This research optimized the structure of lithium extraction solar ponds to enhance the crystallization rate and yield of Li_(2)CO_(3).Using the response surface methodology in Design-Expert 10.0.3,the authors conducte...This research optimized the structure of lithium extraction solar ponds to enhance the crystallization rate and yield of Li_(2)CO_(3).Using the response surface methodology in Design-Expert 10.0.3,the authors conducted experiments to investigate the influence of four factors related to solar pond structure on the crystallization of Li_(2)CO_(3) and their pairwise interactions.Computational Fluid Dynamics(CFD)simulations of the flow field within the solar pond were performed using COMSOL Multiphysics software to compare temperature distributions before and after optimization.The results indicate that the optimal structure for lithium extraction from the Zabuye Salt Lake solar ponds includes UCZ(Upper Convective Zone)thickness of 53.63 cm,an LCZ(Lower Convective Zone)direct heating temperature of 57.39℃,a CO32−concentration of 32.21 g/L,and an added soda ash concentration of 6.52 g/L.Following this optimized pathway,the Li_(2)CO_(3) precipitation increased by 7.34% compared to the initial solar pond process,with a 33.33% improvement in lithium carbonate crystallization rate.This study demonstrates the feasibility of optimizing lithium extraction solar pond structures,offering a new approach for constructing such ponds in salt lakes.It provides valuable guidance for the efficient extraction of lithium resources from carbonate-type salt lake brines.展开更多
This study aims to develop a system dynamic(SD)forecasting model based on the STIRPAT model to forecast the effect of an IDR 30 per kg CO_(2)e carbon tax on carbon emissions,estimate future carbon emissions under ten ...This study aims to develop a system dynamic(SD)forecasting model based on the STIRPAT model to forecast the effect of an IDR 30 per kg CO_(2)e carbon tax on carbon emissions,estimate future carbon emissions under ten scenarios,without and with the carbon tax,and estimate the environmental Kuznets curve(EKC)to predict Indonesia’s carbon emission peak.Carbon emission drivers in this study are decomposed into several factors,namely energy structure,energy intensity,industrial structure,GDP per capita,population,and fixed-asset investment.This study included nuclear power utilization starting in 2038.The research gaps addressed by this study compared to previous research are(1)use of the ex-ante approach,(2)inclusion of nuclear power plants,(3)testing the EKC hypothesis,and(4)contribution to government policy.The simulation results show that under the carbon tax,carbon emissions can be reduced by improving renewable energy structures,adjusting industrial structures to green businesses,and emphasizing fixed asset investment more environmentally friendly.Moreover,the result approved the EKC hypothesis.It shows an inverse U-shaped curve between GDP per capita and CO_(2)emissions in Indonesia.Indonesia’s fastest carbon emission peak is under scenario seven and is expected in 2040.Although an IDR 30 per kg CO_(2)e carbon tax and nuclear power will take decades to reduce carbon emissions,the carbon tax can still be a reference and has advantages to implement.This result can be a good beginning step for Indonesia,which has yet to gain experience with a carbon tax that can be implemented immediately and is helpful to decision-makers in putting into practice sensible measures to attain Indonesia’s carbon emission peaking.This research provides actionable insights internationally on carbon tax policies,nuclear energy adoption,EKC dynamics,global policy implications,and fostering international cooperation for carbon emission reductions.展开更多
Owing to the persisting hype in pushing toward global carbon neutrality,the study scope of atmospheric science is rapidly expanding.Among numerous trending topics,energy meteorology has been attracting the most attent...Owing to the persisting hype in pushing toward global carbon neutrality,the study scope of atmospheric science is rapidly expanding.Among numerous trending topics,energy meteorology has been attracting the most attention hitherto.One essential skill of solar energy meteorologists is solar power curve modeling,which seeks to map irradiance and auxiliary weather variables to solar power,by statistical and/or physical means.In this regard,this tutorial review aims to deliver a complete overview of those fundamental scientific and engineering principles pertaining to the solar power curve.Solar power curves can be modeled in two primary ways,one of regression and the other of model chain.Both classes of modeling approaches,alongside their hybridization and probabilistic extensions,which allow accuracy improvement and uncertainty quantification,are scrutinized and contrasted thoroughly in this review.展开更多
The dual-rotor structure serves as the primary source of vibration in aero-engines. Understanding itsdynamical model and analyzing dynamic characteristics, such as critical speed and unbalanced response, arecrucial fo...The dual-rotor structure serves as the primary source of vibration in aero-engines. Understanding itsdynamical model and analyzing dynamic characteristics, such as critical speed and unbalanced response, arecrucial for rotor system dynamics. Previous work introduced a coaxial dual-rotor-support scheme for aeroengines,and a physical model featuring a high-speed flexible inner rotor with a substantial length-to-diameter ratiowas designed. Then a finite element (FE) dynamic model based on the Timoshenko beam elements and rigid bodykinematics of the dual-rotor system is modeled, with the Newmark method and Newton–Raphson method used forthe numerical calculation to study the dynamic characteristics of the system. Three different simulation models,including beam-based FE (1D) model, solid-based FE (3D) model, and transfer matrix model, were designed tostudy the characteristics of mode and the critical speed characteristic of the dual-rotor system. The unbalancedresponse of the dual-rotor system was analyzed to study the influence of mass unbalance on the rotor system. Theeffect of different disk unbalance phases and different speed ratios on the dynamic characteristics of the dual-rotorsystem was investigated in detail. The experimental result shows that the beam-based FE model is effective andsuitable for studying the dual-rotor system.展开更多
In order to explore the influence of water velocity on the heat collection performance of the active heat storage and release system for solar greenhouses,six different flow rates were selected for treatment in this e...In order to explore the influence of water velocity on the heat collection performance of the active heat storage and release system for solar greenhouses,six different flow rates were selected for treatment in this experiment.The comprehensive heat transfer coefficient of the active heat storage and release system at the heat collection stage was calculated by measuring the indoor solar radiation intensity,indoor air temperature and measured water tank temperature.The prediction model of water temperature in the heat collection stage was established,and the initial value of water temperature and the comprehensive heat transfer coefficient were input through MATLAB software.The simulated value of water temperature was compared with the measured value and the results showed that the best heat transfer effect could be achieved when the water flow speed was 1.0 m3h-1.The average relative error between the simulated water tank temperature and the measured value is 2.70-6.91%.The results indicate that the model is established correctly,and the variation trend of water temperature can be predicted according to the model in the heat collection stage.展开更多
