The Al/Si/SiC composites with medium volume fraction for electronic packaging were fabricated by gas pressure infiltration.On the premise of keeping the machinability of the composites,the silicon carbide particles,wh...The Al/Si/SiC composites with medium volume fraction for electronic packaging were fabricated by gas pressure infiltration.On the premise of keeping the machinability of the composites,the silicon carbide particles,which have the similar size with silicon particles(average 13 μm),were added to replace silicon particles of same volume fraction,and microstructure and properties of the composites were investigated.The results show that reinforcing particles are distributed uniformly and no apparent pores are observed in the composites.It is also observed that higher thermal conductivity(TC) and flexural strength will be obtained with the addition of SiC particles.Meanwhile,coefficient of thermal expansion(CTE) changes smaller than TC.Models for predicting thermal properties were also discussed.Equivalent effective conductivity(EEC) was proposed to make H-J model suitable for hybrid particles and multimodal particle size distribution.展开更多
The Cu/Invar composites of 40% Cu were prepared by powder metallurgy, and the composites were rolled with 70% reduction and subsequently annealed at 750 ℃. Phases, microstructures and properties of the composites wer...The Cu/Invar composites of 40% Cu were prepared by powder metallurgy, and the composites were rolled with 70% reduction and subsequently annealed at 750 ℃. Phases, microstructures and properties of the composites were then studied. After that, the amount of a-Fe(Ni,Co) in the composites is reduced, because a-Fe(Ni,Co) partly transfers into y-Fe(Ni,Co) through the diffusion of the Ni atoms into a-Fe(Ni,Co) from Cu. When the rolling reduction is less than 40%, the deformation of Cu takes place, resulting in the movement of the Invar particles and the seaming of the pores. When the rolling reduction is in the range from 40% to 60%, the deformations of Invar and Cu occur simultaneously to form a streamline structure. After rolling till 70% and subsequent annealing, the Cu/Invar composites have fine comprehensive properties with a relative density of 98.6%, a tensile strength of 360 MPa, an elongation rate of 50%, a thermal conductivity of 25.42 W/(m.K) (as-tested) and a CTE of 10.79× 10-6/K (20-100 ℃).展开更多
Laser-weldable Sip-SiCp/Al hybrid composites with high volume fraction (60%-65%) of SiC reinforcement were fabricated by compression moulding and vacuum gas pressure infiltration technology. Microscopic observation ...Laser-weldable Sip-SiCp/Al hybrid composites with high volume fraction (60%-65%) of SiC reinforcement were fabricated by compression moulding and vacuum gas pressure infiltration technology. Microscopic observation displayed that the Sip-SiCp/Al hybrid composites with bilayer structure were compact without gas pores and the intergradation between Sip/Al layer and SiCp/Al layer was homogeneous and continuous. Further investigation revealed that the Sip-SiCp/Al hybrid composites possessed low density (2.96 g/cm^3), high gas tightness (1.0 mPa·cm^3)/s), excellent thermal management function as a result of high thermal conductivity (194 W/(m·K) and low coefficient of thermal expansion (7.0×10^-6 K-1). Additionally, Sip-SiCp/Al hybrid composites had outstanding laser welding adaptability, which is significantly important for electronic packaging applications. The gas tightness of components after laser welding (48 mPa·cm^3)/s) can well match the requirement of advanced electronic packaging. Several kinds of these precision components passed tests and were put into production.展开更多
Diamond/Cu-xCr composites were fabricated by pressure infiltration process.The thermal conductivities of diamond/Cu-xCr(x = 0.1,0.5,0.8) composites were above 650 W/mK,higher than that of diamond/Cu composites.The t...Diamond/Cu-xCr composites were fabricated by pressure infiltration process.The thermal conductivities of diamond/Cu-xCr(x = 0.1,0.5,0.8) composites were above 650 W/mK,higher than that of diamond/Cu composites.The tensile strengths ranged from 186 to 225 MPa,and the bonding strengths ranged from 400 to 525 MPa.Influences of Cr element on the thermo-physical properties and interface structures were analyzed.The intermediate layer was confirmed as Cr3C2 and the amount of Cr3C2 increased with the increase of Cr concentration in Cu-xCr alloys.When the Cr concentration was up to 0.5 wt.%,the content of the Cr3C2 layer was constant.As the thickness of the Cr3C2 layer became larger,the composites showed a lower thermal conductivity but higher mechanical properties.The coefficients of thermal expansion(CTE) of diamond/Cu-xCr(x = 0.1,0.5,0.8) composites were in good agreement with the predictions of the Kerner' model.展开更多
To fabricate electronic packaging shell of coppermatrix composite with characteristics of high ther mal conductivity and low thermal expansion coefficient, semisolid forming technology, and powder metallurgy was combi...To fabricate electronic packaging shell of coppermatrix composite with characteristics of high ther mal conductivity and low thermal expansion coefficient, semisolid forming technology, and powder metallurgy was combined. Conventional mechanical mixing of Cu and SiC could have insufficient wettability, and a new method of semisolid processing was introduced for billets preparation. The SiC/Cu composites were first prepared by PM, and then, semisolid reheating was performed for the successive semisolid forging. Composite billets with SiC 35 % vol ume fraction were compacted and sintered pressurelessly, microstructure analysis showed that the composites pre pared by PM had high density, and the combination between SiC particles and Cualloy was good. Semisolid reheating was the crucial factor in determining the micro structure and thixotropic property of the billet. An opti mised reheating strategy was proposed: temperature 1,025 ℃and holding time 5 min.展开更多
