期刊文献+
共找到104篇文章
< 1 2 6 >
每页显示 20 50 100
Stability and accuracy of central difference method for real-time dynamic substructure testing considering mass participation coefficient
1
作者 Zheng Lichang Xu Guoshan +3 位作者 Yang Ge Wang Zhen Yang Kaibo Zheng Zhenyun 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第3期625-636,共12页
For real-time dynamic substructure testing(RTDST),the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated.Therefore,this study prop... For real-time dynamic substructure testing(RTDST),the influence of the inertia force of fluid specimens on the stability and accuracy of the integration algorithms has never been investigated.Therefore,this study proposes to investigate the stability and accuracy of the central difference method(CDM)for RTDST considering the specimen mass participation coefficient.First,the theory of the CDM for RTDST is presented.Next,the stability and accuracy of the CDM for RTDST considering the specimen mass participation coefficient are investigated.Finally,numerical simulations and experimental tests are conducted for verifying the effectiveness of the method.The study indicates that the stability of the algorithm is affected by the mass participation coefficient of the specimen,and the stability limit first increases and then decreases as the mass participation coefficient increases.In most cases,the mass participation coefficient will increase the stability limit of the algorithm,but in specific circumstances,the algorithm may lose its stability.The stability and accuracy of the CDM considering the mass participation coefficient are verified by numerical simulations and experimental tests on a three-story frame structure with a tuned liquid damper. 展开更多
关键词 real-time dynamic substructure testing central difference method STABILITY mass participation coefficient tuned liquid damper
下载PDF
Application of computational fluid dynamics in design of viscous dampers-CFD modeling and full-scale dynamic testing 被引量:1
2
作者 Hassan Lak Seyed Mehdi Zahrai +1 位作者 Seyed Mohammad Mirhosseini Ehsanollah Zeighami 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第4期1065-1080,共16页
Computational fluid dynamics(CFD)provides a powerful tool for investigating complicated fluid flows.This paper aims to study the applicability of CFD in the preliminary design of linear and nonlinear fluid viscous dam... Computational fluid dynamics(CFD)provides a powerful tool for investigating complicated fluid flows.This paper aims to study the applicability of CFD in the preliminary design of linear and nonlinear fluid viscous dampers.Two fluid viscous dampers were designed based on CFD models.The first device was a linear viscous damper with straight orifices.The second was a nonlinear viscous damper containing a one-way pressure-responsive valve inside its orifices.Both dampers were detailed based on CFD simulations,and their internal fluid flows were investigated.Full-scale specimens of both dampers were manufactured and tested under dynamic loads.According to the tests results,both dampers demonstrate stable cyclic behaviors,and as expected,the nonlinear damper generally tends to dissipate more energy compared to its linear counterpart.Good compatibility was achieved between the experimentally measured damper force-velocity curves and those estimated from CFD analyses.Using a thermography camera,a rise in temperature of the dampers was measured during the tests.It was found that output force of the manufactured devices was virtually independent of temperature even during long duration loadings.Accordingly,temperature dependence can be ignored in CFD models,because a reliable temperature compensator mechanism was used(or intended to be used)by the damper manufacturer. 展开更多
关键词 fluid viscous damper passive control dynamic testing energy dissipation device computational fluid dynamic THERMOGRAPHY
下载PDF
Dynamic Testing of Elastic Modulus,Shear Modulus,and Poisson’s Ratio of Bamboo Scrimber
3
作者 Xiaoyu Gu Linbi Chen +2 位作者 Seithati Mapesela Zheng Wang Aijin Zhou 《Journal of Renewable Materials》 EI 2023年第12期4197-4210,共14页
The bamboo scrimber is an anisotropic material.The elastic constant values of the bamboo scrimber specimens measured by the dynamic and static methods are consistent,and the dynamic test method has the advantages of r... The bamboo scrimber is an anisotropic material.The elastic constant values of the bamboo scrimber specimens measured by the dynamic and static methods are consistent,and the dynamic test method has the advantages of rapidity,simplicity,good repeatability,and high precision.Bamboo scrimber has strong potential as a building material,and its elastic constant is an important index to measure its mechanical properties.To quickly,simply,non-destructively,and accurately detect the elastic constant of the bamboo scrimber,they were dynamically tested by the free plate transient excitation method and cantilever plate torsional vibration method.The static four-point bending method was used to verify the accuracy and reliability of the dynamic elastic modulus,shear modulus,and Poisson’s ratio of the bamboo scrimber.The mechanism analysis and evaluation of the quality grade,homogeneity,and size effect of the bamboo scrimber whole board were carried out.The main results show that the dynamic elastic modulus,shear modulus,and Poisson’s ratio of the bamboo scrimber are 12 GPa,1500 MPa,and 0.31,respectively,which meet the requirements of GB/T 40247-2021 for structural bamboo scrimber. 展开更多