With the action of small perturbation on generalized El-Nabulsi-Birkhoff fractional equations,the perturbation to Noether symmetries and adiabatic invariants are studied under the framework of El-Nabulsi′s fractional...With the action of small perturbation on generalized El-Nabulsi-Birkhoff fractional equations,the perturbation to Noether symmetries and adiabatic invariants are studied under the framework of El-Nabulsi′s fractional model.Firstly,based on the invariance of El-Nabulsi-Pfaff action under the infinitesimal transformations of group,the exact invariants are given.Secondly,on the basis of the definition of higher order adiabatic invariants of a dynamical system,the adiabatic invariants of the Noether symmetric perturbation for disturbed generalized El-Nabulsi′s fractional Birkhoff system are presented under some conditions,and some special cases are discussed.Finally,an example known as Hojman-Urrutia problem is given to illustrate the application of the results.展开更多
The theoretical basis and application of an analogue-dynamical model (ADM) in the Lorenz system is studied. The ADM can effectively combine statistical and dynamical methods in which the small disturbance of the cur...The theoretical basis and application of an analogue-dynamical model (ADM) in the Lorenz system is studied. The ADM can effectively combine statistical and dynamical methods in which the small disturbance of the current initial value superimposed on the historical analogue reference state can be regarded as a prediction objective. Primary analyses show that under the condition of appending disturbances in model parameters, the model errors of ADM are much smaller than those of the pure dynamical model (PDM). The characteristics of predictability on the ADM in the Lorenz system are analyzed in phase space by conducting case studies and global experiments. The results show that the ADM can quite effectively reduce prediction errors and prolong the valid time of the prediction in most situations in contrast to the PDM, but when model errors are considerably small, the latter will be superior to the former. To overcome such a problem, the multi-reference-state updating can be applied to introduce the information of multi-analogue and update analogue and can exhibit exciting performance in the ADM.展开更多
A metal plate cooling model for 400~ single concentrator solar cells was established. The effects of the thickness and the radius of the metal plate, and the air environment on the temperature of the solar cells were ...A metal plate cooling model for 400~ single concentrator solar cells was established. The effects of the thickness and the radius of the metal plate, and the air environment on the temperature of the solar cells were analyzed in detail. It is shown that the temperature of the solar cells decreased sharply at the beginning, with the increase in the thickness of the metal plate, and then changed more smoothly. When the radius of the metal plate was 4 cm and the thickness increased to 2 mm or thicker, the temperature of the solar cell basically stabilized at about 53℃. Increasing the radius of the metal plate and the convective transfer coefficient made the temperature of the solar cell decrease remarkably. The effects of A1 and Cu as the metal plate material on cooling were analyzed contrastively, and demonstrated the superiority of A1 material for the cooling system. Furthermore, considering cost reduction, space holding and the stress of the system, we optimized the structural design of the metal plate. The simulated results can be referred to the design of the structure for the metal plate. Finally, a method to devise the structure of the metal plate for single concentrator solar cells was given.展开更多
Based on the deformation theory of elastic beams, the coupling effect between the coupling displacements of a point on the middle line of beam and large overall motion is presented. The 'coupling matrix library...Based on the deformation theory of elastic beams, the coupling effect between the coupling displacements of a point on the middle line of beam and large overall motion is presented. The 'coupling matrix library' and Jourdain's variation principle and single direction recursive formulation method are used to establish the general coupling dynamical equations of flexible multibody system. Two typical examples show the coupling effect between coupling displacements and large overall motion on the dynamics of flexible multibody system consisting of beams.展开更多
Uttarakhand state comes under special category state where approximately 69.45% population lived in rural area under the population density with varied range of 37 to 607 persons per sq.km. Although Uttarakhand is hav...Uttarakhand state comes under special category state where approximately 69.45% population lived in rural area under the population density with varied range of 37 to 607 persons per sq.km. Although Uttarakhand is having per capita consumption of 1112.29 kWh which is higher than national average per capita consumption of 779 kWh as till date, but remote communities, villages are not able to access clean, cheep and good quality of energy due to uneven terrain, lack of proper transmission & distribution lines [1]. 100% villages are electrified under the RGGVY scheme as per the Ministry of Power Government of India, but due to poor loading of transformer, lack of grid infrastructure and natural calamities, remote house owners are not able to get good quality of power thus affect the livelihood and source of income generation in various means [2]. As Uttarakhand state having future plans to be make state energy sufficient and energy access to all by year 2016-2017, so major ground level initiative have been taken by Government of Uttarakhand. The government of Uttarakhand has incorporated innovative business model to provide good quality of power with non-conventional energy source. Under the initiative invlovement of local people and village level, panchayats have ownership and responsibility to operate these clean energy business model to improve livelihood in remote hilly places of Uttarakhand. Under this analysis, five different type of community models are categorized as Community 1, Community 2, Community 3, Standalone 1 & Standalone 2 for rural &remote communities based on number of unclustered households with the distance covered between 200 m to 20 km, and electrical loads i.e. lighting, fan, mobile chargers, television along with time of day energy consumption patterns. These community models are for remote hilly location where grid integration and distribution lines are not feasible to built due to hilly terrain, low soil strength and huge expenses for expanding power cables for supplying good quality power. The preliminary studies and simulations has been done in HOMER tool by considering the various composite source of power, i.e. Solar PV with battery bank, Solar PV with battery Bank & Generator, and