parameters) is presented for the fatigue strength design of dynamically loaded journal bearings. The method makes it possible that dynamically loaded bearings can be desed as same as other machine elements by stress-strength criterion. The practical design results show that the method has high accuracy and reliability, and may open a new visa in bearing fatigue designs.
基金supported by JUST start-up fund for science research,the Jiangsu Natural Science Foundation(Grant No.BK20210885).
文摘According to the established prediction model of internal solitary wave loads on FPSO in the previous work,the lumped mass model and the movement equations of finite displacement in time domain,the dynamic response model of interaction between internal solitary waves and FPSO with mooring lines were established.Through calculations and analysis,time histories of dynamic loads of FPSO exerted by internal solitary waves,FPSO’s motion and dynamic tension of mooring line were obtained.The effects of the horizontal pretension of mooring line,the amplitude of internal solitary wave and layer fluid depth on dynamic response behavior of FPSO were mastered.It was shown that the internal solitary waves had significant influence on FPSO,such as the large magnitude horizontal drift and a sudden tension increment.With internal solitary wave of −170 m amplitude in the ocean with upper and lower layer fluid depth ratio being 60:550,the dynamic loads reached 991.132 kN(horizontal force),18067.3 kN(vertical force)and−5042.92 kN·m(pitching moment).Maximum of FPSO’s horizontal drift was 117.56 m.Tension increment of upstream mooring line approached 401.48 kN and that of backflow mooring line was−140 kN.Moreover,the loads remained nearly constant with different pretension but increased obviously with the changing amplitude and layer fluid depth ratio.Tension increments of mooring lines also changed little with the pretension but increased rapidly when amplitude and layer fluid depth ratio increased.However,FPSO’s motion increased quickly with not only the horizontal pretension but also the amplitude of internal solitary wave and layer fluid depth ratio.
基金supported by the National Natural Science Foundation of China(Grant Nos.52204104 and U19A2098)the Science and Technology Department of Sichuan Province,China(Grant No.2023YFH0022).
文摘For expedited transportation,vehicular tunnels are often designed as two adjacent tunnels,which frequently experience dynamic stress waves from various orientations during blasting excavation.To analyze the impact of dynamic loading orientation on the stability of the twin-tunnel,a split Hopkinson pressure bar(SHPB)apparatus was used to conduct a dynamic test on the twin-tunnel specimens.The two tunnels were rotated around the specimen’s center to consider the effect of dynamic loading orientation.LS-DYNA software was used for numerical simulation to reveal the failure properties and stress wave propagation law of the twin-tunnel specimens.The findings indicate that,for a twin-tunnel exposed to a dynamic load from different orientations,the crack initiation position appears most often at the tunnel corner,tunnel spandrel,and tunnel floor.As the impact direction is created by a certain angle(30°,45°,60°,120°,135°,and 150°),the fractures are produced in the middle of the line between the left tunnel corner and the right tunnel spandrel.As the impact loading angle(a)is 90°,the tunnel sustains minimal damage,and only tensile fractures form in the surrounding rocks.The orientation of the impact load could change the stress distribution in the twin-tunnel,and major fractures are more likely to form in areas where the tensile stress is concentrated.
基金supported by the National Nature Science Foundation of China under 62203376the Science and Technology Plan of Hebei Education Department under QN2021139+1 种基金the Nature Science Foundation of Hebei Province under F2021203043the Open Research Fund of Jiangsu Collaborative Innovation Center for Smart Distribution Network,Nanjing Institute of Technology under No.XTCX202203.