New recycling alternative for multilayer films was successfully presented. Food packaging formed from different materials is difficult to recycle. The use of aluminum, glass, paper, paints, varnishes, and other materi...New recycling alternative for multilayer films was successfully presented. Food packaging formed from different materials is difficult to recycle. The use of aluminum, glass, paper, paints, varnishes, and other materials in the rolling processes from plastic packaging is intended to optimize the efficiency of packaging. Nevertheless, these materials prevent the recycling of packaging because they become contaminants to the recycling process. Food multilayered packaging containing poly (ethylene terephthalate) PET, poly (ethylene) PE and aluminum was used as filler in the preparation of composites with post-consumer high density polyethylene matrix. Composites containing up to 50 wt% of filler were feasible to prepare, allowing the obtention of a material with varied mechanical and thermal properties. This feature allows the preparation of composites suitable for specific application. The addition of multilayer matter in the polyethylene matrix provided a material with excellent mechanical properties such as higher tensile impact strength (148 J/m) and elasticity (350 MPa) as compared to pure polyethylene (40 J/m and 450 MPa).展开更多
A polymer-based carbon nano-tubes (CNTs) composite with high electromagnetic (EM) wave shielding effectiveness (SE) and with high mechanical property is developed for packaging of electronic modulus or devices.The ...A polymer-based carbon nano-tubes (CNTs) composite with high electromagnetic (EM) wave shielding effectiveness (SE) and with high mechanical property is developed for packaging of electronic modulus or devices.The liquid crystal polymers (LCP) and melamine formaldehydes (MF) polymer are used to study the orientation effect of CNTs in various polymeric matrix.The influences of orientation,aspect ratio,and mass fraction of CNTs upon the shielding effectiveness (SE) of CNTs-composites are investigated.The higher the orientation,aspect ratio,and weight percentages of nano-materials are, the higher the SE of the carbon composites.The highest SE for the CNTs/LCP nano composite obtained is more than 62 dB. This results may lead to the developing for CPU IC chip packaging.展开更多
Based on the research of modem electronic packaging materials, thixo-forming technology was used to fabricate electronic packaging shell. The process of thixo-extrusion with SiCp/A356 composites was simulated by the f...Based on the research of modem electronic packaging materials, thixo-forming technology was used to fabricate electronic packaging shell. The process of thixo-extrusion with SiCp/A356 composites was simulated by the finite element software DEFORM-3D, then the flow velocity field, equivalent strain field and temperature field were analyzed. The electronic packaging shell was manufactured by extrusion according to the results from numerical simulation. The results show that thixo-forming technology can be used in producing electronic package shell with SiCp/A356 composites, and high volume fraction of SiCp with homogeneous distribution can be achieved, being in agreement with the requirements of electronic packaging materials.展开更多
The electronic packaging shell with high silicon carbide aluminum-base composites was prepared by semi-solid thixoforming technique. The flow characteristic of the Si C particulate was analyzed. The microstructures of...The electronic packaging shell with high silicon carbide aluminum-base composites was prepared by semi-solid thixoforming technique. The flow characteristic of the Si C particulate was analyzed. The microstructures of different parts of the shell were observed by scanning electron microscopy and optical microscopy, and the thermophysical and mechanical properties of the shell were tested. The results show that there exists the segregation phenomenon between the Si C particulate and the liquid phase during thixoforming, the liquid phase flows from the shell, and the Si C particles accumulate at the bottom of the shell. The volume fraction of Si C decreases gradually from the bottom to the walls. Accordingly, the thermal conductivities of bottom center and walls are 178 and 164 W·m-1·K-1, the coefficients of thermal expansion(CTE) are 8.2×10-6 and 12.6×10-6 K-1, respectively. The flexural strength decreases slightly from 437 to 347 MPa. The microstructures and properties of the shell show gradient distribution.展开更多