Solar PV along with DG. These three hybrid source of power generation with Solar PV as base source under five different community models, the techno-commercial feasibility has been analyzed in terms of load sharing proposition with Solar PV and battery, DG, Energy production through PV, load consumption per year, Excess and unmet energy monitoring, battery sizing to meet the load during nights, DG operation when the solar energy not available due to weather condition and non availability of sunshine in night. Financial feasibility has been examined in terms of levelized cost of energy, cost summary and O&M cost per year of three integrated sources of energy generation with Solar PV under each community model. Solar PV power plant , which is the best renewable source of energy to cater energy access issue in remote hilly places. The Uttarakhand receives good amout of daily average radiation level of 5.14 - 5.50 kWh/m2/day. Financial feasible community models for different hilly region based on their energy consumption need to be implemented with the help of local community by providing ownership to local people, panchayat, for it not only caters energy access issue but also provides clean, cheep, uninterruptable energy and improves livelihood standard to locals by engaging them into operation maintenance and tariff or rent collection. The study shows that Solar PV power plant with battery bank is the optimal solution considering life cycle cost of hybrid system. It is feasible due to low operation and maintenance cost, price declination of battery and Solar PV module, battery prices at time of replacement.展开更多
To enhance system stability,solar collectors have been integrated with air-source heat pumps.This integration facilitates the concurrent utilization of solar and air as energy sources for the system,leading to an impr...To enhance system stability,solar collectors have been integrated with air-source heat pumps.This integration facilitates the concurrent utilization of solar and air as energy sources for the system,leading to an improvement in the system’s heat generation coefficient,overall efficiency,and stability.In this study,we focus on a residential building located in Lhasa as the target for heating purposes.Initially,we simulate and analyze a solar-air source heat pump combined heating system.Subsequently,while ensuring the system meets user requirements,we examine the influence of solar collector installation angles and collector area on the performance of the solar-air source heat pump dual heating system.Through this analysis,we determine the optimal installation angle and collector area to optimize system performance.展开更多
A simple model of chromatographic mechanical mechanism is present, and then a scrics of theoretical chromatographic equations and fundamental Formulae are derived. These theoretical equations and formulae not only res...A simple model of chromatographic mechanical mechanism is present, and then a scrics of theoretical chromatographic equations and fundamental Formulae are derived. These theoretical equations and formulae not only reserve thermodynamic characteristics in the current fundamental chromatographic formulae, but also introduce one or more kinetic parameter, so it is possible to make the macroscopic-control on the effect of kinetic characteristics on chromatographic system.展开更多
Solar flare prediction is an important subject in the field of space weather.Deep learning technology has greatly promoted the development of this subject.In this study,we propose a novel solar flare forecasting model...Solar flare prediction is an important subject in the field of space weather.Deep learning technology has greatly promoted the development of this subject.In this study,we propose a novel solar flare forecasting model integrating Deep Residual Network(ResNet)and Support Vector Machine(SVM)for both≥C-class(C,M,and X classes)and≥M-class(M and X classes)flares.We collected samples of magnetograms from May 1,2010 to September 13,2018 from Space-weather Helioseismic and Magnetic Imager(HMI)Active Region Patches and then used a cross-validation method to obtain seven independent data sets.We then utilized five metrics to evaluate our fusion model,based on intermediate-output extracted by ResNet and SVM using the Gaussian kernel function.Our results show that the primary metric true skill statistics(TSS)achieves a value of 0.708±0.027 for≥C-class prediction,and of 0.758±0.042 for≥M-class prediction;these values indicate that our approach performs significantly better than those of previous studies.The metrics of our fusion model’s performance on the seven datasets indicate that the model is quite stable and robust,suggesting that fusion models that integrate an excellent baseline network with SVM can achieve improved performance in solar flare prediction.Besides,we also discuss the performance impact of architectural innovation in our fusion model.展开更多
Based on the physical chemistry principle, this paper proposes that the surface adsorption catalytic mechanism of HF is the key to dissolving the oscillation of the CaF\-2\|HCl\|H\-2O solid\|liquid reaction system. Me...Based on the physical chemistry principle, this paper proposes that the surface adsorption catalytic mechanism of HF is the key to dissolving the oscillation of the CaF\-2\|HCl\|H\-2O solid\|liquid reaction system. Meanwhile the dynamical model of this system has been established in order to study its non\|linear dynamical genesis. Although this mathematics model is based on CSTR reaction apparatus, it is applicable to the foliate flow reaction apparatus, too.展开更多
Understanding the mesoscopic tensile fracture damage of rock is the basis of evaluating the deterioration process of mechanical properties of heat-damaged rock. For this, tensile tests of rocks under high-temperature ...Understanding the mesoscopic tensile fracture damage of rock is the basis of evaluating the deterioration process of mechanical properties of heat-damaged rock. For this, tensile tests of rocks under high-temperature treatment were conducted with a ϕ75 mm split Hopkinson tension bar (SHTB) to investigate the mesoscopic fracture and damage properties of rock. An improved scanning electron microscopy (SEM) experimental method was used to analyze the tensile fracture surfaces of rock samples. Qualitative and quantitative analyses were performed to assess evolution of mesoscopic damage of heat-damaged rock under tensile loading. A constitutive model describing the mesoscopic fractal damage under thermo-mechanical coupling was established. The results showed that the high temperatures significantly reduced the tensile strength and fracture surface roughness of the red sandstone. The three-dimensional (3D) reconstruction of the fracture surface of the samples that experienced tensile failure at 900 °C showed a flat surface. The standard deviation of elevation and slope angle of specimen fracture surface first increased and then decreased with increasing temperature. The threshold for brittle fracture of the heat-damaged red sandstone specimens was 600 °C. Beyond this threshold temperature, local ductile fracture occurred, resulting in plastic deformation of the fracture surface during tensile fracturing. With increase of temperature, the internal meso-structure of samples was strengthened slightly at first and then deteriorated gradually, which was consistent with the change of macroscopic mechanical properties of red sandstone. The mesoscopic characteristics, such as the number, mean side length, maximum area, porosity, and fractal dimension of crack, exhibited an initial decline, followed by a gradual increase. The development of microcracks in samples had significant influence on mesoscopic fractal dimension. The mesoscopic fractal characteristics were used to establish a mesoscopic fractal damage constitutive model for red sandstone, and the agreement between the theoretical and experimental results validated the proposed model.展开更多