关键词 Bamboo scrimber elastic constant dynamic test static verification free plate transient excitation
下载PDF
Method of Testing of Dynamic Forces on Digital Jet Elements 被引量:3
4
作者 莫波 杨彩霞 《Journal of Beijing Institute of Technology》 EI CAS 2002年第4期393-396,共4页
Method of testing for dynamic output forces from jet elements is studied, the handwidth is large in testing with this method. By establishing a model of the test system and simulating it, principles of how inherent fe... Method of testing for dynamic output forces from jet elements is studied, the handwidth is large in testing with this method. By establishing a model of the test system and simulating it, principles of how inherent features of the test system affect the dynamic force test are found out. Thus a theoretical foundation is given for the design and error modification to the actual test system. 展开更多
关键词 digital jet element dynamic force test MODELING error analysis
下载PDF
Dynamic failure process of expanded polystyrene particle lightweight soil under cyclic loading using discrete element method
5
作者 Zhou Wei Hou Tianshun +3 位作者 Chen Ye Wang Qi Luo Yasheng Zhang Yafei 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第4期815-828,共14页
Expanded polystyrene(EPS)particle-based lightweight soil,which is a type of lightweight filler,is mainly used in road engineering.The stability of subgrades under dynamic loading is attracting increased research atten... Expanded polystyrene(EPS)particle-based lightweight soil,which is a type of lightweight filler,is mainly used in road engineering.The stability of subgrades under dynamic loading is attracting increased research attention.The traditional method for studying the dynamic strength characteristics of soils is dynamic triaxial testing,and the discrete element simulation of lightweight soils under cyclic load has rarely been considered.To study the meso-mechanisms of the dynamic failure processes of EPS particle lightweight soils,a discrete element numerical model is established using the particle flow code(PFC)software.The contact force,displacement field,and velocity field of lightweight soil under different cumulative compressive strains are studied.The results show that the hysteresis curves of lightweight soil present characteristics of strain accumulation,which reflect the cyclic effects of the dynamic load.When the confining pressure increases,the contact force of the particles also increases.The confining pressure can restrain the motion of the particle system and increase the dynamic strength of the sample.When the confining pressure is held constant,an increase in compressive strain causes minimal change in the contact force between soil particles.However,the contact force between the EPS particles decreases,and their displacement direction points vertically toward the center of the sample.Under an increase in compressive strain,the velocity direction of the particle system changes from a random distribution and points vertically toward the center of the sample.When the compressive strain is 5%,the number of particles deflected in the particle velocity direction increases significantly,and the cumulative rate of deformation in the lightweight soil accelerates.Therefore,it is feasible to use 5%compressive strain as the dynamic strength standard for lightweight soil.Discrete element methods provide a new approach toward the dynamic performance evaluation of lightweight soil subgrades. 展开更多
关键词 lightweight soil cyclic loading dynamic triaxial test discrete element method hysteresis curve
下载PDF
Delay-dependent stability and added damping of SDOF real-time dynamic hybrid testing 被引量:14
6
作者 Chi Fudong Wang Jinting Jin Feng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第3期425-438,共14页
