Rapidly expanding studies investigate the effects of e-commerce on company operations in the retail market.However,the interaction between agri-food e-commerce(AEC)and the traditional agri-food wholesale industry(AWI)...Rapidly expanding studies investigate the effects of e-commerce on company operations in the retail market.However,the interaction between agri-food e-commerce(AEC)and the traditional agri-food wholesale industry(AWI)has not received enough attention in the existing literature.Based on the provincial panel data from 2013 to 2020 in China,this paper examines the effect of AEC on AWI,comprising three dimensions:digitalization(DIGITAL),agrifood e-commerce infrastructure and supporting services(AECI),and agri-food e-commerce economy(AECE).First,AWI and AEC are measured using an entropy-based combination of indicators.The results indicate that for China as a whole,AWI has remained practically unchanged,whereas AEC exhibits a significant rising trend.Second,the findings of the fixed-effect regression reveal that DIGITAL and AECE tend to raise AWI,whereas AECI negatively affects AWI.Third,threshold regression results indicate that AECI tends to diminish AWI with three-stage inhibitory intensity,which manifests as a first increase and then a drop in the inhibition degree.These results suggest that with the introduction of e-commerce for agricultural product circulation,digital development will have catfish effects that tend to stimulate the vitality of the conventional wholesale industry and promote technical progress.Furthermore,the traditional wholesale industry benefits financially from e-commerce even while it diverts part of the traditional wholesale circulation for agricultural products.展开更多
With the rapid growth of the global digital economy, cross-border e-commerce, as an emerging form of trade, has gradually become a powerful engine to promote the development of global trade. BRICS is an important forc...With the rapid growth of the global digital economy, cross-border e-commerce, as an emerging form of trade, has gradually become a powerful engine to promote the development of global trade. BRICS is an important force in the global economy, and the progress of the BRICS countries' trade facilitation level has an important impact on the global trade environment. This paper conducts an in-depth study of the dynamic changes in BRICS trade facilitation from 2013 to 2022, and uses an extended gravity model to analyze the specific impact of this change on China's exports using cross-border e-commerce. The results show that although the BRICS countries have made some progress in trade facilitation, the overall level still needs to be improved, and there are obvious differences among member countries. However, the improvement of trade facilitation among BRICS countries has undoubtedly brought significant positive effects to China's exports using cross-border e-commerce.展开更多
Analyze the compatibility between cosmetics and live streaming e-commerce from its own nature,marketing means and supply chain characteristics.According to the prominent problems,sort out the relationship between all ...Analyze the compatibility between cosmetics and live streaming e-commerce from its own nature,marketing means and supply chain characteristics.According to the prominent problems,sort out the relationship between all parties in the cosmetics live e-commerce industry chain.Combined with the latest regulatory policies of live streaming e-commerce and cosmetics,the responsibilities of different subjects in cosmetics live streaming e-commerce are summarized,and relevant suggestions and countermeasures are put forward for the standardization and development of live streaming e-commerce.Cosmetics brand owners are the first responsible persons for product quality.Anchors,as a mixed identity between intermediary,advertising spokesperson and operator,should bear stricter joint and several liability when recommending products related to consumers’health.If anchors fail to clearly identify themselves in the recommendation process,thus causing consumers to mistake them for the operator of the cosmetics,they should assume the obligations of the operator.展开更多
This research introduces a novel approach to improve and optimize the predictive capacity of consumer purchase behaviors on e-commerce platforms. This study presented an introduction to the fundamental concepts of the...This research introduces a novel approach to improve and optimize the predictive capacity of consumer purchase behaviors on e-commerce platforms. This study presented an introduction to the fundamental concepts of the logistic regression algorithm. In addition, it analyzed user data obtained from an e-commerce platform. The original data were preprocessed, and a consumer purchase prediction model was developed for the e-commerce platform using the logistic regression method. The comparison study used the classic random forest approach, further enhanced by including the K-fold cross-validation method. Evaluation of the accuracy of the model’s classification was conducted using performance indicators that included the accuracy rate, the precision rate, the recall rate, and the F1 score. A visual examination determined the significance of the findings. The findings suggest that employing the logistic regression algorithm to forecast customer purchase behaviors on e-commerce platforms can improve the efficacy of the approach and yield more accurate predictions. This study serves as a valuable resource for improving the precision of forecasting customers’ purchase behaviors on e-commerce platforms. It has significant practical implications for optimizing the operational efficiency of e-commerce platforms.展开更多
In the context of China’s ongoing efforts to promote countryside revitalization and facilitate domestic economic circulation,it is of great significance to reduce the consumption disparity among rural households and ...In the context of China’s ongoing efforts to promote countryside revitalization and facilitate domestic economic circulation,it is of great significance to reduce the consumption disparity among rural households and unleash the consumption potential in the countryside.Based on data from China Family Panel Studies,this paper adopts a staggered difference-in-differences method to assess the impact of the e-commerce to enter rural areas on the consumption disparity among rural households.Findings:the comprehensive demonstration work of promoting e-commerce to enter rural areas has reduced the consumption disparity among rural households through the following mechanisms.Firstly,this policy initiative has mitigated the consumption-inhibiting effect on rural household consumption due to the local market size and external market accessibility by promoting the distribution of consumer goods to villages.Secondly,this policy initiative has also increased the agricultural income of rural households and reduced their consumption disparity by distributing farm produce to cities and enhancing the agricultural income of rural households.Moreover,the work is characterized by inclusive growth and is not susceptible to the“elite capture”phenomenon.展开更多
