Leading national space exploration agencies and private enterprises are actively engaged in lunar exploration initiatives to accomplish manned lunar landings and establish permanent lunar bases in the forthcoming year...Leading national space exploration agencies and private enterprises are actively engaged in lunar exploration initiatives to accomplish manned lunar landings and establish permanent lunar bases in the forthcoming years.With limited access to lunar surface materials on Earth,lunar regolith simulants are crucial for lunar exploration research.The Chang’e-5(CE-5)samples have been characterized by state-of-the-art laboratory equipment,providing a unique opportunity to develop a high-quality lunar regolith simulant.We have prepared a high-fidelity PolyU-1 simulant by pulverizing,desiccating,sieving,and blending natural mineral materials on Earth based on key physical,mineral,and chemical characteristics of CE-5 samples.The results showed that the simulant has a high degree of consistency with the CE-5 samples in terms of the particle morphology,mineral and chemical composition.Direct shear tests were conducted on the simulant,and the measured internal friction angle and cohesion values can serve as references for determining the mechanical properties of CE-5 lunar regolith.The PolyU-1 simulant can contribute to experimental studies involving lunar regolith,including the assessment of interaction between rovers and lunar regolith,as well as the development of in-situ resource utilization(ISRU)technologies.展开更多
Space metallurgy is an interdisciplinary field that combines planetary space science and metallurgical engineering.It involves systematic and theoretical engineering technology for utilizing planetary resources in sit...Space metallurgy is an interdisciplinary field that combines planetary space science and metallurgical engineering.It involves systematic and theoretical engineering technology for utilizing planetary resources in situ.However,space metallurgy on the Moon is challenging because the lunar surface has experienced space weathering due to the lack of atmosphere and magnetic field,making the mi-crostructure of lunar soil differ from that of minerals on the Earth.In this study,scanning electron microscopy and transmission electron microscopy analyses were performed on Chang’e-5 powder lunar soil samples.The microstructural characteristics of the lunar soil may drastically change its metallurgical performance.The main special structure of lunar soil minerals include the nanophase iron formed by the impact of micrometeorites,the amorphous layer caused by solar wind injection,and radiation tracks modified by high-energy particle rays inside mineral crystals.The nanophase iron presents a wide distribution,which may have a great impact on the electromagnetic prop-erties of lunar soil.Hydrogen ions injected by solar wind may promote the hydrogen reduction process.The widely distributed amorph-ous layer and impact glass can promote the melting and diffusion process of lunar soil.Therefore,although high-energy events on the lun-ar surface transform the lunar soil,they also increase the chemical activity of the lunar soil.This is a property that earth samples and tradi-tional simulated lunar soil lack.The application of space metallurgy requires comprehensive consideration of the unique physical and chemical properties of lunar soil.展开更多
基金supported by the PolyU RCDSE projects(Nos.P0049221 and P0041304)We would like to express our sincere gratitude to Prof.Feng Li and Dr.Siqi Zhou from Beihang University for providing us with the BH-1 simulant,which served as the crucial reference for the PolyU-1 simulant.We would like to thank the support from the National Natural Science Foundation of China(No.42241103)the Key Research Program of the Institute of Geology and Geophysics,Chinese Academy of Sciences(No.IGGCAS-202101)。
文摘Leading national space exploration agencies and private enterprises are actively engaged in lunar exploration initiatives to accomplish manned lunar landings and establish permanent lunar bases in the forthcoming years.With limited access to lunar surface materials on Earth,lunar regolith simulants are crucial for lunar exploration research.The Chang’e-5(CE-5)samples have been characterized by state-of-the-art laboratory equipment,providing a unique opportunity to develop a high-quality lunar regolith simulant.We have prepared a high-fidelity PolyU-1 simulant by pulverizing,desiccating,sieving,and blending natural mineral materials on Earth based on key physical,mineral,and chemical characteristics of CE-5 samples.The results showed that the simulant has a high degree of consistency with the CE-5 samples in terms of the particle morphology,mineral and chemical composition.Direct shear tests were conducted on the simulant,and the measured internal friction angle and cohesion values can serve as references for determining the mechanical properties of CE-5 lunar regolith.The PolyU-1 simulant can contribute to experimental studies involving lunar regolith,including the assessment of interaction between rovers and lunar regolith,as well as the development of in-situ resource utilization(ISRU)technologies.
基金CNSA for providing access to the lunar sample CE5C0200YJFM00302funding support from the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB 41000000)+5 种基金the National Natural Science Foundation of China (Nos. 42273042 and 41931077)the Youth Innovation Promotion Association Chinese Academy of Sciences (No. 2020395)Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Nos. ZDBS-SSW-JSC00710 and QYZDY-SSW-DQC028)the Young and Middleaged Academic Technology Leader Reserve Talent Project of Yunnan Province (No. 2018HB009)the Science Fund for Outstanding Youth of Yunnan Province (No. 202101 AV070007)the "From 0 to 1" Original Exploration Cultivation Project, Institute of Geochemistry, Chinese Academy of Sciences (No. DHSZZ2023-3)
文摘Space metallurgy is an interdisciplinary field that combines planetary space science and metallurgical engineering.It involves systematic and theoretical engineering technology for utilizing planetary resources in situ.However,space metallurgy on the Moon is challenging because the lunar surface has experienced space weathering due to the lack of atmosphere and magnetic field,making the mi-crostructure of lunar soil differ from that of minerals on the Earth.In this study,scanning electron microscopy and transmission electron microscopy analyses were performed on Chang’e-5 powder lunar soil samples.The microstructural characteristics of the lunar soil may drastically change its metallurgical performance.The main special structure of lunar soil minerals include the nanophase iron formed by the impact of micrometeorites,the amorphous layer caused by solar wind injection,and radiation tracks modified by high-energy particle rays inside mineral crystals.The nanophase iron presents a wide distribution,which may have a great impact on the electromagnetic prop-erties of lunar soil.Hydrogen ions injected by solar wind may promote the hydrogen reduction process.The widely distributed amorph-ous layer and impact glass can promote the melting and diffusion process of lunar soil.Therefore,although high-energy events on the lun-ar surface transform the lunar soil,they also increase the chemical activity of the lunar soil.This is a property that earth samples and tradi-tional simulated lunar soil lack.The application of space metallurgy requires comprehensive consideration of the unique physical and chemical properties of lunar soil.