The harsh operating environment and complex operating conditions of the mine electric locomotive affect the control performance of the locomotive traction motor.In order to improve the speed control performance of ele...The harsh operating environment and complex operating conditions of the mine electric locomotive affect the control performance of the locomotive traction motor.In order to improve the speed control performance of electric locomotive traction motors,a dynamic fractional-order sliding mode control(DFOSMC)algorithm considering uncertain factors was proposed.A load torque sliding mode observer was designed for the complex load disturbance of the traction motor,and its observations were integrated into the DFOSMC controller to overcome the influence of load disturbance.Finally,the stability of the designed controller was proved by Lyapunov's theorem.Besides,the control performance of DFOSMC controller was compared with integer-order sliding mode controller and fractional-order sliding mode controller through simulation experiments.Compared with integer-order sliding mode and fractional-order sliding mode controllers,the dynamic and static performance of the DFOSMC controller with load observation is better,and it has stronger anti-interference ability.The DFOSMC controller effectively improves the control performance of the traction motor of the mining locomotive.展开更多
Conventional sliding mode control(SMC)has been extensively applied in controlling spacecrafts because of its appealing characteristics such as robustness and a simple design procedure.Several methods such as second-or...Conventional sliding mode control(SMC)has been extensively applied in controlling spacecrafts because of its appealing characteristics such as robustness and a simple design procedure.Several methods such as second-order sliding modes and discontinuous controllers are applied for the SMC implementation.However,the main problems of these methods are convergence and error tracking in a finite amount of time.This paper combines an improved dynamic sliding mode controller and model predictive controller for spacecrafts to solve the chattering phenomenon in traditional sliding mode control.To this aim,this paper develops dynamic sliding mode control for spacecraft’s applications to omit the chattering issue.The proposed approach shows robust attitude tracking by a set of reaction wheels and stabilizes the spacecraft subject to disturbances and uncertainties.The proposed method improves the performance of the SMC for spacecraft by avoiding chattering.A set of simulation results are provided that show the advantages and improvements of this approach(in some sense)compared to SMC approaches.展开更多
The trajectory tracking control problem for underactuated unmanned surface vehicles(USV) was addressed, and the control system took account of the uncertain influences induced by model perturbation, external disturban...The trajectory tracking control problem for underactuated unmanned surface vehicles(USV) was addressed, and the control system took account of the uncertain influences induced by model perturbation, external disturbance, etc. By introducing the reference, trajectory was generated by a virtual USV, and the error equation of trajectory tracking for USV was obtained, which transformed the tracking problem of underactuated USV into the stabilization problem of the trajectory tracking error equation. A backstepping adaptive sliding mode controller was proposed based on backstepping technology and method of dynamic slide model control. By means of theoretical analysis, it is proved that the proposed controller ensures that the solutions of closed loop system have the ultimate boundedness property. Simulation results are presented to illustrate the effectiveness of the proposed controller.展开更多
The path following problem for an underactuated unmanned surface vehicle(USV) in the Serret-Frenet frame is addressed. The control system takes account of the uncertain influence induced by model perturbation, externa...The path following problem for an underactuated unmanned surface vehicle(USV) in the Serret-Frenet frame is addressed. The control system takes account of the uncertain influence induced by model perturbation, external disturbance, etc. By introducing the Serret-Frenet frame and global coordinate transformation, the control problem of underactuated system(a nonlinear system with single-input and ternate-output) is transformed into the control problem of actuated system(a single-input and single-output nonlinear system), which simplifies the controller design. A backstepping adaptive sliding mode controller(BADSMC)is proposed based on backstepping design technique, adaptive method and theory of dynamic slide model control(DSMC). Then, it is proven that the state of closed loop system is globally stabilized to the desired configuration with the proposed controller. Simulation results are presented to illustrate the effectiveness of the proposed controller.展开更多
This article presents a complete nonlinear controller design for a class of spin-stabilized canard-controlled projectiles.Uniformly ultimate boundedness and tracking are achieved,exploiting a heavily coupled,bounded u...This article presents a complete nonlinear controller design for a class of spin-stabilized canard-controlled projectiles.Uniformly ultimate boundedness and tracking are achieved,exploiting a heavily coupled,bounded uncertain and highly nonlinear model of longitudinal and lateral dynamics.In order to estimate unmeasurable states,an observer is proposed for an augmented multiple-input-multiple-output(MIMO) nonlinear system with an adaptive sliding mode term against the disturbances.Under the frame of a backstepping design,an adaptive sliding mode output-feedback dynamic surface control(DSC) approach is derived recursively by virtue of the estimated states.The DSC technique is adopted to overcome the problem of ‘‘explosion of complexity" and relieve the stress of the guidance loop.It is proven that all signals of the MIMO closed-loop system,including the observer and controller,are uniformly ultimately bounded,and the tracking errors converge to an arbitrarily small neighborhood of the origin.Simulation results for the observer and controller are provided to illustrate the feasibility and effectiveness of the proposed approach.展开更多