E-commerce live broadcast has an important influence on consumers’purchase intention.The three dimensions of live broadcast content in the broadcast room are the number of comments,product quality,and live content as...E-commerce live broadcast has an important influence on consumers’purchase intention.The three dimensions of live broadcast content in the broadcast room are the number of comments,product quality,and live content as independent variables.A theoretical model is constructed with perceived value and risk as intermediaries and the consumers’purchase intention as the dependent variable,and corresponding hypotheses are put forward.We designed the scale,collected relevant data,and tested the model hypothesis using Statistical Package for Social Sciences(SPSS)and Analysis of Moment Structure(AMOS)software.The study found that the number of comments and product quality had a significant impact on perceived value,perceived risk,and consumers’purchase intention.From this conclusion,it is suggested that businesses should control the number of comments,strengthen the product quality of comments,and distinguish the repetition degree of the content of live broadcasts.展开更多
The development of rural e-commerce is becoming an important driver for the transformation of China’s rural economy,and with the rapid development of information technology and the upgrading of the agricultural indus...The development of rural e-commerce is becoming an important driver for the transformation of China’s rural economy,and with the rapid development of information technology and the upgrading of the agricultural industry,rural e-commerce is showing a vigorous momentum of development.Traditionally,agricultural products are mainly sold through traditional farmers’markets,which are subjected to geography and channel limitations,resulting in inefficient circulation of agricultural products.This paper analyzes the definition,the status quo,as well as the influencing factors of rural e-commerce development.On this basis,countermeasures for the advancement of rural e-commerce development are put forward.展开更多
With the rapid development of science and technology,the face of human society has undergone great changes;with the emergence of the Internet era,all kinds of educational technology,equipment,and software in vocationa...With the rapid development of science and technology,the face of human society has undergone great changes;with the emergence of the Internet era,all kinds of educational technology,equipment,and software in vocational colleges have been widely used to carry out education and teaching,and has achieved remarkable results.Based on this,colleges and universities’electronic commerce(e-commerce)professional teachers should try to rely on the Internet to build information teaching classrooms,introduce advanced methods to build efficient classrooms by integrating teaching resources,and optimize the top-level design,so as to activate the classroom atmosphere,mobilize students’emotions,make them immersed in the teaching of electronic commerce courses.In view of this,this paper combines the existing theory and experience,first analyzes the dilemma faced by the current teaching of e-commerce in vocational colleges,then discusses the practical significance of teaching reform based on the Internet era,and lastly puts forward the specific practice path.展开更多
This article takes the female community platform“Little Red Book”as an example to explore the optimization and innovation of mobile community e-commerce operation mode under Artificial Intelligence(AI)empowerment.Fi...This article takes the female community platform“Little Red Book”as an example to explore the optimization and innovation of mobile community e-commerce operation mode under Artificial Intelligence(AI)empowerment.Firstly,the relevant concepts were defined,and then the unique attributes of mobile community e-commerce were analyzed.As a typical representative of mobile community e-commerce,Little Red Book introduces the background and characteristics of its platform,analyzes its mobile community operation mode,and focuses on exploring how to establish a mobile community e-commerce platform and effective operation mode under the empowerment of AI technology,to provide some reference and inspiration for the development and operation of Little Red Book and other e-commerce platform enterprises.展开更多
The intermediate link compression characteristics of e-commerce express logistics ne tworks influence the tradition al mode of circulation of goods and economic organization,and alter the city spatial pattern.Based on...The intermediate link compression characteristics of e-commerce express logistics ne tworks influence the tradition al mode of circulation of goods and economic organization,and alter the city spatial pattern.Based on the theory of space of flows,this study adopts China Smart Logistics Network relational data to build China's e-commerce express logistics network and explore its spatial structure characteristics through social network analysis(SNA),the PageRank technique,and geospatial methods.The results are as follows:the network density is 0.9270,which is close to 1;hence,indicating that e-commerce express logistics lines between Chinese cities are nearly complete and they form a typical network structure,thereby eliminating fragmented spaces.Moreover,the average minimum number of edges is 1.1375,which indicates that the network has a small world effect and thus has a high flow efficiency of logistics elements.A significant hierarchical diffusion effect was observed in dominant flows with the highest edge weights.A diamond-structured network was formed with Shanghai,Guangzhou,Chongqing,and Beijing as the four core nodes.Other node cities with a large logistics scale and importance in the network are mainly located in the 19 city agglomerations of China,revealing the fact that the development of city agglomerations is essential for promoting the separation of experience space and changing the urban spatial pattern.This study enriches the theory of urban networks,reveals the flow laws of modern logistics elements,and encourages coordinated development of urban logistics.展开更多