It is well-recognized that a transfer system response delay that reduces the test stability inevitably exists in real-time dynamic hybrid testing (RTDHT). This paper focuses on the delay-dependent stability and adde... It is well-recognized that a transfer system response delay that reduces the test stability inevitably exists in real-time dynamic hybrid testing (RTDHT). This paper focuses on the delay-dependent stability and added damping of SDOF systems in RTDHT. The exponential delay term is transferred into a rational fraction by the Pad6 approximation, and the delay-dependent stability conditions and instability mechanism of SDOF RTDHT systems are investigated by the root locus technique. First, the stability conditions are discussed separately for the cases of stiffness, mass, and damping experimental substructure. The use of root locus plots shows that the added damping effect and instability mechanism for mass are different from those for stiffness. For the stiffness experimental substructure case, the instability results from the inherent mode because of an obvious negative damping effect of the delay. For the mass case, the delay introduces an equivalent positive damping into the inherent mode, and instability occurs at an added high frequency mode. Then, the compound stability condition is investigated for a general case and the results show that the mass ratio may have both upper and lower limits to remain stable. Finally, a high-emulational virtual shaking table model is built to validate the stability conclusions. 展开更多
关键词 real-time dynamic hybrid testing root locus analysis delay-dependent stability Pade approximation added damping
下载PDF
Simulation of large-scale numerical substructure in real-time dynamic hybrid testing 被引量:7
7
作者 Zhu Fei Wang Jinting +2 位作者 Jin Feng Zhou Mengxia Gui Yao 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第4期599-609,共11页
A solution scheme is proposed in this paper for an existing RTDHT system to simulate large-scale finite element (FE) numerical substructures. The analysis of the FE numerical substructure is split into response anal... A solution scheme is proposed in this paper for an existing RTDHT system to simulate large-scale finite element (FE) numerical substructures. The analysis of the FE numerical substructure is split into response analysis and signal generation tasks, and executed in two different target computers in real-time. One target computer implements the response analysis task, wherein a large time-step is used to solve the FE substructure, and another target computer implements the signal generation task, wherein an interpolation program is used to generate control signals in a small time-step to meet the input demand of the controller. By using this strategy, the scale of the FE numerical substructure simulation may be increased significantly. The proposed scheme is initially verified by two FE numerical substructure models with 98 and 1240 degrees of freedom (DOFs). Thereafter, RTDHTs of a single frame-foundation structure are implemented where the foundation, considered as the numerical substructure, is simulated by the FE model with 1240 DOFs. Good agreements between the results of the RTDHT and those from the FE analysis in ABAQUS are obtained. 展开更多
关键词 real-time dynamic hybrid testing large-scale numerical substructure control signal generation finite element simulation
下载PDF
Networked collaborative pseudo-dynamic testing of a multi-span bridge based on NetSLab 被引量:1
8
作者 Cai Xinjiang Tian Shizhu +1 位作者 Wang Dapeng Xiao Yan 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2009年第3期387-397,共11页
Modem dynamic tests such as networked collaborative pseudo-dynamic testing (PDT) provide new tools to study the dynamic performance of large and complex structures. In this paper, several networked collaborative PDT... Modem dynamic tests such as networked collaborative pseudo-dynamic testing (PDT) provide new tools to study the dynamic performance of large and complex structures. In this paper, several networked collaborative PDT systems established in China and abroad are introduced, including a detailed description of the first networked collaborative platform that involved the construction of a standardized demonstration procedure for networked collaborative PDT. The example is a multi-span bridge with RC piers retrofitted by FRP, and a networked structural laboratory (NetSLab) platform is used to link distributed laboratories located at several universities together. Substructure technology is also used in the testing. The characteristics, resource sharing and collaborative work of NetSLab are described, and the results illustrate that use of the NetSLab is feasible for studying the dynamic performance of multi-span bridge structures. 展开更多
关键词 dynamic tests NETWORKED pseudo-dynamic testing multi-span bridges RC short piers FRP NetSLab
下载PDF
Performance of identical rockbolts tested on four dynamic testing rigs employing the direct impact method 被引量:1
9
作者 Charlie C.Li John Hadjigeorgiou +5 位作者 Peter Mikula Greig Knox Bradley Darlington Renee Royer Andrzej Pytlik Michael Hosp 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第4期745-754,共10页