文摘Owing to the integration of energy digitization and artificial intelligence technology,smart energy grids can realize the stable,efficient and clean operation of power systems.However,the emergence of cyber-physical attacks,such as dynamic load-altering attacks(DLAAs)has introduced great challenges to the security of smart energy grids.Thus,this study developed a novel cyber-physical collaborative security framework for DLAAs in smart energy grids.The proposed framework integrates attack prediction in the cyber layer with the detection and localization of attacks in the physical layer.First,a data-driven method was proposed to predict the DLAA sequence in the cyber layer.By designing a double radial basis function network,the influence of disturbances on attack prediction can be eliminated.Based on the prediction results,an unknown input observer-based detection and localization method was further developed for the physical layer.In addition,an adaptive threshold was designed to replace the traditional precomputed threshold and improve the detection performance of the DLAAs.Consequently,through the collaborative work of the cyber-physics layer,injected DLAAs were effectively detected and located.Compared with existing methodologies,the simulation results on IEEE 14-bus and 118-bus power systems verified the superiority of the proposed cyber-physical collaborative detection and localization against DLAAs.
基金supported by the National Natural Science Foundation of China (Grant No. 12302238)the National Key Research and Development Program of China (Grant Nos. 2021YFB3400701, 2022YFB3402904)。
文摘The dynamic load distribution within in-service axlebox bearings of high-speed trains is crucial for the fatigue reliability assessment and forward design of axlebox bearings. This paper presents an in situ measurement of the dynamic load distribution in the four rows of two axlebox bearings on a bogie wheelset of a high-speed train under polygonal wheel–rail excitation. The measurement employed an improved strain-based method to measure the dynamic radial load distribution of roller bearings. The four rows of two axlebox bearings on a wheelset exhibited different ranges of loaded zones and different means of distributed loads. Besides, the mean value and standard deviation of measured roller–raceway contact loads showed non-monotonic variations with the frequency of wheel–rail excitation. The fatigue life of the four bearing rows under polygonal wheel–rail excitation was quantitatively predicted by compiling the measured roller–raceway contact load spectra of the most loaded position and considering the load spectra as input.
基金The study was supported by the National Key R&D Program of China(No.2018YFB0505400)the National Natural Science Foundation of China(No.61472202)+1 种基金the Special Scientific Research Fund of China Railway Corporation(No.J2017X010)the Research on Key Technologies of Virtual Engineering of Railway Engineering Unit Based on BIM Technology(No.K2018G055).
文摘Industry foundation classes(IFC)is an open and neutral data format specification for building information modeling(BIM)that plays a crucial role in facilitating interoperability.With increases in web-based BIM applications,there is an urgent need for fast loading large IFC models on a web browser.However,the task of fully loading large IFC models typically consumes a large amount of memory of a web browser or even crashes the browser,and this significantly limits further BIM applications.In order to address the issue,a method is proposed for dynamically loading IFC models based on spatial semantic partitioning(SSP).First,the spatial semantic structure of an input IFC model is partitioned via the extraction of story information and establishing a component space index table on the server.Subsequently,based on user interaction,only the model data that a user is interested in is transmitted,loaded,and displayed on the client.The presented method is implemented via Web Graphics Library,and this enables large IFC models to be fast loaded on the web browser without requiring any plug-ins.When compared with conventional methods that load all IFC model data for display purposes,the proposed method significantly reduces memory consumption in a web browser,thereby allowing the loading of large IFC models.When compared with the existing method of spatial partitioning for 3D data,the proposed SSP entirely uses semantic information in the IFC file itself,and thereby provides a better interactive experience for users.
文摘The damage properties of two types of rocks under dynamic loading are studied. The shock induced experiments are done using planar impact technique on the one? stage light gas gun, and the ultrasonic tests on the damaged rocks have been made by use of the ultrasonic pulse? transmission method. The shock induced damage of rock is related to the shock speed and the attenuation coefficient of sonic wave, and the latter reflects the damage degree in rock fairly well. The attenuation coefficient α can be used as main damage parameter for constructing damage model of rock under dynamic loading.