A deep understanding of the internal ballistic process and the factors affecting it is of primary importance to efficiently design a gun system and ensure its safe management. One of the main goals of internal ballist...A deep understanding of the internal ballistic process and the factors affecting it is of primary importance to efficiently design a gun system and ensure its safe management. One of the main goals of internal ballistics is to estimate the gas pressure into the combustion chamber and the projectile muzzle velocity in order to use the propellant to its higher efficiency while avoiding over-pressure phenomena. Dealing with the internal ballistic problem is a complex undertaking since it requires handling the interaction between different constituents during a transient time lapse with very steep rise of pressure and temperature. Several approaches have been proposed in the literature, based on different assumptions and techniques. Generally, depending on the used mathematical framework, they can be classified into two categories: computational fluid dynamics-based models and lumped-parameter ones. By focusing on gun systems, this paper offers a review of the main contributions in the field by mentioning their advantages and drawbacks. An insight into the limitations of the currently available modelling strategies is provided,as well as some considerations on the choice of one model over another. Lumped-parameter models, for example, are a good candidate for performing parametric analysis and optimisation processes of gun systems, given their minimum requirements of computer resources. Conversely, CFD-based models have a better capacity to address more sophisticated phenomena like pressure waves and turbulent flow effects. The performed review also reveals that too little attention has been given to small calibre guns since the majority of currently available models are conceived for medium and large calibre gun systems.Similarly, aspects like wear phenomena, bore deformations or projectile-barrel interactions still need to be adequately addressed and our suggestion is to dedicate more effort on it.展开更多
Grain boundaries(GBs)in perovskite polycrystalline films are the most sensitive place for the formation of the defect states and the accumulation of impurities.Thus,abundant works have been carried out to explore thei...Grain boundaries(GBs)in perovskite polycrystalline films are the most sensitive place for the formation of the defect states and the accumulation of impurities.Thus,abundant works have been carried out to explore their properties and then try to solve the induced problems.Currently,two important issues remain.First,the role of GBs in charge carrier dynamics is unclear due to their component complexity/defect tolerance nature and the insufficiency in testing accuracy.Some works conclude that GBs are benign,while others consider GBs as carrier recombination centers.Things for sure are the deterioration in ion transport and perovskite decomposition.Second,to solve the known hazards of GBs,a lot of additives have been added to anchoring ions and passivate defects.But in most of those works,GBs and perovskite surfaces are treated in the same manner ignoring the fact that GB is essentially a homogeneous junction in a narrow and slender space,while surface is a heterogeneous junction with a stratified structure.In this review,we focus on works insight into GBs and additives for them.Additionally,we also discuss the prospects of the maturity of GB exploration toward upscaling the manufacture of perovskite photovoltaic and related optoelectronic devices.展开更多
The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The bas...The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The basic parameters of sandstone are determined through a series of static and dynamic tests,including uniaxial compression,Brazilian disc,triaxial compression under varying confining pressures,hydrostatic compression,and dynamic compression and tensile tests with a split Hopkinson pressure bar.Based on the sandstone test results from this study and previous research,a step-by-step procedure for parameter calibration is outlined,which accounts for the categories of the strength surface,equation of state(EOS),strain rate effect,and damage.The calibrated parameters are verified through numerical tests that correspond to the experimental loading conditions.Consistency between numerical results and experimental data indicates the precision and reliability of the calibrated parameters.The methodology presented in this study is scientifically sound,straightforward,and essential for improving the TSID model.Furthermore,it has the potential to contribute to other rock constitutive models,particularly new user-defined models.展开更多
Because of significantly changed load and complex and variable driving road conditions of commercial vehicles,pneumatic suspension with lower natural frequencies is widely used in commercial vehicle suspension system....Because of significantly changed load and complex and variable driving road conditions of commercial vehicles,pneumatic suspension with lower natural frequencies is widely used in commercial vehicle suspension system.How ever,traditional pneumatic suspension system is hardly to respond the greatly changed load of commercial vehicles To address this issue,a new Gas-Interconnected Quasi-Zero Stiffness Pneumatic Suspension(GIQZSPS)is presented in this paper to improve the vibration isolation performance of commercial vehicle suspension systems under frequent load changes.This new structure adds negative stiffness air chambers on traditional pneumatic suspension to reduce the natural frequency of the suspension.It can adapt to different loads and road conditions by adjusting the solenoid valves between the negative stiffness air chambers.Firstly,a nonlinear mechanical model including the dimensionless stiffness characteristic and interconnected pipeline model is derived for GIQZSPS system.By the nonlinear mechanical model of GIQZSPS system,the force transmissibility rate is chosen as the evaluation index to analyze characteristics.Furthermore,a testing bench simulating 1/4 GIQZSPS system is designed,and the testing analysis of the model validation and isolating performance is carried out.The results show that compared to traditional pneumatic suspension,the GIQZSPS designed in the article has a lower natural frequency.And the system can achieve better vibration isolation performance under different load states by switching the solenoid valves between air chambers.展开更多
基金This study was supported by the National Natural Science Foundation of China(U20A20148)the Major Science and Technology Projects of the Xizang(Tibet)Autonomous Region(XZ202201ZD0004G and XZ202201ZD0004G01).