Impact drop tests are routinely used to examine the dynamic performance of rockbolts.Numerous impact tests have been carried out in the past decades on independently designed,constructed and operated testing rigs.Each... Impact drop tests are routinely used to examine the dynamic performance of rockbolts.Numerous impact tests have been carried out in the past decades on independently designed,constructed and operated testing rigs.Each laboratory has developed testing procedures;thus,the results are often reported in different ways by various laboratories.The inconsistency in testing procedures and reporting formats presents a challenge when comparing results from different laboratories.A series of impact tests of identical rockbolts was carried out using the direct impact method(i.e.the mass free-fall method)on the rigs in four laboratories in different countries.The purpose of these tests was to investigate the level of consistency in the results from the four rigs.Each rig demonstrated a high level of repeatability,but differences existed between the various rigs.The differences would suggest that there is noticeable equipment-dependent bias when test results obtained from different laboratories are compared.It was also observed that the energy dissipated for the plastic displacement of the bolt was smaller than the impact energy in the tests.The average impact load(AIL)and the ultimate plastic displacement(D)of the bolt describe the ultimate dynamic performance of the bolt.In the case where the bolt does not rupture,the specific plastic energy(SPE)is an appropriate parameter in describing the impact performance of the bolt.Two other relevant parameters are the first peak load(FPL)and the initial stiffness(K)of the bolt sample.The information from this test series will guide the formulation of standardised testing procedures for dynamic impact tests of rockbolts. 展开更多
关键词 Dynamic test Drop test Impact test Rockbolt Rock reinforcement Ground support
下载PDF
High-frequency interference waves in low strain dynamic testing of X-section concrete piles 被引量:1
10
作者 Qu Liming Fan Yuming +2 位作者 Ding Xuanming Yang Changwei Zhang Yanling 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2021年第4期877-885,共9页
Stress waves propagate along vertical,radial and circumferential directions when a non-uniformly distributed load is applied at one end of a three-dimensional shaft.As a result,the receiving signals are usually mixed ... Stress waves propagate along vertical,radial and circumferential directions when a non-uniformly distributed load is applied at one end of a three-dimensional shaft.As a result,the receiving signals are usually mixed with undesired interference components,often featuring as high-frequency fluctuations.Previous studies have revealed that sectional geometry(shape and size)greatly affects the high-frequency interference.In this study,low strain dynamic testing on full-scale X-section concrete is conducted in order to investigate the influences of high-frequency interference on velocity responses at the pile head.Emphasis is placed on the frequency and peak value of interference waves at various receiving points.Additionally,the effects of the geometrical,and mechanical properties of the pile shaft on high-frequency interference are elaborated on through the three-dimensional finite element method.The results show that the measured wave is obscured by interference waves superposed by two types of high-frequency components.The modulus and cross-sectional area are contributing factors to the frequency and peak value of the interference waves.On the other hand,the position with the least interference is determined,to some extent,by the accurate shape of the X-section. 展开更多
关键词 low strain dynamic testing X-section concrete pile high-frequency interference full-scale model test finite element method
下载PDF
Improved dynamic testing by impedance control
11
作者 Jochen Carl Mettupalayam V. Sivaselvan 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2011年第3期423-435,共13页
In this paper, the issue of actuator-structure interaction in dynamic testing of structures is considered. The problem is approached from the novel standpoint of impedance control. It is shown that an effective strate... In this paper, the issue of actuator-structure interaction in dynamic testing of structures is considered. The problem is approached from the novel standpoint of impedance control. It is shown that an effective strategy to design controls for dynamic testing is by designing the test system impedance. It is also shown that this can be achieved using feedforward compensation. The analysis is carried out in the context of displacement controlled dynamic testing, when the tested structure has a high and nonlinear stiffness. It is demonstrated that stable and accurate dynamic testing can be achieved using the proposed strategy, when this is not possible using traditional feedback control techniques. Furthermore, the impedance control and feedforward strategies are applied in the context of hybrid simulation, a technique of coupling computational and physical substructures applied in earthquake engineering. Here, a delay compensation scheme is necessary in addition to feedforward. Experimental results are presented that demonstrate both improved dynamic testing performance when impedance control is employed, and its applicability in hybrid simulation. 展开更多