基金The National Science and Technology Major Project(No. 2011ZX03005-004-03 )the National Natural Science Foundation of China (No. 61171081 )the Research Fund of the National Mobile Communications Research Laboratory of Southeast University (No.2011A08)
文摘For the integration network of a cellular network and a wireless local area network (WLAN), a priority-based dynamic load transfer (PDLT) algorithm is proposed. The dynamic vertical handoffs by call admission control are jointly determined by the network conditions and the traffic characteristics in combination with the location-condition of mobile terminals. When there is no bandwidth resource available in the cellular network or WLAN, the proposed PDLT algorithm allows an incoming voice call or data call within the overlapping area of the cellular network and the WLAN to be directed to the spare network; meanwhile, by dynamically computing the occupancy of the bandwidth resource, the proposed PDLT algorithm also allows an ongoing voice call or data communication to be transferred to the network with a sufficient bandwidth resource according to the given threshold to balance the number of voice/data calls in the two networks. The analysis results of a two-dimensional Markov model and the simulation results show that the PDLT algorithm can effectively enhance the whole integrated network' s traffic, reduce the blocking probability of new calls and increase the data throughput, and thus decrease the response time for various services.
基金The National Natural Science Foundation of China(No.69973007).
文摘To solve the load balancing problem in a triplet-based hierarchical interconnection network(THIN) system, a dynamic load balancing (DLB)algorithm--THINDLBA, which adopts multicast tree (MT)technology to improve the efficiency of interchanging load information, is presented. To support the algorithm, a complete set of DLB messages and a schema of maintaining DLB information in each processing node are designed. The load migration request messages from the heavily loaded node (HLN)are spread along an MT whose root is the HLN. And the lightly loaded nodes(LLNs) covered by the MT are the candidate destinations of load migration; the load information interchanged between the LLNs and the HLN can be transmitted along the MT. So the HLN can migrate excess loads out as many as possible during a one time execution of the THINDLBA, and its load state can be improved as quickly as possible. To avoid wrongly transmitted or redundant DLB messages due to MT overlapping, the MT construction is restricted in the design of the THINDLBA. Through experiments, the effectiveness of four DLB algorithms are compared, and the results show that the THINDLBA can effectively decrease the time costs of THIN systems in dealing with large scale computeintensive tasks more than others.
文摘In order to investigate the mechanical response of reflective cracking in asphalt concrete pavement under dynamic vehicle loading, a finite element model is established in ABAQUS. The viscoelastic behavior is described by a prony series which is calculated through nonlinear fitting to the creep test data obtained in the laboratory. Based on the viscoelastic theory, the time-temperature equivalence principle, fracture mechanics and the dynamic finite element method, both the Jintegral and the mix-mode stress intensity factor are utilized as fracture evaluation parameters, and a half-sine dynamic loading is used to simulate the vehicle loading. Finally, the mechanical response of the pavement reflective cracking is analyzed under different vehicle speeds, different environmental conditions and various damping factors. The results indicate that increasing either the vehicle speed or the structure damping factor decreases the maximum values of fracture parameters, while the structure temperature has little effect on the fracture parameters. Due to the fact that the vehicle speed can be enhanced by improving the road traffic conditions, and the pavement damping factor can become greater by modifying the components of materials, the development of reflective cracking can be delayed and the asphalt pavement service life can be effectively extended through both of these ways.
基金National Natural Science Foundation of China (Grant No.51804079)Fujian Natural Science Foundation (Grant No.2019J05039)
文摘It is not uncommon that backfill material used in underground mining being exposed to repetitive dynamic stresses induced by blasting operations or rockburst events. Understanding the strength and fracture evolution of backfilled stopes is critical to maintain the long-term stope stability and ensure safe mining activities. This paper aims to study the damage evolution of the backfill material and its host rock behaviour under three-dimensional(3D) dynamic loading. Using a true-triaxial testing machine, multiple samples of backfill material enclosed by country rock were fabricated and tested under various dynamic loadings with different true-triaxial confining stress conditions. In addition, the nuclear magnetic resonance(NMR) measurement was conducted on the samples before and after exerting static and dynamic loading to obtain their porosity distribution changes. The experiment results suggested that with the increase of the dynamic loading, the porosity of the backfill sample goes through a two-stage process,which shows a slightly linear decrease and then followed by an exponential increase. The research findings can help understand the damage mechanism and fracture development of backfilled stopes and its host rock in deep underground mines, which are constantly subject to the combination of 3D static confining stress and dynamic loading.