Sip/1199,Sip/4032 and Sip/4019 environment-friendly composites for electronic packaging applications with high volume fraction of Si particles were fabricated by squeeze-casting technology. Effects of microstructure,p...Sip/1199,Sip/4032 and Sip/4019 environment-friendly composites for electronic packaging applications with high volume fraction of Si particles were fabricated by squeeze-casting technology. Effects of microstructure,particle volume fraction,particle size,matrix alloy and heat treatment on the electrical properties of composites were discussed,and the electrical conductivity was calculated by theoretical models. It is shown that the Si/Al interfaces are clean and do not have interface reaction products. For the same matrix alloy,the electrical conductivity of composites decreases with increasing the reinforcement volume fraction. As for the same particle content,the electrical conductivity of composites decreases with increasing the alloying element content of matrix. Particle size has little effects on the electrical conductivity. Electrical conductivity of composites increases slightly after annealing treatment. The electrical conductivity of composites calculated by P.G model is consistent with the experimental results.展开更多
In order to improve the thermal properties of MMCs for electronic packaging,the concept of fabrication MMCs with particular interpenetrating phases(IPCs) was proposed. Based on the diffusion theory of reinforcement el...In order to improve the thermal properties of MMCs for electronic packaging,the concept of fabrication MMCs with particular interpenetrating phases(IPCs) was proposed. Based on the diffusion theory of reinforcement element in matrix alloys of some particular PMMCs,a novel fabrication method to produce IPCs was proposed. The Si/Al composites(65%Si,volume fraction) with interpenetrating phases were fabricated successfully by squeeze casting and hot press sintering technology. Microstructure observations indicate that the reinforcements Si are of three-dimensional continuous network and the composites are compact without obvious defects. The average linear thermal expansion coefficient(CTE) between 20 ℃ and 100 ℃ of the Si/Al IPCs is 8.27×10-6/K,and the thermal conductivity(TC) is 124.03 W/(m·K),and the composites can meet the demands of electronic packaging. ROM model and Turner model can be used to predict the CTEs of IPCs,and the experimental CTEs are between their theoretical and calculated values.展开更多
The thermal conductivity of Cu/Kovar composites was improved by suppressing element diffusion at the interfaces through the formation of FeWO_(4)coating on the Kovar particles via vacuum deposition.Cu matrix composite...The thermal conductivity of Cu/Kovar composites was improved by suppressing element diffusion at the interfaces through the formation of FeWO_(4)coating on the Kovar particles via vacuum deposition.Cu matrix composites reinforced with unmodified(Cu/Kovar)and modified Kovar(Cu/Kovar@)particles were prepared by hot pressing.The results demonstrate that the interfaces of Cu/FeWO_(4)and FeWO_(4)/Kovar in the Cu/Kovar@composites exhibit strong bonding,and no secondary phase is generated.The presence of FeWO_(4)impedes interfacial diffusion within the composite,resulting in an increase in grain size and a decrease in dislocation density.After surface modification of the Kovar particle,the thermal conductivity of Cu/Kovar@composite is increased by 110%from 40.6 to 85.6 W·m^(-1)·K^(-1).Moreover,the thermal expansion coefficient of the Cu/Kovar@composite is 9.8×10^(-6)K^(-1),meeting the electronic packaging requirements.展开更多
Diamond/aluminium composites have attracted attention in the field of thermal management of electronic packaging for their excellent properties.In order to solve the interfacial problem between diamond and aluminium,a...Diamond/aluminium composites have attracted attention in the field of thermal management of electronic packaging for their excellent properties.In order to solve the interfacial problem between diamond and aluminium,a novel process combining pressure infiltration with vacuum-assisted technology was proposed to prepare diamond/aluminum composites.The effect of diamond particle size on the microstructure and properties of the diamond/Al-12Si composites was investigated.The results show that the diamond/Al-12Si composites exhibit high relative density and a uniform microstructure.Both thermal conductivity and coefficient of thermal expansion increase with increasing particle size,while the bending strength exhibits the opposite trend.When the average diamond particle size increases from 45μm to 425μm,the thermal conductivity of the composites increases from 455 W·m^(-1)·K^(-1)to 713 W·m^(-1)·K^(-1)and the coefficient of thermal expansion increases from 4.97×10^(-6)K^(-1)to 6.72×10^(-6)K^(-1),while the bending strength decreases from 353 MPa to 246 MPa.This research demonstrates that high-quality composites can be prepared by the vacuum-assisted pressure infiltration process and the thermal conductivity of the composites can be effectively improved by increasing the diamond particle size.展开更多
The objective of this study is to improve the mechanical properties and machining performance of high thermal conductivity and low expansion silicon carbide dispersion-strengthened hypereutectic aluminum-silicon elect...The objective of this study is to improve the mechanical properties and machining performance of high thermal conductivity and low expansion silicon carbide dispersion-strengthened hypereutectic aluminum-silicon electronic packaging materials to meet the needs of aviation,aerospace,and electronic packaging fields.We used the powder metallurgy method and high-temperature hot pressing technology to prepare SiC/Al-Si composite materials with different SiC contents(5vol%,10vol%,15vol%,and 20vol%).The results showed that as the SiC content increased,the tensile strength of the composite material first increased and then decreased.The tensile strength was the highest when the SiC content was 15%;the sintering temperature significantly affected the composite material’s structural density and mechanical properties.Findings indicated 700℃was the optimal sintering and the optimal SiC content of SiC/Al-Si composite materials was between 10%and 15%.Besides,the sintering temperature should be strictly controlled to improve the material’s structural density and mechanical properties.展开更多
