After the spread of COVID-19,e-learning systems have become crucial tools in educational systems worldwide,spanning all levels of education.This widespread use of e-learning platforms has resulted in the accumulation ...After the spread of COVID-19,e-learning systems have become crucial tools in educational systems worldwide,spanning all levels of education.This widespread use of e-learning platforms has resulted in the accumulation of vast amounts of valuable data,making it an attractive resource for predicting student performance.In this study,we aimed to predict student performance based on the analysis of data collected from the OULAD and Deeds datasets.The stacking method was employed for modeling in this research.The proposed model utilized weak learners,including nearest neighbor,decision tree,random forest,enhanced gradient,simple Bayes,and logistic regression algorithms.After a trial-and-error process,the logistic regression algorithm was selected as the final learner for the proposed model.The results of experiments with the above algorithms are reported separately for the pass and fail classes.The findings indicate that the accuracy of the proposed model on the OULAD dataset reached 98%.Overall,the proposed method improved accuracy by 4%on the OULAD dataset.展开更多
E-learning behavior data indicates several students’activities on the e-learning platform such as the number of accesses to a set of resources and number of participants in lectures.This article proposes a new analyt...E-learning behavior data indicates several students’activities on the e-learning platform such as the number of accesses to a set of resources and number of participants in lectures.This article proposes a new analytics systemto support academic evaluation for students via e-learning activities to overcome the challenges faced by traditional learning environments.The proposed e-learning analytics system includes a new deep forest model.It consists of multistage cascade random forests with minimal hyperparameters compared to traditional deep neural networks.The developed forest model can analyze each student’s activities during the use of an e-learning platform to give accurate expectations of the student’s performance before ending the semester and/or the final exam.Experiments have been conducted on the Open University Learning Analytics Dataset(OULAD)of 32,593 students.Our proposed deep model showed a competitive accuracy score of 98.0%compared to artificial intelligence-based models,such as ConvolutionalNeuralNetwork(CNN)and Long Short-TermMemory(LSTM)in previous studies.That allows academic advisors to support expected failed students significantly and improve their academic level at the right time.Consequently,the proposed analytics system can enhance the quality of educational services for students in an innovative e-learning framework.展开更多
BACKGROUND Helicobacter pylori(H.pylori)infection is related to various extragastric diseases including type 2 diabetes mellitus(T2DM).However,the possible mechanisms connecting H.pylori infection and T2DM remain unkn...BACKGROUND Helicobacter pylori(H.pylori)infection is related to various extragastric diseases including type 2 diabetes mellitus(T2DM).However,the possible mechanisms connecting H.pylori infection and T2DM remain unknown.AIM To explore potential molecular connections between H.pylori infection and T2DM.METHODS We extracted gene expression arrays from three online datasets(GSE60427,GSE27411 and GSE115601).Differentially expressed genes(DEGs)commonly present in patients with H.pylori infection and T2DM were identified.Hub genes were validated using human gastric biopsy samples.Correlations between hub genes and immune cell infiltration,miRNAs,and transcription factors(TFs)were further analyzed.RESULTS A total of 67 DEGs were commonly presented in patients with H.pylori infection and T2DM.Five significantly upregulated hub genes,including TLR4,ITGAM,C5AR1,FCER1G,and FCGR2A,were finally identified,all of which are closely related to immune cell infiltration.The gene-miRNA analysis detected 13 miRNAs with at least two gene cross-links.TF-gene interaction networks showed that TLR4 was coregulated by 26 TFs,the largest number of TFs among the 5 hub genes.CONCLUSION We identified five hub genes that may have molecular connections between H.pylori infection and T2DM.This study provides new insights into the pathogenesis of H.pylori-induced onset of T2DM.展开更多