关键词 dynamic test actuator-structure interaction impedance control hybrid simulation feedforward strategy
下载PDF
Control system for dynamic testing platform of asymmetrical pitch mechanism
12
作者 李恒宇 罗均 +1 位作者 谢少荣 郝山波 《Journal of Shanghai University(English Edition)》 CAS 2009年第4期276-278,共3页
A novel asymmetrical pitch system for rotary wing is presented. The pitch control characteristics are studied and analyzed. Because elastic linkage is a key part in whole asymmetrical pitch system, in order to obtain ... A novel asymmetrical pitch system for rotary wing is presented. The pitch control characteristics are studied and analyzed. Because elastic linkage is a key part in whole asymmetrical pitch system, in order to obtain the variation of the elastic linkage deformation, an experimental platform mainly based on the device of micro aerial vehicles (MAVs) and a new control system mounted on TMS320LF2407 are designed. This control system has its compacted configuration and reliability. Finally, using this system to control the MAV for simulating the flying forward, experimental results show the MAV's flight attitude can he controlled based on the variation of the elastic linkage. 展开更多
关键词 asymmetrical pitch micro aerial vehicle (MAV) experimental system dynamic testing platform
下载PDF
Geographically distributed hybrid testing & collaboration between geotechnical centrifuge and structures laboratories
13
作者 Mobin Ojaghi Ignacio Lamata Martínez +6 位作者 Matt S.Dietz Martin S.Williams Anthony Blakeborough Adam J.Crewe Colin A.Taylor S.P.Gopal Madabhushi Stuart K.Haigh 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第1期53-71,共19页
Distributed Hybrid Testing(DHT) is an experimental technique designed to capitalise on advances in modern networking infrastructure to overcome traditional laboratory capacity limitations. By coupling the heterogene... Distributed Hybrid Testing(DHT) is an experimental technique designed to capitalise on advances in modern networking infrastructure to overcome traditional laboratory capacity limitations. By coupling the heterogeneous test apparatus and computational resources of geographically distributed laboratories, DHT provides the means to take on complex, multi-disciplinary challenges with new forms of communication and collaboration. To introduce the opportunity and practicability afforded by DHT, here an exemplar multi-site test is addressed in which a dedicated fibre network and suite of custom software is used to connect the geotechnical centrifuge at the University of Cambridge with a variety of structural dynamics loading apparatus at the University of Oxford and the University of Bristol. While centrifuge time-scaling prevents real-time rates of loading in this test, such experiments may be used to gain valuable insights into physical phenomena, test procedure and accuracy. These and other related experiments have led to the development of the real-time DHT technique and the creation of a flexible framework that aims to facilitate future distributed tests within the UK and beyond. As a further example, a real-time DHT experiment between structural labs using this framework for testing across the Internet is also presented. 展开更多
关键词 centrifuge distributed dynamics geotechnical hardware-in-the-loop real-time hybrid testing
下载PDF
Dynamic mechanical characteristics of frozen subgrade soil subjected to freeze-thaw cycles 被引量:2
14
作者 WANG Dan LIU En-long +3 位作者 YANG Cheng-song LIU You-qian ZHU Sheng-xian YU Qi-hao 《Journal of Mountain Science》 SCIE CSCD 2023年第1期242-255,共14页