基金Project(2018YFC0604703)supported by the National Key R&D Program of ChinaProjects(51804181,51874190)supported by the National Natural Science Foundation of China+3 种基金Project(ZR2018QEE002)supported by the Shandong Province Natural Science Fund,ChinaProject(ZR2018ZA0603)supported by the Major Program of Shandong Province Natural Science Foundation,ChinaProject(2019GSF116003)supported by the Key R&D Project of Shandong Province,ChinaProject(SDKDYC190234)supported by the Shandong University of Science and Technology,Graduate Student Technology Innovation Project,China。
文摘The stability control of surrounding rock for large or super-large section chamber is a difficult technical problem in deep mining condition.Based on the in-site geological conditions of Longgu coal mine,this paper used the dynamic module of FLAC3D to study the response characteristics of deep super-large section chamber under dynamic and static combined loading condition.Results showed that under the static loading condition,the maximum vertical stress,deformation and failure range are large,where the stress concentration coefficient is 1.64.The maximum roof-to-floor and two-sides deformations are 54.6 mm and 53.1 mm,respectively.Then,under the dynamic and static combined loading condition:(1)The influence of dynamic load frequency on the two-sides is more obvious;(2)The dynamic load amplitude has the greatest influence on the stress concentration degree,and the plastic failure tends to develop to the deeper;(3)With the dynamic load source distance increase,the response of surrounding rock is gradually attenuated.On this basis,empirical equations for each dynamic load conditions were obtained by using regression analysis method,and all correlation coefficients are greater than 0.99.This research provided reference for the supporting design of deep super-large section chamber under same or similar conditions.
基金Project(2019JJ20028)supported by the Outstanding Youth Science Foundations of Hunan Province of ChinaProject(51774321)supported by the National Natural Science Foundation of ChinaProject(2018YFC0604606)supported by the State Key Research Development Program of China。
文摘The deep fissured rock mass is affected by coupled effects of initial ground stress and external dynamic disturbance.In order to study the effect of internal flaw on pre-stressed rock mechanical responses and failure behavior under impact loading,intact granite specimens and specimens with different flaw inclinations are tested by a modified split Hopkinson pressure bar(SHPB)and digital image correlation(DIC)method.The results show that peak strain and dynamic strength of intact specimens and specimens with different flaw angles(α)decrease with the increase of axial static pressure.The 90°flaw has weak reduction effect on peak strain,dynamic strength and combined strength,while 45°and 0°flaws have remarkable reduction effect.Specimens with 90°flaw are suffered combined shear and tensile failure under middle and low axial static pre-stresses,and suffered shear failure under high axial static pre-stresses.Specimens with 45°and 0°flaws are suffered oblique shear failure caused by pre-existing flaw under different axial static pre-stresses.Besides,based on digital image correlation method,it is found that micro-cracks before formation of macro fractures(include shear and tensile fractures)belong to tensile cracks.Tensile and shear strain localizations at pre-existing flaw tip for specimen with 45°and 0°flaws are produced much earlier than that at other positions.
基金Projects (10872218, 50934006) supported by the National Natural Science Foundation of ChinaProject (2010CB732004) supported by National Basic Research Program of ChinaProject (2011ssxt276) supported by the Central South University Innovation Fund, China
文摘The failure characteristics under coupled static and dynamic loading were investigated by the improved split Hopkinson pressure bar (SHPB) with axial pre-pressure and confining pressure. The results show that the stress—strain curve of the rock under static-dynamic coupled loading is a typical class I curve when the dynamic load is comparatively high; With the decrease of the dynamic load, the stress—strain curve transforms to a typical class II curve. The dynamic failure process was recorded by high-speed photography. Analyses of fracture surface morphology show that the failure modes of specimens are tensile failure or combined shear failure when the impact load energy is low, but the failure modes of specimens become tensile failure when the impact load energy is high. The results of fractal dimension show that the elastic potential energy release leads to increase in the degree of crushing of samples when the energy of impact load is low under coupled static and dynamic loads with high stress.