In recent times,technology has advanced significantly and is currently being integrated into educational environments to facilitate distance learning and interaction between learners.Integrating the Internet of Things...In recent times,technology has advanced significantly and is currently being integrated into educational environments to facilitate distance learning and interaction between learners.Integrating the Internet of Things(IoT)into education can facilitate the teaching and learning process and expand the context in which students learn.Nevertheless,learning data is very sensitive and must be protected when transmitted over the network or stored in data centers.Moreover,the identity and the authenticity of interacting students,instructors,and staff need to be verified to mitigate the impact of attacks.However,most of the current security and authentication schemes are centralized,relying on trusted third-party cloud servers,to facilitate continuous secure communication.In addition,most of these schemes are resourceintensive;thus,security and efficiency issues arise when heterogeneous and resource-limited IoT devices are being used.In this paper,we propose a blockchain-based architecture that accurately identifies and authenticates learners and their IoT devices in a decentralized manner and prevents the unauthorized modification of stored learning records in a distributed university network.It allows students and instructors to easily migrate to and join multiple universities within the network using their identity without the need for user re-authentication.The proposed architecture was tested using a simulation tool,and measured to evaluate its performance.The simulation results demonstrate the ability of the proposed architecture to significantly increase the throughput of learning transactions(40%),reduce the communication overhead and response time(26%),improve authentication efficiency(27%),and reduce the IoT power consumption(35%)compared to the centralized authentication mechanisms.In addition,the security analysis proves the effectiveness of the proposed architecture in resisting various attacks and ensuring the security requirements of learning data in the university network.展开更多
In the past two decades,there has been a lot of work on computer vision technology that incorporates many tasks which implement basic filtering to image classification.Themajor research areas of this field include obj...In the past two decades,there has been a lot of work on computer vision technology that incorporates many tasks which implement basic filtering to image classification.Themajor research areas of this field include object detection and object recognition.Moreover,wireless communication technologies are presently adopted and they have impacted the way of education that has been changed.There are different phases of changes in the traditional system.Perception of three-dimensional(3D)from two-dimensional(2D)image is one of the demanding tasks.Because human can easily perceive but making 3D using software will take time manually.Firstly,the blackboard has been replaced by projectors and other digital screens so such that people can understand the concept better through visualization.Secondly,the computer labs in schools are now more common than ever.Thirdly,online classes have become a reality.However,transferring to online education or e-learning is not without challenges.Therefore,we propose a method for improving the efficiency of e-learning.Our proposed system consists of twoand-a-half dimensional(2.5D)features extraction using machine learning and image processing.Then,these features are utilized to generate 3D mesh using ellipsoidal deformation method.After that,3D bounding box estimation is applied.Our results show that there is a need to move to 3D virtual reality(VR)with haptic sensors in the field of e-learning for a better understanding of real-world objects.Thus,people will have more information as compared to the traditional or simple online education tools.We compare our result with the ShapeNet dataset to check the accuracy of our proposed method.Our proposed system achieved an accuracy of 90.77%on plane class,85.72%on chair class,and car class have 72.14%.Mean accuracy of our method is 70.89%.展开更多
Due to the recently increased requirements of e-learning systems,multiple educational institutes such as kindergarten have transformed their learning towards virtual education.Automated student health exercise is a di...Due to the recently increased requirements of e-learning systems,multiple educational institutes such as kindergarten have transformed their learning towards virtual education.Automated student health exercise is a difficult task but an important one due to the physical education needs especially in young learners.The proposed system focuses on the necessary implementation of student health exercise recognition(SHER)using a modified Quaternion-basedfilter for inertial data refining and data fusion as the pre-processing steps.Further,cleansed data has been segmented using an overlapping windowing approach followed by patterns identification in the form of static and kinematic signal patterns.Furthermore,these patterns have been utilized to extract cues for both patterned signals,which are further optimized using Fisher’s linear discriminant analysis(FLDA)technique.Finally,the physical exercise activities have been categorized using extended Kalmanfilter(EKF)-based neural networks.This system can be implemented in multiple educational establishments including intelligent training systems,virtual mentors,smart simulations,and interactive learning management methods.展开更多