As a widely-applied engineering material in cold regions, the frozen subgrade soils are usually subjected to seismic loading, which are also dramatically influenced by the freeze-thaw(F-T)cycles due to the varying tem... As a widely-applied engineering material in cold regions, the frozen subgrade soils are usually subjected to seismic loading, which are also dramatically influenced by the freeze-thaw(F-T)cycles due to the varying temperature. A series of dynamic cyclic triaxial experiments were conducted through a cryogenic triaxial apparatus for exploring the influences of F-T cycles on the dynamic mechanical properties of frozen subgrade clay.According to the experimental results of frozen clay at the temperature of-10℃, the dynamic responses and microstructure variation at different times of F-T cycles(0, 1, 5, and 20 cycles) were explored in detail.It is experimentally demonstrated that the dynamic stress-strain curves and dynamic volumetric strain curves of frozen clay are significantly sparse after 20F-T cycles. Meanwhile, the cyclic number at failure(Nf) of the frozen specimen reduces by 89% after 20freeze-thaw cycles at a low ratio of the dynamic stress amplitude. In addition, with the increasing F-T cycles,the axial accumulative strain, residual deformation,and the value of damage variable of frozen clay increase, while the dynamic resilient modulus and dynamic strength decrease. Finally, the influence of the F-T cycles on the failure mechanisms of frozen clay was discussed in terms of the microstructure variation. These studies contribute to a better understanding of the fundamental changes in the dynamic mechanical of frozen soils exposed to F-T cycles in cold and seismic regions. 展开更多
关键词 Freeze-thaw cycles Frozen clay Dynamic triaxial test Dynamic mechanical properties
下载PDF
Correction of dynamic Brazilian disc tensile strength of rocks under preloading conditions considering the overload phenomenon and invoking the Griffith criterion 被引量:1
15
作者 Kaiwen Xia Yuchao Yu +1 位作者 Bangbiao Wu Wei Yao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第8期1986-1996,共11页
Dynamic tensile failure is a common phenomenon in deep rock practices,and thus accurately evaluating the dynamic tensile responses of rocks under triaxial pressures is of great significance.The Brazilian disc(BD)test ... Dynamic tensile failure is a common phenomenon in deep rock practices,and thus accurately evaluating the dynamic tensile responses of rocks under triaxial pressures is of great significance.The Brazilian disc(BD)test is the suggested method by the International Society for Rock Mechanics and Rock Engineering(ISRM)for measuring both the static and dynamic tensile strengths of rock-like materials.However,due to the overload phenomenon and the complex preloading conditions,the dynamic tensile strengths of rocks measured by the BD tests tend to be overestimated.To address this issue,the dynamic BD tensile strength(BTS)of Fangshan marble(FM)under different preloading conditions were measured through a triaxial split Hopkinson pressure bar(SHPB).The fracture onset in BD specimen was captured through a strain gage around the disc center.The discrepancy between the traditional tensile strength(TTS,determined by the peak load P_(f) of the BD specimen)and the nominal tensile strength(NTS,obtained from the load P_(i) when the diametral fracture commences in the tested BD specimen)was applied to quantitatively evaluating the overload phenomenon.The Griffith criterion was used to rectify the calculation of the tensile stress at the disc center under triaxial stress states.The results demonstrate that the overload ratio(s)increases with the loading rate(σ)and decreases with the hydrostatic pressure(σ_(s)).The TTS corrected by the Griffith criterion is independent of theσ_(s)due to the overload phenomenon,while the NTS corrected by the Griffith criterion is sensitive to both the andσ.Therefore,it is essential to modify the tensile stress in dynamic confined BD tests using both the overload correction and the Griffith criterion rectification to obtain the accurate dynamic BTS of rocks. 展开更多
关键词 Dynamic brazilian disc test Overload phenomenon Dynamic tensile strength Hydrostatic pressure Griffith criterion
下载PDF
Effects of dynamic flow rates on degradation deposition behavior of Mg scaffold
16
作者 Gaozhi Jia Meng Zhou +9 位作者 Yicong Huang Chenxin Chen Liang Jin Qian Wu Jian Weng Fei Yu Ao Xiong Guangyin Yuan Frank Feyerabend Hui Zeng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第6期2054-2060,共7页
Degradability of bone tissue engineering scaffold that matching the regeneration rate could allow a complete replacement of host tissue.However,the porous structure of biodegradable Mg scaffolds certainly generated hi... Degradability of bone tissue engineering scaffold that matching the regeneration rate could allow a complete replacement of host tissue.However,the porous structure of biodegradable Mg scaffolds certainly generated high specific surface area,and the three-dimensional interconnected pores provided fast pervasive invasion entrance for the corrosive medium,rising concern of the structural integrity during the degradation.To clarify the structural evolution of the three-dimensional(3D)porous structure,semi-static immersion tests were carried out to evaluate the degradation performance in our previous study.Nevertheless,dynamic immersion tests mimicking the in vivo circulatory fluid through the interconnected porous structure have