High reinforcement content SiCp/Cu composites (φp=50%, 55% and 60%) for electronic packaging applications were fabricated by patent cost-effective squeeze-casting technology. The composites appear to be free of pores...High reinforcement content SiCp/Cu composites (φp=50%, 55% and 60%) for electronic packaging applications were fabricated by patent cost-effective squeeze-casting technology. The composites appear to be free of pores, and the SiC particles are distribute uniformly in the composites. The mean linear coefficients of thermal expansion (CTEs, 20-100 ℃ ) of as-cast SiCp/Cu composites range from 8.8×10-6 ℃-1 to 9.9×10-6 ℃-1 and decrease with the increase of SiC content. The experimental CTEs of as-cast SiCp/Cu composites agree well with the predicted values based on Kerner model. The CTEs of composites reduce after annealing treatment due to the fact that the internal stress of the composite is released. The Brinell hardness increases from 272.3 to 313.2, and the modulus increases from 186 GPa to 210 GPa for the corresponding composites. The bending strength is larger than 374 MPa, but no obvious trend between bending strength and SiCp content is observed.展开更多
The rapid development of electronic packaging industry has resulted in higher requirement for packaging materials.The packaging material of SiC reinforced A356 aluminum alloy was fabricated by mechanical mixing method...The rapid development of electronic packaging industry has resulted in higher requirement for packaging materials.The packaging material of SiC reinforced A356 aluminum alloy was fabricated by mechanical mixing method,and the SiCp/Al composite billet was formed by thixo-forging to manufacture the electronic packaging shell.The microstructure of the produced part was investigated.Two different thixo-forging procedures for manufacturing electronic packaging shell were analyzed.The results show that after being heated to 600 ℃ and held for 3 h,SiCp has good compatibility with A356 aluminum alloy and the SiCp/A356 composite billet can meet the requirements of thixo-forging.When the billet was remelted to 580℃,held for 10 min,the homogeneous microstructure with the best thixo-formability can be realized.The thixo-forging of electronic packaging shell is feasible.展开更多
30-50 wt.%graphite nanoflakes(GNFs)/6061Al matrix composites were fabricated via spark plasma sintering(SPS)at 610℃.The effects of the sintering pressure and GNF content on the microstructure and properties of the co...30-50 wt.%graphite nanoflakes(GNFs)/6061Al matrix composites were fabricated via spark plasma sintering(SPS)at 610℃.The effects of the sintering pressure and GNF content on the microstructure and properties of the composites were investigated.The results indicated that interfacial reactions were inhibited during SPS because no Al4C3 was detected.Moreover,the agglomeration of the GNFs increased,and the distribution orientation of the GNFs decreased with increasing the GNF content.The relative density,bending strength,and coefficient of thermal expansion(CTE)of the composites decreased,while the thermal conductivity(TC)in the X−Y direction increased.As the sintering pressure increased,the GNFs deagglomerated and were distributed preferentially in the X−Y direction,which increased the relative density,bending strength and TC,and decreased the CTE of the composites.The 50wt.%GNFs/6061Al matrix composite sintered at 610℃ under 55 MPa demonstrated the best performance,i.e.,bending strength of 72 MPa,TC and CTE(RT−100℃)of 254 W/(m·K)and 8.5×10^(−6)K^(−1)in the X−Y direction,and 55 W/(m·K)and 9.7×10^(−6)K^(−1)in the Z direction,respectively.展开更多
Biodegradable starch-based chitosan reinforced composite polymeric films were prepared by casting. The chitosan content in the films was varied from 20% to 80% (w/w). Tensile strength (TS) was improved significantly w...Biodegradable starch-based chitosan reinforced composite polymeric films were prepared by casting. The chitosan content in the films was varied from 20% to 80% (w/w). Tensile strength (TS) was improved significantly with the addition of chitosan but elongation at break (EB %) of the composites decreased. Tensile strength of the composites raised more with the addition of the acacia catechu content in the films varied from 0.05% to 0.2% (w/w). The better thermal stability of this prepared film was confirmed by thermo-gravimetric analysis. Structural characterization was done by Fourier transform infrared spectroscopy. Surface morphologies of the composites were examined by scanning electron microscope (SEM) which suggested sufficient homogenization of starch, chitosan and acacia catechu. Water uptake was found lower for final composites in comparison to starch/chitosan and chitosan films. The satisfactory rate of degradation in the soil is expected that the final composite film is within less than 6 months. The developed films intended to use as the alternative of synthetic non-biodegradable colored packaging films.展开更多