BACKGROUND The identification of specific gene expression patterns is crucial for understanding the mechanisms underlying primary biliary cholangitis(PBC)and finding relevant biomarkers for diagnosis and therapeutic e...BACKGROUND The identification of specific gene expression patterns is crucial for understanding the mechanisms underlying primary biliary cholangitis(PBC)and finding relevant biomarkers for diagnosis and therapeutic evaluation.AIM To determine PBC-associated hub genes and assess their clinical utility for disease prediction.METHODS PBC expression data were obtained from the Gene Expression Omnibus database.Overlapping genes from differential expression analysis and weighted gene coexpression network analysis(WGCNA)were identified as key genes for PBC.Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analyses were performed to explore the potential roles of key genes.Hub genes were identified in protein-protein interaction(PPI)networks using the Degree algorithm in Cytoscape software.The relationship between hub genes and immune cells was investigated.Finally,a Mendelian randomization study was conducted to determine the causal effects of hub genes on PBC.RESULTS We identified 71 overlapping key genes using differential expression analysis and WGCNA.These genes were primarily enriched in pathways related to cytokinecytokine receptor interaction,and Th1,Th2,and Th17 cell differentiation.We utilized Cytoscape software and identified five hub genes(CD247,IL10,CCL5,CCL3,and STAT3)in PPI networks.These hub genes showed a strong correlation with immune cell infiltration in PBC.However,inverse variance weighting analysis did not indicate the causal effects of hub genes on PBC risk.CONCLUSION Hub genes can potentially serve as valuable biomarkers for PBC prediction and treatment,thereby offering significant clinical utility.展开更多
The target of integrated construction of comprehensive transportation hub is to integrate the traffic resources,achieve butt joint of pan-regional transportation mode,and finally realize the"seamless connection&q...The target of integrated construction of comprehensive transportation hub is to integrate the traffic resources,achieve butt joint of pan-regional transportation mode,and finally realize the"seamless connection"of the goods and"zero transfer"of the passenger traffic.Relying on the particularity of the geographical location and the convenience of the Yangtze River channel,Luzhou puts forth effort to build a comprehensive transport hub in Southern Sichuan and has made great efforts in traffic infrastructure construction.However,there are still some problems.Combining practice of Luzhou,using the advanced experience of foreign and domestic cities for reference,the paper pointed out that for the sake of constructing a comprehensive transportation hub,we need to build the traffic integration on the basis of the efficiency.Besides,the paper proposed the strategies for construction.展开更多
The external rotor hub motor adopts direct drive mode,no deceleration drive device,and has a compact structure.Its axial size is smaller than that of a deceleration-driven hub motor,which greatly reduces the weight of...The external rotor hub motor adopts direct drive mode,no deceleration drive device,and has a compact structure.Its axial size is smaller than that of a deceleration-driven hub motor,which greatly reduces the weight of the vehicle and increases the cruising range of the vehicle.Because of the limited special working environment and performance requirements,the hub motor has a small internal space and a large heat generation,so it puts forward higher requirements for heat dissipation capacity.For the external rotor hub motor,a new type of in-tank watercooled structure of hub motor was proposed to improve its cooling effect and performance.Firstly,the threedimensional finite element model of the motor is established to analyze the characteristics of motor loss and temperature field distribution.Secondly,the cooling performance of different cooling structures in the tank was studied.Finally,the thermal network model and three-dimensional finite element analysis were used to optimize the water-cooled structure in the tank,and the power density of themotor was improved by improving the cooling performance under the condition of volume limitation of the hub motor.The results show that the cooling effect of the proposed water-cooled structure in the tank is significant under the condition of constant power density.Compared to natural ventilation,the maximum temperature was reduced by 33.13°C and the cooling effect was increased by about 27.7%.展开更多