yet been investigated.Moreover,the effects of dynamic flow rates on the degradation deposition behavior of 3D porous Mg scaffolds were rarely reported.In this study,Mg scaffolds degraded at three flow rates exhibited different degradation rates and deposition process.A flow rate of 0.5 m L/min introduced maximum drop of porosity by accumulated deposition products.The deposition products provided limited protection against the degradation process at a flow rate of 1.0 m L/min.The three-dimensional interconnected porous structure of Mg scaffold degraded at 2.0 m L/min well retained after 14 days showing the best interconnectivity resistance to the degradation deposition process.The dynamic immersion tests disclosed the reason for the different degradation rates on account of flow rates,which may bring insight into understanding of varied in vivo degradation rates related to implantation sites. 展开更多
关键词 Porous Mg scaffold DEGRADABILITY POROSITY Dynamic immersion test Degradation rate
下载PDF
Process Monitoring and Terminal Verification of Cable-Stayed Bridges with Corrugated Steel Webs under Contruction
17
作者 Kexin Zhang Xinyuan Shen +1 位作者 Longsheng Bao He Liu 《Structural Durability & Health Monitoring》 EI 2023年第2期131-158,共28页
In this paper,the construction process of a cable-stayed bridge with corrugated steel webs was monitored.Moreover,the end performance of the bridge was verified by load test.Owing to the consideration of the bridge st... In this paper,the construction process of a cable-stayed bridge with corrugated steel webs was monitored.Moreover,the end performance of the bridge was verified by load test.Owing to the consideration of the bridge structure safety,it is necessary to monitor the main girder deflection,stress,construction error and safety state during construction.Furthermore,to verify whether the bridge can meet the design requirements,the static and dynamic load tests are carried out after the completion of the bridge.The results of construction monitoring show that the stress state of the structure during construction is basically consistent with the theoretical calculation and design requirements,and both meet the design and specification requirements.The final measured stress state of the structure is within the allowable range of the cable-stayed bridge,and the stress state of the structure is normal and meets the specification requirements.The results of load tests show that the measured deflection values of the mid-span section of the main girder are less than the theoretical calculation values.The maximum deflection of the girder is−20.90 mm,which is less than−22.00 mm of the theoretical value,indicating that the girder has sufficient structural stiffness.The maximum impact coefficient under dynamic load test is 1.08,which is greater than 1.05 of theoretical value,indicating that the impact effect of heavy-duty truck on this type of bridge is larger.This study can provide important reference value for construction and maintenance of similar corrugated steel web cable-stayed bridges. 展开更多
关键词 Cable-stayed bridge corrugated steel web construction monitoring static load test dynamic load test
下载PDF
Analysis of Capacity Decay, Impedance, and Heat Generation of Lithium-ionBatteries Experiencing Multiple Simultaneous Abuse Conditions
18
作者 Casey Jones Meghana Sudarshan Vikas Tomar 《Energy Engineering》 EI 2023年第12期2721-2740,共20页
Abuse of Lithium-ion batteries,both physical and electrochemical,can lead to significantly reduced operational capabilities.In some instances,abuse can cause catastrophic failure,including thermal runaway,combustion,a... Abuse of Lithium-ion batteries,both physical and electrochemical,can lead to significantly reduced operational capabilities.In some instances,abuse can cause catastrophic failure,including thermal runaway,combustion,and explosion.Many different test standards that include abuse conditions have been developed,but these generally consider only one condition at a time and only provide go/no-go criteria.In this work,different types of cell abuse are implemented concurrently to determine the extent to which simultaneous abuse conditions aggravate cell degradation and failure.Vibrational loading is chosen to be the consistent type of physical abuse,and the first group of cells is cycled at different vibrational frequencies.The next group of cells is cycled at the same frequencies,with multiple charge pulses occurring during each discharge.The final group of cells is cycled at the same frequencies,with a partial nail puncture occurring near the beginning of cycling.The results show that abusing cells with vibrational loading or vibrational loading with current pulses does not cause a significant decrease in operational capabilities while abusing cells with vibrational loading and a nail