Most traditional trust computing models in E-commerce do not take the transaction frequency among participating entities into consideration,which makes it easy for one party of the transaction to obtain a high trust v...Most traditional trust computing models in E-commerce do not take the transaction frequency among participating entities into consideration,which makes it easy for one party of the transaction to obtain a high trust value in a short time,and brings many disadvantages,uncertainties and even attacks.To solve this problem,a transaction frequency based trust is proposed in this study.The proposed method is composed of two parts.The first part is built on the classic Bayes analysis based trust modelswhich are ease of computing for the E-commerce system.The second part is the transaction frequency module which can mitigate the potential insecurity caused by one participating entity gaining trust in a short time.Simulations show that the proposed method can effectively mitigate the self-promoting attacks so as to maintain the function of E-commerce system.展开更多
In e-commerce live streaming,sellers choose the most suitable streamers to endorse their products.The streamer introduces the main functions of the goods,organizes marketing activities,improves the consumers’shopping...In e-commerce live streaming,sellers choose the most suitable streamers to endorse their products.The streamer introduces the main functions of the goods,organizes marketing activities,improves the consumers’shopping experience,and finally facilitates transactions and obtains gifts.However,the formation mechanism of guanxi between streamers and consumers remain unclear.Based on affordance theory,this study uses structural equations to empirically study the decision-making mechanism of consumer gift-giving and purchase behavior in ecommerce live streaming.The study finds that affective affordance and cognitive affordance have positive impacts on swift guanxi;swift guanxi is an antecedent of consumers’purchase intention and gift-giving intention.展开更多
The rapidly escalating sophistication of e-commerce fraud in recent years has led to an increasing reliance on fraud detection methods based on machine learning.However,fraud detection methods based on conventional ma...The rapidly escalating sophistication of e-commerce fraud in recent years has led to an increasing reliance on fraud detection methods based on machine learning.However,fraud detection methods based on conventional machine learning approaches suffer from several problems,including an excessively high number of network parameters,which decreases the efficiency and increases the difficulty of training the network,while simultaneously leading to network overfitting.In addition,the sparsity of positive fraud incidents relative to the overwhelming proportion of negative incidents leads to detection failures in trained networks.The present work addresses these issues by proposing a convolutional neural network(CNN)framework for detecting ecommerce fraud,where network training is conducted using historical market transaction data.The number of network parameters reduces via the local perception field and weight sharing inherent in the CNN framework.In addition,this deep learning framework enables the use of an algorithmiclevel approach to address dataset imbalance by focusing the CNN model on minority data classes.The proposed CNN model is trained and tested using a large public e-commerce service dataset from 2018,and the test results demonstrate that the model provides higher fraud prediction accuracy than existing state-of-the-art methods.展开更多
Information and communication technologies are spreading rapidly due to their fast proliferation in many fields.The number of Internet users has led to a spike in cyber-attack incidents.E-commerce applications,such as...Information and communication technologies are spreading rapidly due to their fast proliferation in many fields.The number of Internet users has led to a spike in cyber-attack incidents.E-commerce applications,such as online banking,marketing,trading,and other online businesses,play an integral role in our lives.Network Intrusion Detection System(NIDS)is essential to protect the network from unauthorized access and against other cyber-attacks.The existing NIDS systems are based on the Backward Oracle Matching(BOM)algorithm,which minimizes the false alarm rate and causes of high packet drop ratio.This paper discussed the existing NIDS systems and different used pattern-matching techniques regarding their weaknesses and limitations.To address the existing system issues,this paper proposes an enhanced version of the BOM algorithm by using multiple pattern-matching methods for the NIDS system to improve the network performance.The proposed solution is tested in simulation with existing solutions using the Snort and NSL-KDD datasets.The experimental results indicated that the proposed solution performed better than the existing solutions and achieved a 5.17%detection rate and a 0.22%lower false alarm rate than the existing solution.展开更多
The small and scattered enterprise pattern in the county economy has formed numerous sporadic pollution sources, hindering the centralized treatment of the water environment, increasing the cost and difficulty of trea...The small and scattered enterprise pattern in the county economy has formed numerous sporadic pollution sources, hindering the centralized treatment of the water environment, increasing the cost and difficulty of treatment. How enterprises can make reasonable decisions on their water environment behavior based on the external environment and their own factors is of great significance for scientifically and effectively designing water environment regulation mechanisms. Based on optimal control theory, this study investigates the design of contractual mechanisms for water environmental regulation for small and medium-sized enterprises. The enterprise is regarded as an independent economic entity that can adopt optimal control strategies to maximize its own interests. Based on the participation of multiple subjects including the government, enterprises, and the public, an optimal control strategy model for enterprises under contractual water environmental regulation is constructed using optimal control theory, and a method for calculating the amount of unit pollutant penalties is derived. The water pollutant treatment cost data of a paper company is selected to conduct empirical numerical analysis on the model. The results show that the increase in the probability of government regulation and public participation, as well as the decrease in local government protection for enterprises, can achieve the same regulatory effect while reducing the number of administrative penalties per unit. Finally, the implementation process of contractual water environmental regulation for small and medium-sized enterprises is designed.展开更多