This article discusses the roadbed splicing for hub interchanges.The article starts with a description of the characteristics of junction roadbed splicing.The application of splicing technology is explained using a su...This article discusses the roadbed splicing for hub interchanges.The article starts with a description of the characteristics of junction roadbed splicing.The application of splicing technology is explained using a subgrade splicing scheme of a project.Roadbed splicing involves stepwise excavation and preparative measures like surface cleaning and backfilling.This article serves to provide a valuable reference for road and bridge construction and improve the quality of China’s road and bridge projects,so as to achieve sustainable development of the road and bridge engineering industry.展开更多
文摘After the spread of COVID-19,e-learning systems have become crucial tools in educational systems worldwide,spanning all levels of education.This widespread use of e-learning platforms has resulted in the accumulation of vast amounts of valuable data,making it an attractive resource for predicting student performance.In this study,we aimed to predict student performance based on the analysis of data collected from the OULAD and Deeds datasets.The stacking method was employed for modeling in this research.The proposed model utilized weak learners,including nearest neighbor,decision tree,random forest,enhanced gradient,simple Bayes,and logistic regression algorithms.After a trial-and-error process,the logistic regression algorithm was selected as the final learner for the proposed model.The results of experiments with the above algorithms are reported separately for the pass and fail classes.The findings indicate that the accuracy of the proposed model on the OULAD dataset reached 98%.Overall,the proposed method improved accuracy by 4%on the OULAD dataset.
基金The authors thank to the deanship of scientific research at Shaqra University for funding this research work through the Project Number(SU-ANN-2023017).
文摘E-learning behavior data indicates several students’activities on the e-learning platform such as the number of accesses to a set of resources and number of participants in lectures.This article proposes a new analytics systemto support academic evaluation for students via e-learning activities to overcome the challenges faced by traditional learning environments.The proposed e-learning analytics system includes a new deep forest model.It consists of multistage cascade random forests with minimal hyperparameters compared to traditional deep neural networks.The developed forest model can analyze each student’s activities during the use of an e-learning platform to give accurate expectations of the student’s performance before ending the semester and/or the final exam.Experiments have been conducted on the Open University Learning Analytics Dataset(OULAD)of 32,593 students.Our proposed deep model showed a competitive accuracy score of 98.0%compared to artificial intelligence-based models,such as ConvolutionalNeuralNetwork(CNN)and Long Short-TermMemory(LSTM)in previous studies.That allows academic advisors to support expected failed students significantly and improve their academic level at the right time.Consequently,the proposed analytics system can enhance the quality of educational services for students in an innovative e-learning framework.
基金Supported by National Natural Science Foundation of China,No.82100594.
文摘BACKGROUND Helicobacter pylori(H.pylori)infection is related to various extragastric diseases including type 2 diabetes mellitus(T2DM).However,the possible mechanisms connecting H.pylori infection and T2DM remain unknown.AIM To explore potential molecular connections between H.pylori infection and T2DM.METHODS We extracted gene expression arrays from three online datasets(GSE60427,GSE27411 and GSE115601).Differentially expressed genes(DEGs)commonly present in patients with H.pylori infection and T2DM were identified.Hub genes were validated using human gastric biopsy samples.Correlations between hub genes and immune cell infiltration,miRNAs,and transcription factors(TFs)were further analyzed.RESULTS A total of 67 DEGs were commonly presented in patients with H.pylori infection and T2DM.Five significantly upregulated hub genes,including TLR4,ITGAM,C5AR1,FCER1G,and FCGR2A,were finally identified,all of which are closely related to immune cell infiltration.The gene-miRNA analysis detected 13 miRNAs with at least two gene cross-links.TF-gene interaction networks showed that TLR4 was coregulated by 26 TFs,the largest number of TFs among the 5 hub genes.CONCLUSION We identified five hub genes that may have molecular connections between H.pylori infection and T2DM.This study provides new insights into the pathogenesis of H.pylori-induced onset of T2DM.