puncture drastically reduces operational capabilities.The cells with vibration only experience an increase in internal resistance by a factor of 1.09–1.26,the cells with vibration and current pulses experience an increase in internal resistance by a factor of 1.16–1.23,and all cells from each group reach their rated lifetime of 500 cycles without reaching their end-of-life capacity.However,the cells with vibration and nail puncture experience an increase in internal resistance by a factor of 6.83–22.1,and each cell reaches its end-of-life capacity within 50 cycles.Overall,the results show that testing multiple abuse conditions simultaneously provides a better representation of the extreme limitations of cell operation and should be considered for inclusion in reference test standards. 展开更多
关键词 Lithium-ion batteries dynamic abuse testing electrochemical impedance spectroscopy incremental capacity analysis thermal profile analysis
下载PDF
Analysis of Corrosion Mechanisms of Low-cement or No-cement Al_(2)O_(3)-MgO Gunning Mix with Special Calcined Alumina in Rotary Slag Test
19
作者 LEE Yaotsung ZHAO Lite +1 位作者 LEE Johnson LIU William 《China's Refractories》 CAS 2023年第4期16-21,共6页
Al_(2)O_(3)-MgO and Al_(2)O_(3)-spinel low cement castables(LCC-AM and LCC-AS)have been extensively used in steel ladles as working linings.Nevertheless,the use of alumina-magnesia gunning mixes has been mainly kept f... Al_(2)O_(3)-MgO and Al_(2)O_(3)-spinel low cement castables(LCC-AM and LCC-AS)have been extensively used in steel ladles as working linings.Nevertheless,the use of alumina-magnesia gunning mixes has been mainly kept for maintaining these castable linings,because of high rebound loss,poor green strength,high porosity and short life-span.Thanks to a high BET alumina(MC-G),it is now possible to develop a series of high-performance no-cement or low-cement Al_(2)O_(3)-MgO gunning mixes(NCG-AM or LCG-AM).The paper focuses on the BOF slag resistance of NCG-AM,LCG-AM,LCC-AM and LCC-AS.The corrosion mechanisms of rotary slag samples were studied by scanning electron microscopy(SEM/EDS).The results reveal different microstructures around MgO particles,depending on the four used compositions.Continuous and thicker spinel phases were formed in NCG-AM,which was proved to have the best corrosion resistance after the dynamic slag test.MC-G can provide a high diffusion flux of Al^(3+)in terms of kinetics and hence inhibits Kirkendall porosity around MgO particles.In addition,a continuous spinel phase acts like a pinning nail to reinforce the matrix and thus decreases erosion by slag.In contrast to NCG-AM,the porous spinel phase was found around unreacted MgO particles and some particles were carried away near the interface of LCC-AM and slag.The NCG-AM containing MC-G had been tested in two steel plants,and it extended the service life of the ladles up to 50%.In addition,this study suggests the potential application of NCG-AM as steel ladle linings. 展开更多
关键词 reactive alumina ladle working lining dynamic slag test kirkendall effect no-cement gunning mix
下载PDF
Research on damage failure mechanism and dynamic mechanical behavior of layered shale with different angles under confining pressure
20
作者 Ning Luo Haohao Zhang +4 位作者 Yabo Chai Penglong Li Cheng Zhai Jianan Zhou Tianran Ma 《Deep Underground Science and Engineering》 2023年第4期337-345,共9页
The hydrostatic or confining pressure of deep rocks has a significant impact on the mechanical behavior of brittle materials.Especially when confining pressure is applied,the mechanical properties of rock materials will ... The hydrostatic or confining pressure of deep rocks has a significant impact on the mechanical behavior of brittle materials.Especially when confining pressure is applied,the mechanical properties of rock materials will undergo significant changes.Considering that the process of shale sample subjected to impact load is in a closed container in the dynamic triaxial SHPB test,the failure process of the sample cannot be observed.Meanwhile,the activation volume of the shale sample would be large and local failure would occur in the test under the high strain rate loading.Therefore,thefinite element model of shale considering the bedding effect under confining pressure was established in this study.Taking shale materials with different bedding dip angles as simulation objects,the dynamic failure characteristics of shale were studied using the dynamic analysis software ANSYS/LS‐DYNA from three aspects:stress‐strain curve,failure growth process,and failure morphology.The research results obtained can serve as the key technical parameters for deep resource extraction. 展开更多
关键词 ANSYS/LS‐DYNA dynamic failure characteristics dynamic triaxial SHPB test shales with different bedding
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部