文摘For understanding the damage and failure rule of rock under different uniaxial compressive loads and dynamic loads, tests on red sandstone were carried out on Instron 1342 electro-servo controlled testing system with different uniaxial compressive loads of 0, 2, 4 and 6 MPa. It is found that peak stress, peak strain, elastic modulus and total strain energy decrease with the increase of static compressive stress. Based on the test results, the mechanism on damage and failure of rock was analyzed, and according to the equivalent strain hypothesis, a new constitutive model of elastic-plastic damage was established, and then the calculated results with the established model were compared with test results to show a good agreement. Furthermore the rule of releasing ratio of damage strain energy was discussed.
基金supported by the Fund of Shanghai Committee of Science and Technology(Grant No.11170501700)the International Cooperation and Exchange Projects of the Ministry of Science and Technology(Grant No.2012DFG71850)
文摘A dynamic marine propeller simulation system was developed, which is utilized for meeting the experimental requirement of theory research and engineering design of marine electric propulsion system. By applying an actual ship parameter and its accurate propeller J' -KT' and J' - Kp' curve data, functional experiments based on the simulation system were carried out. The experiment results showed that the system can correctly emulate the propeller characteristics, produce the dynamic and steady performances of the propeller under different navigation modes, and present actual load torque for electric propulsion motor.
基金supported by the National Nature Science Foundation of China(No.12072007)the Ningbo Nature Science Foundation(No.202003N4018)+1 种基金the Aeronautical Science Foundation of China (No. 20182951014)the Defense Industrial Technology Development Program(No.JCKY2019209C004)
文摘The determination of the dynamic load is one of the indispensable technologies for structure design and health monitoring for aerospace vehicles.However,it is a significant challenge to measure the external excitation directly.By contrast,the technique of dynamic load identification based on the dynamic model and the response information is a feasible access to obtain the dynamic load indirectly.Furthermore,there are multi-source uncertainties which cannot be neglected for complex systems in the load identification process,especially for aerospace vehicles.In this paper,recent developments in the dynamic load identification field for aerospace vehicles considering multi-source uncertainties are reviewed,including the deterministic dynamic load identification and uncertain dynamic load identification.The inversion methods with different principles of concentrated and distributed loads,and the quantification and propagation analysis for multi-source uncertainties are discussed.Eventually,several possibilities remaining to be explored are illustrated in brief.
基金Projects(41672312, 41972294) supported by the National Natural Science Foundation of ChinaProject(2017CFA056) supported by the Outstanding Youth Foundation of Hubei Province, ChinaProject(KFJ170104) supported by the Changsha University of Science & Technology via Open Fund of National Engineering Laboratory of Highway Maintenance Technology, China。
文摘Although the dynamic properties of subgrade soils in seasonally frozen areas have already been studied, few researchers have considered the influence of shallow groundwater during the freeze–thaw(F–T) cycles. So a multifunctional F–T cycle system was developed to imitate the groundwater recharge in the subgrade during the freezing process and a large number of dynamic triaxial experiments were conducted after the F–T cycles. Some significant factors including the F–T cycle number, compaction degree, confining pressure, cyclic deviator stress, loading frequency, and water content were investigated for the resilient modulus of soils. The experimental results indicated that the dynamic resilient modulus of the subgrade was negatively correlated with the cyclic deviator stress, F–T cycle number, and initial water content, whereas the degree of compaction, confining pressure, and loading frequency could enhance the resilient modulus. Furthermore, a modified model considering the F–T cycle number and stress state was established to predict the dynamic resilient modulus. The calculated results of this modified model were very close to the experimental results. Consequently, calculation of the resilient modulus for F–T cycles considering the dynamic load was appropriate. This study provides reference for research focusing on F–T cycles with groundwater supply and the dynamic resilient moduli of subgrade soils in seasonally frozen areas.