文摘In recent times,technology has advanced significantly and is currently being integrated into educational environments to facilitate distance learning and interaction between learners.Integrating the Internet of Things(IoT)into education can facilitate the teaching and learning process and expand the context in which students learn.Nevertheless,learning data is very sensitive and must be protected when transmitted over the network or stored in data centers.Moreover,the identity and the authenticity of interacting students,instructors,and staff need to be verified to mitigate the impact of attacks.However,most of the current security and authentication schemes are centralized,relying on trusted third-party cloud servers,to facilitate continuous secure communication.In addition,most of these schemes are resourceintensive;thus,security and efficiency issues arise when heterogeneous and resource-limited IoT devices are being used.In this paper,we propose a blockchain-based architecture that accurately identifies and authenticates learners and their IoT devices in a decentralized manner and prevents the unauthorized modification of stored learning records in a distributed university network.It allows students and instructors to easily migrate to and join multiple universities within the network using their identity without the need for user re-authentication.The proposed architecture was tested using a simulation tool,and measured to evaluate its performance.The simulation results demonstrate the ability of the proposed architecture to significantly increase the throughput of learning transactions(40%),reduce the communication overhead and response time(26%),improve authentication efficiency(27%),and reduce the IoT power consumption(35%)compared to the centralized authentication mechanisms.In addition,the security analysis proves the effectiveness of the proposed architecture in resisting various attacks and ensuring the security requirements of learning data in the university network.
基金supported by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)support program(IITP-2023-2018-0-01426)supervised by the IITP(Institute for Information&Communications Technology Planning&Evaluation).In additionsupport of the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University,This work has also been supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R239),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.Alsosupported by the Taif University Researchers Supporting Project Number(TURSP-2020/115),Taif University,Taif,Saudi Arabia.
文摘In the past two decades,there has been a lot of work on computer vision technology that incorporates many tasks which implement basic filtering to image classification.Themajor research areas of this field include object detection and object recognition.Moreover,wireless communication technologies are presently adopted and they have impacted the way of education that has been changed.There are different phases of changes in the traditional system.Perception of three-dimensional(3D)from two-dimensional(2D)image is one of the demanding tasks.Because human can easily perceive but making 3D using software will take time manually.Firstly,the blackboard has been replaced by projectors and other digital screens so such that people can understand the concept better through visualization.Secondly,the computer labs in schools are now more common than ever.Thirdly,online classes have become a reality.However,transferring to online education or e-learning is not without challenges.Therefore,we propose a method for improving the efficiency of e-learning.Our proposed system consists of twoand-a-half dimensional(2.5D)features extraction using machine learning and image processing.Then,these features are utilized to generate 3D mesh using ellipsoidal deformation method.After that,3D bounding box estimation is applied.Our results show that there is a need to move to 3D virtual reality(VR)with haptic sensors in the field of e-learning for a better understanding of real-world objects.Thus,people will have more information as compared to the traditional or simple online education tools.We compare our result with the ShapeNet dataset to check the accuracy of our proposed method.Our proposed system achieved an accuracy of 90.77%on plane class,85.72%on chair class,and car class have 72.14%.Mean accuracy of our method is 70.89%.
基金supported by a Grant(2021R1F1A1063634)of the Basic Science Research Program through the National Research Foundation(NRF)funded by the Ministry of Education,Republic of Korea.
文摘Due to the recently increased requirements of e-learning systems,multiple educational institutes such as kindergarten have transformed their learning towards virtual education.Automated student health exercise is a difficult task but an important one due to the physical education needs especially in young learners.The proposed system focuses on the necessary implementation of student health exercise recognition(SHER)using a modified Quaternion-basedfilter for inertial data refining and data fusion as the pre-processing steps.Further,cleansed data has been segmented using an overlapping windowing approach followed by patterns identification in the form of static and kinematic signal patterns.Furthermore,these patterns have been utilized to extract cues for both patterned signals,which are further optimized using Fisher’s linear discriminant analysis(FLDA)technique.Finally,the physical exercise activities have been categorized using extended Kalmanfilter(EKF)-based neural networks.This system can be implemented in multiple educational establishments including intelligent training systems,virtual mentors,smart simulations,and interactive learning management methods.