The pressureless infiltration kinetics was investigated by plotting the infiltration distance as function of the infiltration time. The effects of key process parameters such as time, temperature, Mg content on the pr...The pressureless infiltration kinetics was investigated by plotting the infiltration distance as function of the infiltration time. The effects of key process parameters such as time, temperature, Mg content on the pressureless infiltration of silicon carbide particle compacts were studied and quantified. The preform with high volume fraction SiC was obtained by mixing SiC particles with bimodal size distribution, whose diameters are 5 and 50 μm, respectively. The results show that an incubation period exists before infiltration, the influence of temperature on the incubation time exceeds that of Mg content, infiltration rate increases with the increasing temperature and Mg content, infiltration rate decreases as Mg consumes. A model of macroscopical infiltration and microscopical infiltration of liquid alloy in porous SiC preform was proposed.展开更多
Particulate composites based on isotactic polypropylene(iPP) and titanium dioxide(TiO 2) have been prepared and their morphology and thermal behavior investigated by scanning electron microscopy(SEM), differential sca...Particulate composites based on isotactic polypropylene(iPP) and titanium dioxide(TiO 2) have been prepared and their morphology and thermal behavior investigated by scanning electron microscopy(SEM), differential scanning calorimetry(DSC) and thermogravimetric analysis(TGA). Tensile tests were performed to assess the influence of TiO 2 on the mechanical properties of the iPP.展开更多
基金Project (60776019) supported by the National Natural Science Foundation of ChinaProject (61-TP-2010) supported by the Research Fund of the State Key Laboratory of Solidification Processing (NWPU),China
文摘The Al/Si/SiC composites with medium volume fraction for electronic packaging were fabricated by gas pressure infiltration.On the premise of keeping the machinability of the composites,the silicon carbide particles,which have the similar size with silicon particles(average 13 μm),were added to replace silicon particles of same volume fraction,and microstructure and properties of the composites were investigated.The results show that reinforcing particles are distributed uniformly and no apparent pores are observed in the composites.It is also observed that higher thermal conductivity(TC) and flexural strength will be obtained with the addition of SiC particles.Meanwhile,coefficient of thermal expansion(CTE) changes smaller than TC.Models for predicting thermal properties were also discussed.Equivalent effective conductivity(EEC) was proposed to make H-J model suitable for hybrid particles and multimodal particle size distribution.
文摘The Cu/Invar composites of 40% Cu were prepared by powder metallurgy, and the composites were rolled with 70% reduction and subsequently annealed at 750 ℃. Phases, microstructures and properties of the composites were then studied. After that, the amount of a-Fe(Ni,Co) in the composites is reduced, because a-Fe(Ni,Co) partly transfers into y-Fe(Ni,Co) through the diffusion of the Ni atoms into a-Fe(Ni,Co) from Cu. When the rolling reduction is less than 40%, the deformation of Cu takes place, resulting in the movement of the Invar particles and the seaming of the pores. When the rolling reduction is in the range from 40% to 60%, the deformations of Invar and Cu occur simultaneously to form a streamline structure. After rolling till 70% and subsequent annealing, the Cu/Invar composites have fine comprehensive properties with a relative density of 98.6%, a tensile strength of 360 MPa, an elongation rate of 50%, a thermal conductivity of 25.42 W/(m.K) (as-tested) and a CTE of 10.79× 10-6/K (20-100 ℃).
文摘Laser-weldable Sip-SiCp/Al hybrid composites with high volume fraction (60%-65%) of SiC reinforcement were fabricated by compression moulding and vacuum gas pressure infiltration technology. Microscopic observation displayed that the Sip-SiCp/Al hybrid composites with bilayer structure were compact without gas pores and the intergradation between Sip/Al layer and SiCp/Al layer was homogeneous and continuous. Further investigation revealed that the Sip-SiCp/Al hybrid composites possessed low density (2.96 g/cm^3), high gas tightness (1.0 mPa·cm^3)/s), excellent thermal management function as a result of high thermal conductivity (194 W/(m·K) and low coefficient of thermal expansion (7.0×10^-6 K-1). Additionally, Sip-SiCp/Al hybrid composites had outstanding laser welding adaptability, which is significantly important for electronic packaging applications. The gas tightness of components after laser welding (48 mPa·cm^3)/s) can well match the requirement of advanced electronic packaging. Several kinds of these precision components passed tests and were put into production.
基金supported by the High-Tech Research and Development Program of China (Nos.2006AA03A135 and 2008AA03Z505)
文摘Diamond/Cu-xCr composites were fabricated by pressure infiltration process.The thermal conductivities of diamond/Cu-xCr(x = 0.1,0.5,0.8) composites were above 650 W/mK,higher than that of diamond/Cu composites.The tensile strengths ranged from 186 to 225 MPa,and the bonding strengths ranged from 400 to 525 MPa.Influences of Cr element on the thermo-physical properties and interface structures were analyzed.The intermediate layer was confirmed as Cr3C2 and the amount of Cr3C2 increased with the increase of Cr concentration in Cu-xCr alloys.When the Cr concentration was up to 0.5 wt.%,the content of the Cr3C2 layer was constant.As the thickness of the Cr3C2 layer became larger,the composites showed a lower thermal conductivity but higher mechanical properties.The coefficients of thermal expansion(CTE) of diamond/Cu-xCr(x = 0.1,0.5,0.8) composites were in good agreement with the predictions of the Kerner' model.