With the conclusion of the novel coronavirus pandemic and the increasingly complex market environment,China’s cross-border e-commerce has entered a new phase of development.The external landscape is evolving rapidly,...With the conclusion of the novel coronavirus pandemic and the increasingly complex market environment,China’s cross-border e-commerce has entered a new phase of development.The external landscape is evolving rapidly,and there is a gradual improvement in laws and regulations governing cross-border e-commerce,coupled with increased government support.Despite the impact of the COVID-19 pandemic on the market economy,overall development has been steadily improving.The Internet population is expanding,the online retail market is experiencing rapid growth,the consumption structure is undergoing transformation and upgrading,and the e-commerce market is demonstrating significant potential.The advancement of technologies such as big data,artificial intelligence,blockchain,and supply chain has provided more efficient operational support for the cross-border e-commerce industry.Against the backdrop of the emergence of new forms of cross-border e-commerce in China post-pandemic,this paper utilizes the PEST model to analyze the macro environment of cross-border e-commerce in China and project its future development trends.展开更多
This paper examines the bipartite consensus problems for the nonlinear multi-agent systems in Lurie dynamics form with cooperative and competitive communication between different agents. Based on the contraction theor...This paper examines the bipartite consensus problems for the nonlinear multi-agent systems in Lurie dynamics form with cooperative and competitive communication between different agents. Based on the contraction theory, some new conditions for the nonlinear Lurie multi-agent systems reaching bipartite leaderless consensus and bipartite tracking consensus are presented. Compared with the traditional methods, this approach degrades the dimensions of the conditions, eliminates some restrictions of the system matrix, and extends the range of the nonlinear function. Finally, two numerical examples are provided to illustrate the efficiency of our results.展开更多
The fast-paced development of blockchain technology is evident.Yet,the security concerns of smart contracts represent a significant challenge to the stability and dependability of the entire blockchain ecosystem.Conve...The fast-paced development of blockchain technology is evident.Yet,the security concerns of smart contracts represent a significant challenge to the stability and dependability of the entire blockchain ecosystem.Conventional smart contract vulnerability detection primarily relies on static analysis tools,which are less efficient and accurate.Although deep learning methods have improved detection efficiency,they are unable to fully utilize the static relationships within contracts.Therefore,we have adopted the advantages of the above two methods,combining feature extraction mode of tools with deep learning techniques.Firstly,we have constructed corresponding feature extraction mode for different vulnerabilities,which are used to extract feature graphs from the source code of smart contracts.Then,the node features in feature graphs are fed into a graph convolutional neural network for training,and the edge features are processed using a method that combines attentionmechanismwith gated units.Ultimately,the revised node features and edge features are concatenated through amulti-head attentionmechanism.The result of the splicing is a global representation of the entire feature graph.Our method was tested on three types of data:Timestamp vulnerabilities,reentrancy vulnerabilities,and access control vulnerabilities,where the F1 score of our method reaches 84.63%,92.55%,and 61.36%.The results indicate that our method surpasses most others in detecting smart contract vulnerabilities.展开更多
Cloud computing has emerged as a viable alternative to traditional computing infrastructures,offering various benefits.However,the adoption of cloud storage poses significant risks to data secrecy and integrity.This a...Cloud computing has emerged as a viable alternative to traditional computing infrastructures,offering various benefits.However,the adoption of cloud storage poses significant risks to data secrecy and integrity.This article presents an effective mechanism to preserve the secrecy and integrity of data stored on the public cloud by leveraging blockchain technology,smart contracts,and cryptographic primitives.The proposed approach utilizes a Solidity-based smart contract as an auditor for maintaining and verifying the integrity of outsourced data.To preserve data secrecy,symmetric encryption systems are employed to encrypt user data before outsourcing it.An extensive performance analysis is conducted to illustrate the efficiency of the proposed mechanism.Additionally,a rigorous assessment is conducted to ensure that the developed smart contract is free from vulnerabilities and to measure its associated running costs.The security analysis of the proposed system confirms that our approach can securely maintain the confidentiality and integrity of cloud storage,even in the presence of malicious entities.The proposed mechanism contributes to enhancing data security in cloud computing environments and can be used as a foundation for developing more secure cloud storage systems.展开更多