The problem of designing integrated traffic control strategies for highway networks with the use of route guidance, ramp metering is considered. The highway network is simulated using a first order macroscopic model c...The problem of designing integrated traffic control strategies for highway networks with the use of route guidance, ramp metering is considered. The highway network is simulated using a first order macroscopic model called LWR model which is a mathematical traffic flow model that formulates the relationships among traffic flow characteristics in terms of density, flow, and mean speed of the traffic stream. An integrated control algorithm is designed to solve the proposed problem, based on the inverse control technique and variable structure control(super twisting sliding mode). Three case studies have been tested in the presence of an on-ramp at each alternate route and where there is a capacity constraint in the network. In the first case study, there is no capacity constraint at either upstream or downstream of the alternate routes and the function of the proposed algorithm is only to balance the traffic flow on the alternate routes. In the second case study, there is capacity constraint at downstream of alternate routes. The proposed algorithm aims to avoid congestion on the main road and balance the traffic flow on the alternate routes. In the last case study, there is capacity constraint at upstream of alternate routes. The objective of proposed algorithm is to avoid congestion on the main road and to balance the traffic flow on the alternate routes. The obtained results show that the proposed algorithms can establish user equilibrium between two alternate routes even when the on-ramps, located at alternate routes, have different traffic demands.展开更多
This paper addresses the predefined-time bipartite tracking problem for second-order Multi-Agent Systems(MASs)with undirected signed topologies.A group of observers,which can estimate the state tracking errors for eac...This paper addresses the predefined-time bipartite tracking problem for second-order Multi-Agent Systems(MASs)with undirected signed topologies.A group of observers,which can estimate the state tracking errors for each follower in a pre-specified time,is proposed based on the time-varying function.In order to deal with the uncertainties caused by the unknown disturbances and the unknown input signal of the leader,we propose a predefined-time distributed control protocol based on the sliding mode control method.In addition,an auxiliary dynamic sliding variable is designed to reduce system chattering.Wetheoretically prove that the two control protocols can drive the state trajectories of each follower to reach the corresponding sliding surface within a specified time,and finally ensure that the prescribed-time bipartite tracking consensus is achieved for the MASs.Simulations are provided to verify the proposed schemes,and the simulation results further confirm the superiority of the adaptive control protocol.展开更多
基金National Natural Science Foundation of China(No.51867012)。
文摘The harsh operating environment and complex operating conditions of the mine electric locomotive affect the control performance of the locomotive traction motor.In order to improve the speed control performance of electric locomotive traction motors,a dynamic fractional-order sliding mode control(DFOSMC)algorithm considering uncertain factors was proposed.A load torque sliding mode observer was designed for the complex load disturbance of the traction motor,and its observations were integrated into the DFOSMC controller to overcome the influence of load disturbance.Finally,the stability of the designed controller was proved by Lyapunov's theorem.Besides,the control performance of DFOSMC controller was compared with integer-order sliding mode controller and fractional-order sliding mode controller through simulation experiments.Compared with integer-order sliding mode and fractional-order sliding mode controllers,the dynamic and static performance of the DFOSMC controller with load observation is better,and it has stronger anti-interference ability.The DFOSMC controller effectively improves the control performance of the traction motor of the mining locomotive.
文摘Conventional sliding mode control(SMC)has been extensively applied in controlling spacecrafts because of its appealing characteristics such as robustness and a simple design procedure.Several methods such as second-order sliding modes and discontinuous controllers are applied for the SMC implementation.However,the main problems of these methods are convergence and error tracking in a finite amount of time.This paper combines an improved dynamic sliding mode controller and model predictive controller for spacecrafts to solve the chattering phenomenon in traditional sliding mode control.To this aim,this paper develops dynamic sliding mode control for spacecraft’s applications to omit the chattering issue.The proposed approach shows robust attitude tracking by a set of reaction wheels and stabilizes the spacecraft subject to disturbances and uncertainties.The proposed method improves the performance of the SMC for spacecraft by avoiding chattering.A set of simulation results are provided that show the advantages and improvements of this approach(in some sense)compared to SMC approaches.