文摘This research optimized the structure of lithium extraction solar ponds to enhance the crystallization rate and yield of Li_(2)CO_(3).Using the response surface methodology in Design-Expert 10.0.3,the authors conducted experiments to investigate the influence of four factors related to solar pond structure on the crystallization of Li_(2)CO_(3) and their pairwise interactions.Computational Fluid Dynamics(CFD)simulations of the flow field within the solar pond were performed using COMSOL Multiphysics software to compare temperature distributions before and after optimization.The results indicate that the optimal structure for lithium extraction from the Zabuye Salt Lake solar ponds includes UCZ(Upper Convective Zone)thickness of 53.63 cm,an LCZ(Lower Convective Zone)direct heating temperature of 57.39℃,a CO32−concentration of 32.21 g/L,and an added soda ash concentration of 6.52 g/L.Following this optimized pathway,the Li_(2)CO_(3) precipitation increased by 7.34% compared to the initial solar pond process,with a 33.33% improvement in lithium carbonate crystallization rate.This study demonstrates the feasibility of optimizing lithium extraction solar pond structures,offering a new approach for constructing such ponds in salt lakes.It provides valuable guidance for the efficient extraction of lithium resources from carbonate-type salt lake brines.
基金funded by the DRTPM of the Indonesian Ministry of Education and Culture with contract number 15455/UN19.5.1.3/AL04.2023.
文摘This study aims to develop a system dynamic(SD)forecasting model based on the STIRPAT model to forecast the effect of an IDR 30 per kg CO_(2)e carbon tax on carbon emissions,estimate future carbon emissions under ten scenarios,without and with the carbon tax,and estimate the environmental Kuznets curve(EKC)to predict Indonesia’s carbon emission peak.Carbon emission drivers in this study are decomposed into several factors,namely energy structure,energy intensity,industrial structure,GDP per capita,population,and fixed-asset investment.This study included nuclear power utilization starting in 2038.The research gaps addressed by this study compared to previous research are(1)use of the ex-ante approach,(2)inclusion of nuclear power plants,(3)testing the EKC hypothesis,and(4)contribution to government policy.The simulation results show that under the carbon tax,carbon emissions can be reduced by improving renewable energy structures,adjusting industrial structures to green businesses,and emphasizing fixed asset investment more environmentally friendly.Moreover,the result approved the EKC hypothesis.It shows an inverse U-shaped curve between GDP per capita and CO_(2)emissions in Indonesia.Indonesia’s fastest carbon emission peak is under scenario seven and is expected in 2040.Although an IDR 30 per kg CO_(2)e carbon tax and nuclear power will take decades to reduce carbon emissions,the carbon tax can still be a reference and has advantages to implement.This result can be a good beginning step for Indonesia,which has yet to gain experience with a carbon tax that can be implemented immediately and is helpful to decision-makers in putting into practice sensible measures to attain Indonesia’s carbon emission peaking.This research provides actionable insights internationally on carbon tax policies,nuclear energy adoption,EKC dynamics,global policy implications,and fostering international cooperation for carbon emission reductions.
基金supported by the National Natural Science Foundation of China(project no.42375192),and the China Meteorological Administration Climate Change Special Program(CMA-CCSPproject no.QBZ202315)+2 种基金supported by the National Natural Science Foundation of China(project no.42030608)supported by the National Research,Development and Innovation Fund,project no.OTKA-FK 142702by the Hungarian Academy of Sciences through the Sustainable Development and Technologies National Programme(FFT NP FTA)and the János Bolyai Research Scholarship.
文摘Owing to the persisting hype in pushing toward global carbon neutrality,the study scope of atmospheric science is rapidly expanding.Among numerous trending topics,energy meteorology has been attracting the most attention hitherto.One essential skill of solar energy meteorologists is solar power curve modeling,which seeks to map irradiance and auxiliary weather variables to solar power,by statistical and/or physical means.In this regard,this tutorial review aims to deliver a complete overview of those fundamental scientific and engineering principles pertaining to the solar power curve.Solar power curves can be modeled in two primary ways,one of regression and the other of model chain.Both classes of modeling approaches,alongside their hybridization and probabilistic extensions,which allow accuracy improvement and uncertainty quantification,are scrutinized and contrasted thoroughly in this review.
文摘The dual-rotor structure serves as the primary source of vibration in aero-engines. Understanding itsdynamical model and analyzing dynamic characteristics, such as critical speed and unbalanced response, arecrucial for rotor system dynamics. Previous work introduced a coaxial dual-rotor-support scheme for aeroengines,and a physical model featuring a high-speed flexible inner rotor with a substantial length-to-diameter ratiowas designed. Then a finite element (FE) dynamic model based on the Timoshenko beam elements and rigid bodykinematics of the dual-rotor system is modeled, with the Newmark method and Newton–Raphson method used forthe numerical calculation to study the dynamic characteristics of the system. Three different simulation models,including beam-based FE (1D) model, solid-based FE (3D) model, and transfer matrix model, were designed tostudy the characteristics of mode and the critical speed characteristic of the dual-rotor system. The unbalancedresponse of the dual-rotor system was analyzed to study the influence of mass unbalance on the rotor system. Theeffect of different disk unbalance phases and different speed ratios on the dynamic characteristics of the dual-rotorsystem was investigated in detail. The experimental result shows that the beam-based FE model is effective andsuitable for studying the dual-rotor system.