In recent years,the number of smart contracts deployed on blockchain has exploded.However,the issue of vulnerability has caused incalculable losses.Due to the irreversible and immutability of smart contracts,vulnerabi...In recent years,the number of smart contracts deployed on blockchain has exploded.However,the issue of vulnerability has caused incalculable losses.Due to the irreversible and immutability of smart contracts,vulnerability detection has become particularly important.With the popular use of neural network model,there has been a growing utilization of deep learning-based methods and tools for the identification of vulnerabilities within smart contracts.This paper commences by providing a succinct overview of prevalent categories of vulnerabilities found in smart contracts.Subsequently,it categorizes and presents an overview of contemporary deep learning-based tools developed for smart contract detection.These tools are categorized based on their open-source status,the data format and the type of feature extraction they employ.Then we conduct a comprehensive comparative analysis of these tools,selecting representative tools for experimental validation and comparing them with traditional tools in terms of detection coverage and accuracy.Finally,Based on the insights gained from the experimental results and the current state of research in the field of smart contract vulnerability detection tools,we suppose to provide a reference standard for developers of contract vulnerability detection tools.Meanwhile,forward-looking research directions are also proposed for deep learning-based smart contract vulnerability detection.展开更多
基金supported by the Leading Talent Support Program for Agricultural Talents of the Chinese Academy of Agricultural Sciences(TCS2022020)the General program of National Natural Science Foundation of China(1573263)。
文摘Rapidly expanding studies investigate the effects of e-commerce on company operations in the retail market.However,the interaction between agri-food e-commerce(AEC)and the traditional agri-food wholesale industry(AWI)has not received enough attention in the existing literature.Based on the provincial panel data from 2013 to 2020 in China,this paper examines the effect of AEC on AWI,comprising three dimensions:digitalization(DIGITAL),agrifood e-commerce infrastructure and supporting services(AECI),and agri-food e-commerce economy(AECE).First,AWI and AEC are measured using an entropy-based combination of indicators.The results indicate that for China as a whole,AWI has remained practically unchanged,whereas AEC exhibits a significant rising trend.Second,the findings of the fixed-effect regression reveal that DIGITAL and AECE tend to raise AWI,whereas AECI negatively affects AWI.Third,threshold regression results indicate that AECI tends to diminish AWI with three-stage inhibitory intensity,which manifests as a first increase and then a drop in the inhibition degree.These results suggest that with the introduction of e-commerce for agricultural product circulation,digital development will have catfish effects that tend to stimulate the vitality of the conventional wholesale industry and promote technical progress.Furthermore,the traditional wholesale industry benefits financially from e-commerce even while it diverts part of the traditional wholesale circulation for agricultural products.
基金Supported by Western Project of National Social Science Fund of China(23XJY013)Project of Social Science Foundation of Shaanxi Province(2022D032).
文摘With the rapid growth of the global digital economy, cross-border e-commerce, as an emerging form of trade, has gradually become a powerful engine to promote the development of global trade. BRICS is an important force in the global economy, and the progress of the BRICS countries' trade facilitation level has an important impact on the global trade environment. This paper conducts an in-depth study of the dynamic changes in BRICS trade facilitation from 2013 to 2022, and uses an extended gravity model to analyze the specific impact of this change on China's exports using cross-border e-commerce. The results show that although the BRICS countries have made some progress in trade facilitation, the overall level still needs to be improved, and there are obvious differences among member countries. However, the improvement of trade facilitation among BRICS countries has undoubtedly brought significant positive effects to China's exports using cross-border e-commerce.
文摘Analyze the compatibility between cosmetics and live streaming e-commerce from its own nature,marketing means and supply chain characteristics.According to the prominent problems,sort out the relationship between all parties in the cosmetics live e-commerce industry chain.Combined with the latest regulatory policies of live streaming e-commerce and cosmetics,the responsibilities of different subjects in cosmetics live streaming e-commerce are summarized,and relevant suggestions and countermeasures are put forward for the standardization and development of live streaming e-commerce.Cosmetics brand owners are the first responsible persons for product quality.Anchors,as a mixed identity between intermediary,advertising spokesperson and operator,should bear stricter joint and several liability when recommending products related to consumers’health.If anchors fail to clearly identify themselves in the recommendation process,thus causing consumers to mistake them for the operator of the cosmetics,they should assume the obligations of the operator.
文摘This research introduces a novel approach to improve and optimize the predictive capacity of consumer purchase behaviors on e-commerce platforms. This study presented an introduction to the fundamental concepts of the logistic regression algorithm. In addition, it analyzed user data obtained from an e-commerce platform. The original data were preprocessed, and a consumer purchase prediction model was developed for the e-commerce platform using the logistic regression method. The comparison study used the classic random forest approach, further enhanced by including the K-fold cross-validation method. Evaluation of the accuracy of the model’s classification was conducted using performance indicators that included the accuracy rate, the precision rate, the recall rate, and the F1 score. A visual examination determined the significance of the findings. The findings suggest that employing the logistic regression algorithm to forecast customer purchase behaviors on e-commerce platforms can improve the efficacy of the approach and yield more accurate predictions. This study serves as a valuable resource for improving the precision of forecasting customers’ purchase behaviors on e-commerce platforms. It has significant practical implications for optimizing the operational efficiency of e-commerce platforms.
基金National Natural Science Foundation of China(NSFC)Youth Project“Research on Household Debt Behavior and Its Impact on Economic Inequality in the Context of Common Prosperity”(Grant No.72203136),the Youth Project of the Guangdong Planning Office of Philosophy and Social Science(GDPOPSS)“E-commerce Development and Consumption Disparity of Rural Households:Theoretical Mechanism,Empirical Test and Policy Optimization”(Grant No.GD24YYJ27).