基金supported by the National Natural Science Foundation of China(No.51174028)the Beijing Natural Science Foundation(No.2102029)
文摘To fabricate electronic packaging shell of coppermatrix composite with characteristics of high ther mal conductivity and low thermal expansion coefficient, semisolid forming technology, and powder metallurgy was combined. Conventional mechanical mixing of Cu and SiC could have insufficient wettability, and a new method of semisolid processing was introduced for billets preparation. The SiC/Cu composites were first prepared by PM, and then, semisolid reheating was performed for the successive semisolid forging. Composite billets with SiC 35 % vol ume fraction were compacted and sintered pressurelessly, microstructure analysis showed that the composites pre pared by PM had high density, and the combination between SiC particles and Cualloy was good. Semisolid reheating was the crucial factor in determining the micro structure and thixotropic property of the billet. An opti mised reheating strategy was proposed: temperature 1,025 ℃and holding time 5 min.
文摘New recycling alternative for multilayer films was successfully presented. Food packaging formed from different materials is difficult to recycle. The use of aluminum, glass, paper, paints, varnishes, and other materials in the rolling processes from plastic packaging is intended to optimize the efficiency of packaging. Nevertheless, these materials prevent the recycling of packaging because they become contaminants to the recycling process. Food multilayered packaging containing poly (ethylene terephthalate) PET, poly (ethylene) PE and aluminum was used as filler in the preparation of composites with post-consumer high density polyethylene matrix. Composites containing up to 50 wt% of filler were feasible to prepare, allowing the obtention of a material with varied mechanical and thermal properties. This feature allows the preparation of composites suitable for specific application. The addition of multilayer matter in the polyethylene matrix provided a material with excellent mechanical properties such as higher tensile impact strength (148 J/m) and elasticity (350 MPa) as compared to pure polyethylene (40 J/m and 450 MPa).
文摘A polymer-based carbon nano-tubes (CNTs) composite with high electromagnetic (EM) wave shielding effectiveness (SE) and with high mechanical property is developed for packaging of electronic modulus or devices.The liquid crystal polymers (LCP) and melamine formaldehydes (MF) polymer are used to study the orientation effect of CNTs in various polymeric matrix.The influences of orientation,aspect ratio,and mass fraction of CNTs upon the shielding effectiveness (SE) of CNTs-composites are investigated.The higher the orientation,aspect ratio,and weight percentages of nano-materials are, the higher the SE of the carbon composites.The highest SE for the CNTs/LCP nano composite obtained is more than 62 dB. This results may lead to the developing for CPU IC chip packaging.
基金Project(2007AA03Z119) supported by the National High-tech Research and Development Program of ChinaProjects(2102029,2072012) supported by the Natural Science Foundation of Beijing,China
文摘Based on the research of modem electronic packaging materials, thixo-forming technology was used to fabricate electronic packaging shell. The process of thixo-extrusion with SiCp/A356 composites was simulated by the finite element software DEFORM-3D, then the flow velocity field, equivalent strain field and temperature field were analyzed. The electronic packaging shell was manufactured by extrusion according to the results from numerical simulation. The results show that thixo-forming technology can be used in producing electronic package shell with SiCp/A356 composites, and high volume fraction of SiCp with homogeneous distribution can be achieved, being in agreement with the requirements of electronic packaging materials.
文摘The electronic packaging shell with high silicon carbide aluminum-base composites was prepared by semi-solid thixoforming technique. The flow characteristic of the Si C particulate was analyzed. The microstructures of different parts of the shell were observed by scanning electron microscopy and optical microscopy, and the thermophysical and mechanical properties of the shell were tested. The results show that there exists the segregation phenomenon between the Si C particulate and the liquid phase during thixoforming, the liquid phase flows from the shell, and the Si C particles accumulate at the bottom of the shell. The volume fraction of Si C decreases gradually from the bottom to the walls. Accordingly, the thermal conductivities of bottom center and walls are 178 and 164 W·m-1·K-1, the coefficients of thermal expansion(CTE) are 8.2×10-6 and 12.6×10-6 K-1, respectively. The flexural strength decreases slightly from 437 to 347 MPa. The microstructures and properties of the shell show gradient distribution.