基金Project(51409061)supported by the National Natural Science Foundation of ChinaProject(2013M540271)supported by China Postdoctoral Science Foundation+1 种基金Project(LBH-Z13055)Supported by Heilongjiang Postdoctoral Financial Assistance,ChinaProject(HEUCFD1403)supported by Basic Research Foundation of Central Universities,China
文摘The trajectory tracking control problem for underactuated unmanned surface vehicles(USV) was addressed, and the control system took account of the uncertain influences induced by model perturbation, external disturbance, etc. By introducing the reference, trajectory was generated by a virtual USV, and the error equation of trajectory tracking for USV was obtained, which transformed the tracking problem of underactuated USV into the stabilization problem of the trajectory tracking error equation. A backstepping adaptive sliding mode controller was proposed based on backstepping technology and method of dynamic slide model control. By means of theoretical analysis, it is proved that the proposed controller ensures that the solutions of closed loop system have the ultimate boundedness property. Simulation results are presented to illustrate the effectiveness of the proposed controller.
基金Project(51409061)supported by the National Natural Science Foundation of ChinaProject(2013M540271)supported by China Postdoctoral Science Foundation+1 种基金Project(LBH-Z13055)supported by Heilongjiang Postdoctoral Financial Assistance,ChinaProject(HEUCFD1403)supported by Basic Research Foundation of Central Universities,China
文摘The path following problem for an underactuated unmanned surface vehicle(USV) in the Serret-Frenet frame is addressed. The control system takes account of the uncertain influence induced by model perturbation, external disturbance, etc. By introducing the Serret-Frenet frame and global coordinate transformation, the control problem of underactuated system(a nonlinear system with single-input and ternate-output) is transformed into the control problem of actuated system(a single-input and single-output nonlinear system), which simplifies the controller design. A backstepping adaptive sliding mode controller(BADSMC)is proposed based on backstepping design technique, adaptive method and theory of dynamic slide model control(DSMC). Then, it is proven that the state of closed loop system is globally stabilized to the desired configuration with the proposed controller. Simulation results are presented to illustrate the effectiveness of the proposed controller.
基金supported by the National Natural Science Foundation of China(No.11532002)
文摘This article presents a complete nonlinear controller design for a class of spin-stabilized canard-controlled projectiles.Uniformly ultimate boundedness and tracking are achieved,exploiting a heavily coupled,bounded uncertain and highly nonlinear model of longitudinal and lateral dynamics.In order to estimate unmeasurable states,an observer is proposed for an augmented multiple-input-multiple-output(MIMO) nonlinear system with an adaptive sliding mode term against the disturbances.Under the frame of a backstepping design,an adaptive sliding mode output-feedback dynamic surface control(DSC) approach is derived recursively by virtue of the estimated states.The DSC technique is adopted to overcome the problem of ‘‘explosion of complexity" and relieve the stress of the guidance loop.It is proven that all signals of the MIMO closed-loop system,including the observer and controller,are uniformly ultimately bounded,and the tracking errors converge to an arbitrarily small neighborhood of the origin.Simulation results for the observer and controller are provided to illustrate the feasibility and effectiveness of the proposed approach.
文摘The problem of designing integrated traffic control strategies for highway networks with the use of route guidance, ramp metering is considered. The highway network is simulated using a first order macroscopic model called LWR model which is a mathematical traffic flow model that formulates the relationships among traffic flow characteristics in terms of density, flow, and mean speed of the traffic stream. An integrated control algorithm is designed to solve the proposed problem, based on the inverse control technique and variable structure control(super twisting sliding mode). Three case studies have been tested in the presence of an on-ramp at each alternate route and where there is a capacity constraint in the network. In the first case study, there is no capacity constraint at either upstream or downstream of the alternate routes and the function of the proposed algorithm is only to balance the traffic flow on the alternate routes. In the second case study, there is capacity constraint at downstream of alternate routes. The proposed algorithm aims to avoid congestion on the main road and balance the traffic flow on the alternate routes. In the last case study, there is capacity constraint at upstream of alternate routes. The objective of proposed algorithm is to avoid congestion on the main road and to balance the traffic flow on the alternate routes. The obtained results show that the proposed algorithms can establish user equilibrium between two alternate routes even when the on-ramps, located at alternate routes, have different traffic demands.
基金the National Natural Science Foundation of China[grant number 61705127].
文摘This paper addresses the predefined-time bipartite tracking problem for second-order Multi-Agent Systems(MASs)with undirected signed topologies.A group of observers,which can estimate the state tracking errors for each follower in a pre-specified time,is proposed based on the time-varying function.In order to deal with the uncertainties caused by the unknown disturbances and the unknown input signal of the leader,we propose a predefined-time distributed control protocol based on the sliding mode control method.In addition,an auxiliary dynamic sliding variable is designed to reduce system chattering.Wetheoretically prove that the two control protocols can drive the state trajectories of each follower to reach the corresponding sliding surface within a specified time,and finally ensure that the prescribed-time bipartite tracking consensus is achieved for the MASs.Simulations are provided to verify the proposed schemes,and the simulation results further confirm the superiority of the adaptive control protocol.