文摘In the context of China’s ongoing efforts to promote countryside revitalization and facilitate domestic economic circulation,it is of great significance to reduce the consumption disparity among rural households and unleash the consumption potential in the countryside.Based on data from China Family Panel Studies,this paper adopts a staggered difference-in-differences method to assess the impact of the e-commerce to enter rural areas on the consumption disparity among rural households.Findings:the comprehensive demonstration work of promoting e-commerce to enter rural areas has reduced the consumption disparity among rural households through the following mechanisms.Firstly,this policy initiative has mitigated the consumption-inhibiting effect on rural household consumption due to the local market size and external market accessibility by promoting the distribution of consumer goods to villages.Secondly,this policy initiative has also increased the agricultural income of rural households and reduced their consumption disparity by distributing farm produce to cities and enhancing the agricultural income of rural households.Moreover,the work is characterized by inclusive growth and is not susceptible to the“elite capture”phenomenon.
文摘E-commerce live broadcast has an important influence on consumers’purchase intention.The three dimensions of live broadcast content in the broadcast room are the number of comments,product quality,and live content as independent variables.A theoretical model is constructed with perceived value and risk as intermediaries and the consumers’purchase intention as the dependent variable,and corresponding hypotheses are put forward.We designed the scale,collected relevant data,and tested the model hypothesis using Statistical Package for Social Sciences(SPSS)and Analysis of Moment Structure(AMOS)software.The study found that the number of comments and product quality had a significant impact on perceived value,perceived risk,and consumers’purchase intention.From this conclusion,it is suggested that businesses should control the number of comments,strengthen the product quality of comments,and distinguish the repetition degree of the content of live broadcasts.
基金Research on the Measurement of the Development Level of Rural E-commerce and the Enhancement of Profitability in Guangxi(Project No.2022KY0618).
文摘The development of rural e-commerce is becoming an important driver for the transformation of China’s rural economy,and with the rapid development of information technology and the upgrading of the agricultural industry,rural e-commerce is showing a vigorous momentum of development.Traditionally,agricultural products are mainly sold through traditional farmers’markets,which are subjected to geography and channel limitations,resulting in inefficient circulation of agricultural products.This paper analyzes the definition,the status quo,as well as the influencing factors of rural e-commerce development.On this basis,countermeasures for the advancement of rural e-commerce development are put forward.
文摘With the rapid development of science and technology,the face of human society has undergone great changes;with the emergence of the Internet era,all kinds of educational technology,equipment,and software in vocational colleges have been widely used to carry out education and teaching,and has achieved remarkable results.Based on this,colleges and universities’electronic commerce(e-commerce)professional teachers should try to rely on the Internet to build information teaching classrooms,introduce advanced methods to build efficient classrooms by integrating teaching resources,and optimize the top-level design,so as to activate the classroom atmosphere,mobilize students’emotions,make them immersed in the teaching of electronic commerce courses.In view of this,this paper combines the existing theory and experience,first analyzes the dilemma faced by the current teaching of e-commerce in vocational colleges,then discusses the practical significance of teaching reform based on the Internet era,and lastly puts forward the specific practice path.
基金Phased Research Key Project of Shanghai China Vocational Education Association“Research on Digital Transformation Path of Vocational Education Driven by AIGC from the Perspective of New Quality Productivity”,Phased Research Project of Shanghai Computer Industry Association“The Reform and Exploration of Cross-border E-commerce Talent Cultivation in Vocational Colleges from the Perspective of Industry Education Integration”(Project No.sctakt202404)。
文摘This article takes the female community platform“Little Red Book”as an example to explore the optimization and innovation of mobile community e-commerce operation mode under Artificial Intelligence(AI)empowerment.Firstly,the relevant concepts were defined,and then the unique attributes of mobile community e-commerce were analyzed.As a typical representative of mobile community e-commerce,Little Red Book introduces the background and characteristics of its platform,analyzes its mobile community operation mode,and focuses on exploring how to establish a mobile community e-commerce platform and effective operation mode under the empowerment of AI technology,to provide some reference and inspiration for the development and operation of Little Red Book and other e-commerce platform enterprises.
基金Under the auspices of National Natural Science Foundation of China(No.42071165,41801144)GDAS’Project of Science and Technology Development(No.2023GDASZH-2023010101,2021GDASYL-20210103004)。
文摘The intermediate link compression characteristics of e-commerce express logistics ne tworks influence the tradition al mode of circulation of goods and economic organization,and alter the city spatial pattern.Based on the theory of space of flows,this study adopts China Smart Logistics Network relational data to build China's e-commerce express logistics network and explore its spatial structure characteristics through social network analysis(SNA),the PageRank technique,and geospatial methods.The results are as follows:the network density is 0.9270,which is close to 1;hence,indicating that e-commerce express logistics lines between Chinese cities are nearly complete and they form a typical network structure,thereby eliminating fragmented spaces.Moreover,the average minimum number of edges is 1.1375,which indicates that the network has a small world effect and thus has a high flow efficiency of logistics elements.A significant hierarchical diffusion effect was observed in dominant flows with the highest edge weights.A diamond-structured network was formed with Shanghai,Guangzhou,Chongqing,and Beijing as the four core nodes.Other node cities with a large logistics scale and importance in the network are mainly located in the 19 city agglomerations of China,revealing the fact that the development of city agglomerations is essential for promoting the separation of experience space and changing the urban spatial pattern.This study enriches the theory of urban networks,reveals the flow laws of modern logistics elements,and encourages coordinated development of urban logistics.