基金National Natural Science Foundation of Sichuan Province(Project No.:2022NSFSC1645)Key R&D Program Project of Xinjiang Province(Project No.:2023B02020)National Agricultural Science and Technology Innovation System Sichuan Characteristic Vegetable Innovation Team Project,Sichuan Innovation Team Program of CARS(Project No.:SCCXTD-2024-22)。
文摘In order to explore the influence of water velocity on the heat collection performance of the active heat storage and release system for solar greenhouses,six different flow rates were selected for treatment in this experiment.The comprehensive heat transfer coefficient of the active heat storage and release system at the heat collection stage was calculated by measuring the indoor solar radiation intensity,indoor air temperature and measured water tank temperature.The prediction model of water temperature in the heat collection stage was established,and the initial value of water temperature and the comprehensive heat transfer coefficient were input through MATLAB software.The simulated value of water temperature was compared with the measured value and the results showed that the best heat transfer effect could be achieved when the water flow speed was 1.0 m3h-1.The average relative error between the simulated water tank temperature and the measured value is 2.70-6.91%.The results indicate that the model is established correctly,and the variation trend of water temperature can be predicted according to the model in the heat collection stage.
基金supported by the National Natural Science Foundation of China(Nos.10972151,11272227)the Innovation Program for Scientific Research of Nanjing University of Science and Technology
文摘With the action of small perturbation on generalized El-Nabulsi-Birkhoff fractional equations,the perturbation to Noether symmetries and adiabatic invariants are studied under the framework of El-Nabulsi′s fractional model.Firstly,based on the invariance of El-Nabulsi-Pfaff action under the infinitesimal transformations of group,the exact invariants are given.Secondly,on the basis of the definition of higher order adiabatic invariants of a dynamical system,the adiabatic invariants of the Noether symmetric perturbation for disturbed generalized El-Nabulsi′s fractional Birkhoff system are presented under some conditions,and some special cases are discussed.Finally,an example known as Hojman-Urrutia problem is given to illustrate the application of the results.
基金jointly supported by the National Natural Science Foundation of China (Grant Nos. 40805028, 40675039 and 40575036)the Meteorological Special Project (GYHY200806005)the National Science and Technology Support Program of China (2006BAC02B04 and 2007BAC29B03)
文摘The theoretical basis and application of an analogue-dynamical model (ADM) in the Lorenz system is studied. The ADM can effectively combine statistical and dynamical methods in which the small disturbance of the current initial value superimposed on the historical analogue reference state can be regarded as a prediction objective. Primary analyses show that under the condition of appending disturbances in model parameters, the model errors of ADM are much smaller than those of the pure dynamical model (PDM). The characteristics of predictability on the ADM in the Lorenz system are analyzed in phase space by conducting case studies and global experiments. The results show that the ADM can quite effectively reduce prediction errors and prolong the valid time of the prediction in most situations in contrast to the PDM, but when model errors are considerably small, the latter will be superior to the former. To overcome such a problem, the multi-reference-state updating can be applied to introduce the information of multi-analogue and update analogue and can exhibit exciting performance in the ADM.
基金Project supported by the Doctoral Initial Fund of Beijing University of Technology,China (Grant No. X0006015201101)the National Natural Science Foundation of China (Grant No. 10804005)
文摘A metal plate cooling model for 400~ single concentrator solar cells was established. The effects of the thickness and the radius of the metal plate, and the air environment on the temperature of the solar cells were analyzed in detail. It is shown that the temperature of the solar cells decreased sharply at the beginning, with the increase in the thickness of the metal plate, and then changed more smoothly. When the radius of the metal plate was 4 cm and the thickness increased to 2 mm or thicker, the temperature of the solar cell basically stabilized at about 53℃. Increasing the radius of the metal plate and the convective transfer coefficient made the temperature of the solar cell decrease remarkably. The effects of A1 and Cu as the metal plate material on cooling were analyzed contrastively, and demonstrated the superiority of A1 material for the cooling system. Furthermore, considering cost reduction, space holding and the stress of the system, we optimized the structural design of the metal plate. The simulated results can be referred to the design of the structure for the metal plate. Finally, a method to devise the structure of the metal plate for single concentrator solar cells was given.
基金the National Natural Science Foundation of China(No.19832040)
文摘Based on the deformation theory of elastic beams, the coupling effect between the coupling displacements of a point on the middle line of beam and large overall motion is presented. The 'coupling matrix library' and Jourdain's variation principle and single direction recursive formulation method are used to establish the general coupling dynamical equations of flexible multibody system. Two typical examples show the coupling effect between coupling displacements and large overall motion on the dynamics of flexible multibody system consisting of beams.