基金Project (2003AA305110) supported by the Hi-tech Research and Development Program of ChinaProject (2005AA5CG041) supported by the Key-tech Research and Development Program of Harbin, China
文摘Sip/1199,Sip/4032 and Sip/4019 environment-friendly composites for electronic packaging applications with high volume fraction of Si particles were fabricated by squeeze-casting technology. Effects of microstructure,particle volume fraction,particle size,matrix alloy and heat treatment on the electrical properties of composites were discussed,and the electrical conductivity was calculated by theoretical models. It is shown that the Si/Al interfaces are clean and do not have interface reaction products. For the same matrix alloy,the electrical conductivity of composites decreases with increasing the reinforcement volume fraction. As for the same particle content,the electrical conductivity of composites decreases with increasing the alloying element content of matrix. Particle size has little effects on the electrical conductivity. Electrical conductivity of composites increases slightly after annealing treatment. The electrical conductivity of composites calculated by P.G model is consistent with the experimental results.
文摘In order to improve the thermal properties of MMCs for electronic packaging,the concept of fabrication MMCs with particular interpenetrating phases(IPCs) was proposed. Based on the diffusion theory of reinforcement element in matrix alloys of some particular PMMCs,a novel fabrication method to produce IPCs was proposed. The Si/Al composites(65%Si,volume fraction) with interpenetrating phases were fabricated successfully by squeeze casting and hot press sintering technology. Microstructure observations indicate that the reinforcements Si are of three-dimensional continuous network and the composites are compact without obvious defects. The average linear thermal expansion coefficient(CTE) between 20 ℃ and 100 ℃ of the Si/Al IPCs is 8.27×10-6/K,and the thermal conductivity(TC) is 124.03 W/(m·K),and the composites can meet the demands of electronic packaging. ROM model and Turner model can be used to predict the CTEs of IPCs,and the experimental CTEs are between their theoretical and calculated values.
基金the financial support provided by the National Natural Science Foundation of China(No.52274369)the Science and Technology Program of Hunan Province,China(No.2020GK2044)。
文摘The thermal conductivity of Cu/Kovar composites was improved by suppressing element diffusion at the interfaces through the formation of FeWO_(4)coating on the Kovar particles via vacuum deposition.Cu matrix composites reinforced with unmodified(Cu/Kovar)and modified Kovar(Cu/Kovar@)particles were prepared by hot pressing.The results demonstrate that the interfaces of Cu/FeWO_(4)and FeWO_(4)/Kovar in the Cu/Kovar@composites exhibit strong bonding,and no secondary phase is generated.The presence of FeWO_(4)impedes interfacial diffusion within the composite,resulting in an increase in grain size and a decrease in dislocation density.After surface modification of the Kovar particle,the thermal conductivity of Cu/Kovar@composite is increased by 110%from 40.6 to 85.6 W·m^(-1)·K^(-1).Moreover,the thermal expansion coefficient of the Cu/Kovar@composite is 9.8×10^(-6)K^(-1),meeting the electronic packaging requirements.
文摘Diamond/aluminium composites have attracted attention in the field of thermal management of electronic packaging for their excellent properties.In order to solve the interfacial problem between diamond and aluminium,a novel process combining pressure infiltration with vacuum-assisted technology was proposed to prepare diamond/aluminum composites.The effect of diamond particle size on the microstructure and properties of the diamond/Al-12Si composites was investigated.The results show that the diamond/Al-12Si composites exhibit high relative density and a uniform microstructure.Both thermal conductivity and coefficient of thermal expansion increase with increasing particle size,while the bending strength exhibits the opposite trend.When the average diamond particle size increases from 45μm to 425μm,the thermal conductivity of the composites increases from 455 W·m^(-1)·K^(-1)to 713 W·m^(-1)·K^(-1)and the coefficient of thermal expansion increases from 4.97×10^(-6)K^(-1)to 6.72×10^(-6)K^(-1),while the bending strength decreases from 353 MPa to 246 MPa.This research demonstrates that high-quality composites can be prepared by the vacuum-assisted pressure infiltration process and the thermal conductivity of the composites can be effectively improved by increasing the diamond particle size.
文摘The objective of this study is to improve the mechanical properties and machining performance of high thermal conductivity and low expansion silicon carbide dispersion-strengthened hypereutectic aluminum-silicon electronic packaging materials to meet the needs of aviation,aerospace,and electronic packaging fields.We used the powder metallurgy method and high-temperature hot pressing technology to prepare SiC/Al-Si composite materials with different SiC contents(5vol%,10vol%,15vol%,and 20vol%).The results showed that as the SiC content increased,the tensile strength of the composite material first increased and then decreased.The tensile strength was the highest when the SiC content was 15%;the sintering temperature significantly affected the composite material’s structural density and mechanical properties.Findings indicated 700℃was the optimal sintering and the optimal SiC content of SiC/Al-Si composite materials was between 10%and 15%.Besides,the sintering temperature should be strictly controlled to improve the material’s structural density and mechanical properties.