文摘Most traditional trust computing models in E-commerce do not take the transaction frequency among participating entities into consideration,which makes it easy for one party of the transaction to obtain a high trust value in a short time,and brings many disadvantages,uncertainties and even attacks.To solve this problem,a transaction frequency based trust is proposed in this study.The proposed method is composed of two parts.The first part is built on the classic Bayes analysis based trust modelswhich are ease of computing for the E-commerce system.The second part is the transaction frequency module which can mitigate the potential insecurity caused by one participating entity gaining trust in a short time.Simulations show that the proposed method can effectively mitigate the self-promoting attacks so as to maintain the function of E-commerce system.
基金supported by the grant from the National Social Science Fund of China(Grant No.:19BGL262).
文摘In e-commerce live streaming,sellers choose the most suitable streamers to endorse their products.The streamer introduces the main functions of the goods,organizes marketing activities,improves the consumers’shopping experience,and finally facilitates transactions and obtains gifts.However,the formation mechanism of guanxi between streamers and consumers remain unclear.Based on affordance theory,this study uses structural equations to empirically study the decision-making mechanism of consumer gift-giving and purchase behavior in ecommerce live streaming.The study finds that affective affordance and cognitive affordance have positive impacts on swift guanxi;swift guanxi is an antecedent of consumers’purchase intention and gift-giving intention.
基金supported by the National Natural Science Foundation of China (No.72073041,No.61903131)2020 Hunan Provincial Higher Education Teaching Reform Research Project (Nos.HNJG-2020-1130,HNJG-2020-1124)+1 种基金2020 General Project of Hunan Social Science Fund (No.20B16)Outstanding Youth of Department of Education of Hunan Province (No.20B096)and the China Postdoctoral Science Foundation (No.2020M683715).
文摘The rapidly escalating sophistication of e-commerce fraud in recent years has led to an increasing reliance on fraud detection methods based on machine learning.However,fraud detection methods based on conventional machine learning approaches suffer from several problems,including an excessively high number of network parameters,which decreases the efficiency and increases the difficulty of training the network,while simultaneously leading to network overfitting.In addition,the sparsity of positive fraud incidents relative to the overwhelming proportion of negative incidents leads to detection failures in trained networks.The present work addresses these issues by proposing a convolutional neural network(CNN)framework for detecting ecommerce fraud,where network training is conducted using historical market transaction data.The number of network parameters reduces via the local perception field and weight sharing inherent in the CNN framework.In addition,this deep learning framework enables the use of an algorithmiclevel approach to address dataset imbalance by focusing the CNN model on minority data classes.The proposed CNN model is trained and tested using a large public e-commerce service dataset from 2018,and the test results demonstrate that the model provides higher fraud prediction accuracy than existing state-of-the-art methods.
文摘Information and communication technologies are spreading rapidly due to their fast proliferation in many fields.The number of Internet users has led to a spike in cyber-attack incidents.E-commerce applications,such as online banking,marketing,trading,and other online businesses,play an integral role in our lives.Network Intrusion Detection System(NIDS)is essential to protect the network from unauthorized access and against other cyber-attacks.The existing NIDS systems are based on the Backward Oracle Matching(BOM)algorithm,which minimizes the false alarm rate and causes of high packet drop ratio.This paper discussed the existing NIDS systems and different used pattern-matching techniques regarding their weaknesses and limitations.To address the existing system issues,this paper proposes an enhanced version of the BOM algorithm by using multiple pattern-matching methods for the NIDS system to improve the network performance.The proposed solution is tested in simulation with existing solutions using the Snort and NSL-KDD datasets.The experimental results indicated that the proposed solution performed better than the existing solutions and achieved a 5.17%detection rate and a 0.22%lower false alarm rate than the existing solution.
文摘The small and scattered enterprise pattern in the county economy has formed numerous sporadic pollution sources, hindering the centralized treatment of the water environment, increasing the cost and difficulty of treatment. How enterprises can make reasonable decisions on their water environment behavior based on the external environment and their own factors is of great significance for scientifically and effectively designing water environment regulation mechanisms. Based on optimal control theory, this study investigates the design of contractual mechanisms for water environmental regulation for small and medium-sized enterprises. The enterprise is regarded as an independent economic entity that can adopt optimal control strategies to maximize its own interests. Based on the participation of multiple subjects including the government, enterprises, and the public, an optimal control strategy model for enterprises under contractual water environmental regulation is constructed using optimal control theory, and a method for calculating the amount of unit pollutant penalties is derived. The water pollutant treatment cost data of a paper company is selected to conduct empirical numerical analysis on the model. The results show that the increase in the probability of government regulation and public participation, as well as the decrease in local government protection for enterprises, can achieve the same regulatory effect while reducing the number of administrative penalties per unit. Finally, the implementation process of contractual water environmental regulation for small and medium-sized enterprises is designed.