文摘Uttarakhand state comes under special category state where approximately 69.45% population lived in rural area under the population density with varied range of 37 to 607 persons per sq.km. Although Uttarakhand is having per capita consumption of 1112.29 kWh which is higher than national average per capita consumption of 779 kWh as till date, but remote communities, villages are not able to access clean, cheep and good quality of energy due to uneven terrain, lack of proper transmission & distribution lines [1]. 100% villages are electrified under the RGGVY scheme as per the Ministry of Power Government of India, but due to poor loading of transformer, lack of grid infrastructure and natural calamities, remote house owners are not able to get good quality of power thus affect the livelihood and source of income generation in various means [2]. As Uttarakhand state having future plans to be make state energy sufficient and energy access to all by year 2016-2017, so major ground level initiative have been taken by Government of Uttarakhand. The government of Uttarakhand has incorporated innovative business model to provide good quality of power with non-conventional energy source. Under the initiative invlovement of local people and village level, panchayats have ownership and responsibility to operate these clean energy business model to improve livelihood in remote hilly places of Uttarakhand. Under this analysis, five different type of community models are categorized as Community 1, Community 2, Community 3, Standalone 1 & Standalone 2 for rural &remote communities based on number of unclustered households with the distance covered between 200 m to 20 km, and electrical loads i.e. lighting, fan, mobile chargers, television along with time of day energy consumption patterns. These community models are for remote hilly location where grid integration and distribution lines are not feasible to built due to hilly terrain, low soil strength and huge expenses for expanding power cables for supplying good quality power. The preliminary studies and simulations has been done in HOMER tool by considering the various composite source of power, i.e. Solar PV with battery bank, Solar PV with battery Bank & Generator, and Solar PV along with DG. These three hybrid source of power generation with Solar PV as base source under five different community models, the techno-commercial feasibility has been analyzed in terms of load sharing proposition with Solar PV and battery, DG, Energy production through PV, load consumption per year, Excess and unmet energy monitoring, battery sizing to meet the load during nights, DG operation when the solar energy not available due to weather condition and non availability of sunshine in night. Financial feasibility has been examined in terms of levelized cost of energy, cost summary and O&M cost per year of three integrated sources of energy generation with Solar PV under each community model. Solar PV power plant , which is the best renewable source of energy to cater energy access issue in remote hilly places. The Uttarakhand receives good amout of daily average radiation level of 5.14 - 5.50 kWh/m2/day. Financial feasible community models for different hilly region based on their energy consumption need to be implemented with the help of local community by providing ownership to local people, panchayat, for it not only caters energy access issue but also provides clean, cheep, uninterruptable energy and improves livelihood standard to locals by engaging them into operation maintenance and tariff or rent collection. The study shows that Solar PV power plant with battery bank is the optimal solution considering life cycle cost of hybrid system. It is feasible due to low operation and maintenance cost, price declination of battery and Solar PV module, battery prices at time of replacement.
文摘To enhance system stability,solar collectors have been integrated with air-source heat pumps.This integration facilitates the concurrent utilization of solar and air as energy sources for the system,leading to an improvement in the system’s heat generation coefficient,overall efficiency,and stability.In this study,we focus on a residential building located in Lhasa as the target for heating purposes.Initially,we simulate and analyze a solar-air source heat pump combined heating system.Subsequently,while ensuring the system meets user requirements,we examine the influence of solar collector installation angles and collector area on the performance of the solar-air source heat pump dual heating system.Through this analysis,we determine the optimal installation angle and collector area to optimize system performance.
文摘A simple model of chromatographic mechanical mechanism is present, and then a scrics of theoretical chromatographic equations and fundamental Formulae are derived. These theoretical equations and formulae not only reserve thermodynamic characteristics in the current fundamental chromatographic formulae, but also introduce one or more kinetic parameter, so it is possible to make the macroscopic-control on the effect of kinetic characteristics on chromatographic system.
基金supported by the National Key R&D Program of China (Grant No.2022YFF0503700)the National Natural Science Foundation of China (42074196, 41925018)
文摘Solar flare prediction is an important subject in the field of space weather.Deep learning technology has greatly promoted the development of this subject.In this study,we propose a novel solar flare forecasting model integrating Deep Residual Network(ResNet)and Support Vector Machine(SVM)for both≥C-class(C,M,and X classes)and≥M-class(M and X classes)flares.We collected samples of magnetograms from May 1,2010 to September 13,2018 from Space-weather Helioseismic and Magnetic Imager(HMI)Active Region Patches and then used a cross-validation method to obtain seven independent data sets.We then utilized five metrics to evaluate our fusion model,based on intermediate-output extracted by ResNet and SVM using the Gaussian kernel function.Our results show that the primary metric true skill statistics(TSS)achieves a value of 0.708±0.027 for≥C-class prediction,and of 0.758±0.042 for≥M-class prediction;these values indicate that our approach performs significantly better than those of previous studies.The metrics of our fusion model’s performance on the seven datasets indicate that the model is quite stable and robust,suggesting that fusion models that integrate an excellent baseline network with SVM can achieve improved performance in solar flare prediction.Besides,we also discuss the performance impact of architectural innovation in our fusion model.
文摘Based on the physical chemistry principle, this paper proposes that the surface adsorption catalytic mechanism of HF is the key to dissolving the oscillation of the CaF\-2\|HCl\|H\-2O solid\|liquid reaction system. Meanwhile the dynamical model of this system has been established in order to study its non\|linear dynamical genesis. Although this mathematics model is based on CSTR reaction apparatus, it is applicable to the foliate flow reaction apparatus, too.
基金supported by The National Natural Science Foundation of China(Grant Nos.12272411 and 42007259).
文摘Understanding the mesoscopic tensile fracture damage of rock is the basis of evaluating the deterioration process of mechanical properties of heat-damaged rock. For this, tensile tests of rocks under high-temperature treatment were conducted with a ϕ75 mm split Hopkinson tension bar (SHTB) to investigate the mesoscopic fracture and damage properties of rock. An improved scanning electron microscopy (SEM) experimental method was used to analyze the tensile fracture surfaces of rock samples. Qualitative and quantitative analyses were performed to assess evolution of mesoscopic damage of heat-damaged rock under tensile loading. A constitutive model describing the mesoscopic fractal damage under thermo-mechanical coupling was established. The results showed that the high temperatures significantly reduced the tensile strength and fracture surface roughness of the red sandstone. The three-dimensional (3D) reconstruction of the fracture surface of the samples that experienced tensile failure at 900 °C showed a flat surface. The standard deviation of elevation and slope angle of specimen fracture surface first increased and then decreased with increasing temperature. The threshold for brittle fracture of the heat-damaged red sandstone specimens was 600 °C. Beyond this threshold temperature, local ductile fracture occurred, resulting in plastic deformation of the fracture surface during tensile fracturing. With increase of temperature, the internal meso-structure of samples was strengthened slightly at first and then deteriorated gradually, which was consistent with the change of macroscopic mechanical properties of red sandstone. The mesoscopic characteristics, such as the number, mean side length, maximum area, porosity, and fractal dimension of crack, exhibited an initial decline, followed by a gradual increase. The development of microcracks in samples had significant influence on mesoscopic fractal dimension. The mesoscopic fractal characteristics were used to establish a mesoscopic fractal damage constitutive model for red sandstone, and the agreement between the theoretical and experimental results validated the proposed model.