基金Supported by School-Level Key Projects at Bengbu Medical College,No.2021byzd109。
文摘BACKGROUND The identification of specific gene expression patterns is crucial for understanding the mechanisms underlying primary biliary cholangitis(PBC)and finding relevant biomarkers for diagnosis and therapeutic evaluation.AIM To determine PBC-associated hub genes and assess their clinical utility for disease prediction.METHODS PBC expression data were obtained from the Gene Expression Omnibus database.Overlapping genes from differential expression analysis and weighted gene coexpression network analysis(WGCNA)were identified as key genes for PBC.Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analyses were performed to explore the potential roles of key genes.Hub genes were identified in protein-protein interaction(PPI)networks using the Degree algorithm in Cytoscape software.The relationship between hub genes and immune cells was investigated.Finally,a Mendelian randomization study was conducted to determine the causal effects of hub genes on PBC.RESULTS We identified 71 overlapping key genes using differential expression analysis and WGCNA.These genes were primarily enriched in pathways related to cytokinecytokine receptor interaction,and Th1,Th2,and Th17 cell differentiation.We utilized Cytoscape software and identified five hub genes(CD247,IL10,CCL5,CCL3,and STAT3)in PPI networks.These hub genes showed a strong correlation with immune cell infiltration in PBC.However,inverse variance weighting analysis did not indicate the causal effects of hub genes on PBC risk.CONCLUSION Hub genes can potentially serve as valuable biomarkers for PBC prediction and treatment,thereby offering significant clinical utility.
文摘The target of integrated construction of comprehensive transportation hub is to integrate the traffic resources,achieve butt joint of pan-regional transportation mode,and finally realize the"seamless connection"of the goods and"zero transfer"of the passenger traffic.Relying on the particularity of the geographical location and the convenience of the Yangtze River channel,Luzhou puts forth effort to build a comprehensive transport hub in Southern Sichuan and has made great efforts in traffic infrastructure construction.However,there are still some problems.Combining practice of Luzhou,using the advanced experience of foreign and domestic cities for reference,the paper pointed out that for the sake of constructing a comprehensive transportation hub,we need to build the traffic integration on the basis of the efficiency.Besides,the paper proposed the strategies for construction.
基金supported by National Science Foundation of China(Grant No.51705306).
文摘The external rotor hub motor adopts direct drive mode,no deceleration drive device,and has a compact structure.Its axial size is smaller than that of a deceleration-driven hub motor,which greatly reduces the weight of the vehicle and increases the cruising range of the vehicle.Because of the limited special working environment and performance requirements,the hub motor has a small internal space and a large heat generation,so it puts forward higher requirements for heat dissipation capacity.For the external rotor hub motor,a new type of in-tank watercooled structure of hub motor was proposed to improve its cooling effect and performance.Firstly,the threedimensional finite element model of the motor is established to analyze the characteristics of motor loss and temperature field distribution.Secondly,the cooling performance of different cooling structures in the tank was studied.Finally,the thermal network model and three-dimensional finite element analysis were used to optimize the water-cooled structure in the tank,and the power density of themotor was improved by improving the cooling performance under the condition of volume limitation of the hub motor.The results show that the cooling effect of the proposed water-cooled structure in the tank is significant under the condition of constant power density.Compared to natural ventilation,the maximum temperature was reduced by 33.13°C and the cooling effect was increased by about 27.7%.
文摘This article discusses the roadbed splicing for hub interchanges.The article starts with a description of the characteristics of junction roadbed splicing.The application of splicing technology is explained using a subgrade splicing scheme of a project.Roadbed splicing involves stepwise excavation and preparative measures like surface cleaning and backfilling.This article serves to provide a valuable reference for road and bridge construction and improve the quality of China’s road and bridge projects,so as to achieve sustainable development of the road and bridge engineering industry.