基金2023 National College Students’Innovation and Entrepreneurship Training Program“Research on Big Data Analysis and Application of Cross-Border E-commerce in the Context of Digital Trade”(Project number:202310621323)。
文摘With the conclusion of the novel coronavirus pandemic and the increasingly complex market environment,China’s cross-border e-commerce has entered a new phase of development.The external landscape is evolving rapidly,and there is a gradual improvement in laws and regulations governing cross-border e-commerce,coupled with increased government support.Despite the impact of the COVID-19 pandemic on the market economy,overall development has been steadily improving.The Internet population is expanding,the online retail market is experiencing rapid growth,the consumption structure is undergoing transformation and upgrading,and the e-commerce market is demonstrating significant potential.The advancement of technologies such as big data,artificial intelligence,blockchain,and supply chain has provided more efficient operational support for the cross-border e-commerce industry.Against the backdrop of the emergence of new forms of cross-border e-commerce in China post-pandemic,this paper utilizes the PEST model to analyze the macro environment of cross-border e-commerce in China and project its future development trends.
基金Project supported by the National Natural Science Foundation of China(Grant No.62363005)the Jiangxi Provincial Natural Science Foundation(Grant Nos.20161BAB212032 and 20232BAB202034)the Science and Technology Research Project of Jiangxi Provincial Department of Education(Grant Nos.GJJ202602 and GJJ202601)。
文摘This paper examines the bipartite consensus problems for the nonlinear multi-agent systems in Lurie dynamics form with cooperative and competitive communication between different agents. Based on the contraction theory, some new conditions for the nonlinear Lurie multi-agent systems reaching bipartite leaderless consensus and bipartite tracking consensus are presented. Compared with the traditional methods, this approach degrades the dimensions of the conditions, eliminates some restrictions of the system matrix, and extends the range of the nonlinear function. Finally, two numerical examples are provided to illustrate the efficiency of our results.
基金the Gansu Province Higher Education Institutions Industrial Support Program:Security Situational Awareness with Artificial Intelligence and Blockchain Technology.Project Number(2020C-29).
文摘The fast-paced development of blockchain technology is evident.Yet,the security concerns of smart contracts represent a significant challenge to the stability and dependability of the entire blockchain ecosystem.Conventional smart contract vulnerability detection primarily relies on static analysis tools,which are less efficient and accurate.Although deep learning methods have improved detection efficiency,they are unable to fully utilize the static relationships within contracts.Therefore,we have adopted the advantages of the above two methods,combining feature extraction mode of tools with deep learning techniques.Firstly,we have constructed corresponding feature extraction mode for different vulnerabilities,which are used to extract feature graphs from the source code of smart contracts.Then,the node features in feature graphs are fed into a graph convolutional neural network for training,and the edge features are processed using a method that combines attentionmechanismwith gated units.Ultimately,the revised node features and edge features are concatenated through amulti-head attentionmechanism.The result of the splicing is a global representation of the entire feature graph.Our method was tested on three types of data:Timestamp vulnerabilities,reentrancy vulnerabilities,and access control vulnerabilities,where the F1 score of our method reaches 84.63%,92.55%,and 61.36%.The results indicate that our method surpasses most others in detecting smart contract vulnerabilities.
文摘Cloud computing has emerged as a viable alternative to traditional computing infrastructures,offering various benefits.However,the adoption of cloud storage poses significant risks to data secrecy and integrity.This article presents an effective mechanism to preserve the secrecy and integrity of data stored on the public cloud by leveraging blockchain technology,smart contracts,and cryptographic primitives.The proposed approach utilizes a Solidity-based smart contract as an auditor for maintaining and verifying the integrity of outsourced data.To preserve data secrecy,symmetric encryption systems are employed to encrypt user data before outsourcing it.An extensive performance analysis is conducted to illustrate the efficiency of the proposed mechanism.Additionally,a rigorous assessment is conducted to ensure that the developed smart contract is free from vulnerabilities and to measure its associated running costs.The security analysis of the proposed system confirms that our approach can securely maintain the confidentiality and integrity of cloud storage,even in the presence of malicious entities.The proposed mechanism contributes to enhancing data security in cloud computing environments and can be used as a foundation for developing more secure cloud storage systems.
基金funded by the Major PublicWelfare Special Fund of Henan Province(No.201300210200)the Major Science and Technology Research Special Fund of Henan Province(No.221100210400).
文摘In recent years,the number of smart contracts deployed on blockchain has exploded.However,the issue of vulnerability has caused incalculable losses.Due to the irreversible and immutability of smart contracts,vulnerability detection has become particularly important.With the popular use of neural network model,there has been a growing utilization of deep learning-based methods and tools for the identification of vulnerabilities within smart contracts.This paper commences by providing a succinct overview of prevalent categories of vulnerabilities found in smart contracts.Subsequently,it categorizes and presents an overview of contemporary deep learning-based tools developed for smart contract detection.These tools are categorized based on their open-source status,the data format and the type of feature extraction they employ.Then we conduct a comprehensive comparative analysis of these tools,selecting representative tools for experimental validation and comparing them with traditional tools in terms of detection coverage and accuracy.Finally,Based on the insights gained from the experimental results and the current state of research in the field of smart contract vulnerability detection tools,we suppose to provide a reference standard for developers of contract vulnerability detection tools.Meanwhile,forward-looking research directions are also proposed for deep learning-based smart contract vulnerability detection.