基金the support provided by the Royal Higher Institute for Defence (RHID) of the Belgian Defence, which has contributed to the progress of this ongoing research.
文摘A deep understanding of the internal ballistic process and the factors affecting it is of primary importance to efficiently design a gun system and ensure its safe management. One of the main goals of internal ballistics is to estimate the gas pressure into the combustion chamber and the projectile muzzle velocity in order to use the propellant to its higher efficiency while avoiding over-pressure phenomena. Dealing with the internal ballistic problem is a complex undertaking since it requires handling the interaction between different constituents during a transient time lapse with very steep rise of pressure and temperature. Several approaches have been proposed in the literature, based on different assumptions and techniques. Generally, depending on the used mathematical framework, they can be classified into two categories: computational fluid dynamics-based models and lumped-parameter ones. By focusing on gun systems, this paper offers a review of the main contributions in the field by mentioning their advantages and drawbacks. An insight into the limitations of the currently available modelling strategies is provided,as well as some considerations on the choice of one model over another. Lumped-parameter models, for example, are a good candidate for performing parametric analysis and optimisation processes of gun systems, given their minimum requirements of computer resources. Conversely, CFD-based models have a better capacity to address more sophisticated phenomena like pressure waves and turbulent flow effects. The performed review also reveals that too little attention has been given to small calibre guns since the majority of currently available models are conceived for medium and large calibre gun systems.Similarly, aspects like wear phenomena, bore deformations or projectile-barrel interactions still need to be adequately addressed and our suggestion is to dedicate more effort on it.
基金supported by the National Natural Science Foundation of China(Nos.52001066,21805039,22005054,21975044,21971038,and 22271046)the Natural Science Foundation of Fujian Province(No.2023J01500)young teacher training program of Fujian Normal University(SDPY2023013).
文摘Grain boundaries(GBs)in perovskite polycrystalline films are the most sensitive place for the formation of the defect states and the accumulation of impurities.Thus,abundant works have been carried out to explore their properties and then try to solve the induced problems.Currently,two important issues remain.First,the role of GBs in charge carrier dynamics is unclear due to their component complexity/defect tolerance nature and the insufficiency in testing accuracy.Some works conclude that GBs are benign,while others consider GBs as carrier recombination centers.Things for sure are the deterioration in ion transport and perovskite decomposition.Second,to solve the known hazards of GBs,a lot of additives have been added to anchoring ions and passivate defects.But in most of those works,GBs and perovskite surfaces are treated in the same manner ignoring the fact that GB is essentially a homogeneous junction in a narrow and slender space,while surface is a heterogeneous junction with a stratified structure.In this review,we focus on works insight into GBs and additives for them.Additionally,we also discuss the prospects of the maturity of GB exploration toward upscaling the manufacture of perovskite photovoltaic and related optoelectronic devices.
基金funded by the National Natural Science Foundation of China(Grant No.12272247)National Key Project(Grant No.GJXM92579)Major Research and Development Project of Metallurgical Corporation of China Ltd.in the Non-Steel Field(Grant No.2021-5).
文摘The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The basic parameters of sandstone are determined through a series of static and dynamic tests,including uniaxial compression,Brazilian disc,triaxial compression under varying confining pressures,hydrostatic compression,and dynamic compression and tensile tests with a split Hopkinson pressure bar.Based on the sandstone test results from this study and previous research,a step-by-step procedure for parameter calibration is outlined,which accounts for the categories of the strength surface,equation of state(EOS),strain rate effect,and damage.The calibrated parameters are verified through numerical tests that correspond to the experimental loading conditions.Consistency between numerical results and experimental data indicates the precision and reliability of the calibrated parameters.The methodology presented in this study is scientifically sound,straightforward,and essential for improving the TSID model.Furthermore,it has the potential to contribute to other rock constitutive models,particularly new user-defined models.
基金Supported by National Natural Science Foundation of China (Grant No.51875256)Open Platform Fund of Human Institute of Technology (Grant No.KFA22009)。
文摘Because of significantly changed load and complex and variable driving road conditions of commercial vehicles,pneumatic suspension with lower natural frequencies is widely used in commercial vehicle suspension system.How ever,traditional pneumatic suspension system is hardly to respond the greatly changed load of commercial vehicles To address this issue,a new Gas-Interconnected Quasi-Zero Stiffness Pneumatic Suspension(GIQZSPS)is presented in this paper to improve the vibration isolation performance of commercial vehicle suspension systems under frequent load changes.This new structure adds negative stiffness air chambers on traditional pneumatic suspension to reduce the natural frequency of the suspension.It can adapt to different loads and road conditions by adjusting the solenoid valves between the negative stiffness air chambers.Firstly,a nonlinear mechanical model including the dimensionless stiffness characteristic and interconnected pipeline model is derived for GIQZSPS system.By the nonlinear mechanical model of GIQZSPS system,the force transmissibility rate is chosen as the evaluation index to analyze characteristics.Furthermore,a testing bench simulating 1/4 GIQZSPS system is designed,and the testing analysis of the model validation and isolating performance is carried out.The results show that compared to traditional pneumatic suspension,the GIQZSPS designed in the article has a lower natural frequency.And the system can achieve better vibration isolation performance under different load states by switching the solenoid valves between air chambers.