基金Foundation item: Project(20080430895) supported by China Postdoctoral Science FoundationProject(2003AA5CG041) supported by the High-tech Research and Development Program of Harbin City, China
文摘High reinforcement content SiCp/Cu composites (φp=50%, 55% and 60%) for electronic packaging applications were fabricated by patent cost-effective squeeze-casting technology. The composites appear to be free of pores, and the SiC particles are distribute uniformly in the composites. The mean linear coefficients of thermal expansion (CTEs, 20-100 ℃ ) of as-cast SiCp/Cu composites range from 8.8×10-6 ℃-1 to 9.9×10-6 ℃-1 and decrease with the increase of SiC content. The experimental CTEs of as-cast SiCp/Cu composites agree well with the predicted values based on Kerner model. The CTEs of composites reduce after annealing treatment due to the fact that the internal stress of the composite is released. The Brinell hardness increases from 272.3 to 313.2, and the modulus increases from 186 GPa to 210 GPa for the corresponding composites. The bending strength is larger than 374 MPa, but no obvious trend between bending strength and SiCp content is observed.
基金Project (2007AA03Z119) supported by the National High Technology Research and Development Program of Chinaprojects (2102029,2072012) supported by Beijing Natural Science Foundation,China
文摘The rapid development of electronic packaging industry has resulted in higher requirement for packaging materials.The packaging material of SiC reinforced A356 aluminum alloy was fabricated by mechanical mixing method,and the SiCp/Al composite billet was formed by thixo-forging to manufacture the electronic packaging shell.The microstructure of the produced part was investigated.Two different thixo-forging procedures for manufacturing electronic packaging shell were analyzed.The results show that after being heated to 600 ℃ and held for 3 h,SiCp has good compatibility with A356 aluminum alloy and the SiCp/A356 composite billet can meet the requirements of thixo-forging.When the billet was remelted to 580℃,held for 10 min,the homogeneous microstructure with the best thixo-formability can be realized.The thixo-forging of electronic packaging shell is feasible.
基金financial support from the International Science&Technology Cooperation Program of China(No.2014DFA50860)。
文摘30-50 wt.%graphite nanoflakes(GNFs)/6061Al matrix composites were fabricated via spark plasma sintering(SPS)at 610℃.The effects of the sintering pressure and GNF content on the microstructure and properties of the composites were investigated.The results indicated that interfacial reactions were inhibited during SPS because no Al4C3 was detected.Moreover,the agglomeration of the GNFs increased,and the distribution orientation of the GNFs decreased with increasing the GNF content.The relative density,bending strength,and coefficient of thermal expansion(CTE)of the composites decreased,while the thermal conductivity(TC)in the X−Y direction increased.As the sintering pressure increased,the GNFs deagglomerated and were distributed preferentially in the X−Y direction,which increased the relative density,bending strength and TC,and decreased the CTE of the composites.The 50wt.%GNFs/6061Al matrix composite sintered at 610℃ under 55 MPa demonstrated the best performance,i.e.,bending strength of 72 MPa,TC and CTE(RT−100℃)of 254 W/(m·K)and 8.5×10^(−6)K^(−1)in the X−Y direction,and 55 W/(m·K)and 9.7×10^(−6)K^(−1)in the Z direction,respectively.
文摘Biodegradable starch-based chitosan reinforced composite polymeric films were prepared by casting. The chitosan content in the films was varied from 20% to 80% (w/w). Tensile strength (TS) was improved significantly with the addition of chitosan but elongation at break (EB %) of the composites decreased. Tensile strength of the composites raised more with the addition of the acacia catechu content in the films varied from 0.05% to 0.2% (w/w). The better thermal stability of this prepared film was confirmed by thermo-gravimetric analysis. Structural characterization was done by Fourier transform infrared spectroscopy. Surface morphologies of the composites were examined by scanning electron microscope (SEM) which suggested sufficient homogenization of starch, chitosan and acacia catechu. Water uptake was found lower for final composites in comparison to starch/chitosan and chitosan films. The satisfactory rate of degradation in the soil is expected that the final composite film is within less than 6 months. The developed films intended to use as the alternative of synthetic non-biodegradable colored packaging films.
基金Project(69976022) supported by the National Natural Science Foundation of China
文摘The pressureless infiltration kinetics was investigated by plotting the infiltration distance as function of the infiltration time. The effects of key process parameters such as time, temperature, Mg content on the pressureless infiltration of silicon carbide particle compacts were studied and quantified. The preform with high volume fraction SiC was obtained by mixing SiC particles with bimodal size distribution, whose diameters are 5 and 50 μm, respectively. The results show that an incubation period exists before infiltration, the influence of temperature on the incubation time exceeds that of Mg content, infiltration rate increases with the increasing temperature and Mg content, infiltration rate decreases as Mg consumes. A model of macroscopical infiltration and microscopical infiltration of liquid alloy in porous SiC preform was proposed.
文摘Particulate composites based on isotactic polypropylene(iPP) and titanium dioxide(TiO 2) have been prepared and their morphology and thermal behavior investigated by scanning electron microscopy(SEM), differential scanning calorimetry(DSC) and thermogravimetric analysis(TGA). Tensile tests were performed to assess the influence of TiO 2 on the mechanical properties of the iPP.