The rapid changes and increased complexity in today’s world present new challenges and put new demands on the education system. There has been generally a growing awareness of the necessity?to change and improve the ...The rapid changes and increased complexity in today’s world present new challenges and put new demands on the education system. There has been generally a growing awareness of the necessity?to change and improve the existing system towards online learning. Jordan is one of the distinguished countries in the Middle East with rapid progress in education and with advanced teaching and learning technologies. The University of Jordan is trying to exploit Information and Communication Technology (ICT) in education and moving forward by introducing the latest E-learning management systems (LMSs) to keep pace of technological revolution in the higher education. It is?important to find out the impact of E-learning management system in the University of Jordan,?examine the students’ acceptance for this new system and address the challenges facing the students while using the E-learning management system and these are what this paper is trying to do.展开更多
The real-time dynamic deformation monitoring of offshore platforms under environmental excitation is crucial to their safe operation.Although Global Navigation Satellite System-Precise Point Positioning(GNSS-PPP)has b...The real-time dynamic deformation monitoring of offshore platforms under environmental excitation is crucial to their safe operation.Although Global Navigation Satellite System-Precise Point Positioning(GNSS-PPP)has been considered for this purpose,its monitoring accuracy is relatively low.Moreover,the influence of background noise on the dynamic monitoring accuracy of GNSS-PPP remains unclear.Hence,it is imperative to further validate the feasibility of GNSS-PPP for deformation monitoring of offshore platforms.To address these concerns,vibration table tests with different amplitudes and frequencies are conducted.The results demonstrate that GNSS-PPP can effectively monitor horizontal vibration displacement as low as±30 mm,which is consistent with GNSS-RTK.Furthermore,the spectral characteristic of background noise in GNSS-PPP is similar to that of GNSS-RTK(Real Time Kinematic).Building on this observation,an improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)has been proposed to de-noise the data and enhance the dynamic monitoring accuracy of GNSS-PPP.Field monitoring application research is also undertaken,successfully extracting and analyzing the dynamic deformation of an offshore platform structure under environmental excitation using GNSS-PPP monitoring in conjunction with improved CEEMDAN de-noising.By comparing the de-noised dynamic deformation trajectories of the offshore platform during different periods,it is observed that the platform exhibits reversible alternating vibration responses under environmental excitation,with more pronounced displacement deformation in the direction of load action.The research results confirm the feasibility and potential of GNSS-PPP for dynamic deformation monitoring of offshore platforms.展开更多
In recent times,technology has advanced significantly and is currently being integrated into educational environments to facilitate distance learning and interaction between learners.Integrating the Internet of Things...In recent times,technology has advanced significantly and is currently being integrated into educational environments to facilitate distance learning and interaction between learners.Integrating the Internet of Things(IoT)into education can facilitate the teaching and learning process and expand the context in which students learn.Nevertheless,learning data is very sensitive and must be protected when transmitted over the network or stored in data centers.Moreover,the identity and the authenticity of interacting students,instructors,and staff need to be verified to mitigate the impact of attacks.However,most of the current security and authentication schemes are centralized,relying on trusted third-party cloud servers,to facilitate continuous secure communication.In addition,most of these schemes are resourceintensive;thus,security and efficiency issues arise when heterogeneous and resource-limited IoT devices are being used.In this paper,we propose a blockchain-based architecture that accurately identifies and authenticates learners and their IoT devices in a decentralized manner and prevents the unauthorized modification of stored learning records in a distributed university network.It allows students and instructors to easily migrate to and join multiple universities within the network using their identity without the need for user re-authentication.The proposed architecture was tested using a simulation tool,and measured to evaluate its performance.The simulation results demonstrate the ability of the proposed architecture to significantly increase the throughput of learning transactions(40%),reduce the communication overhead and response time(26%),improve authentication efficiency(27%),and reduce the IoT power consumption(35%)compared to the centralized authentication mechanisms.In addition,the security analysis proves the effectiveness of the proposed architecture in resisting various attacks and ensuring the security requirements of learning data in the university network.展开更多
In the past two decades,there has been a lot of work on computer vision technology that incorporates many tasks which implement basic filtering to image classification.Themajor research areas of this field include obj...In the past two decades,there has been a lot of work on computer vision technology that incorporates many tasks which implement basic filtering to image classification.Themajor research areas of this field include object detection and object recognition.Moreover,wireless communication technologies are presently adopted and they have impacted the way of education that has been changed.There are different phases of changes in the traditional system.Perception of three-dimensional(3D)from two-dimensional(2D)image is one of the demanding tasks.Because human can easily perceive but making 3D using software will take time manually.Firstly,the blackboard has been replaced by projectors and other digital screens so such that people can understand the concept better through visualization.Secondly,the computer labs in schools are now more common than ever.Thirdly,online classes have become a reality.However,transferring to online education or e-learning is not without challenges.Therefore,we propose a method for improving the efficiency of e-learning.Our proposed system consists of twoand-a-half dimensional(2.5D)features extraction using machine learning and image processing.Then,these features are utilized to generate 3D mesh using ellipsoidal deformation method.After that,3D bounding box estimation is applied.Our results show that there is a need to move to 3D virtual reality(VR)with haptic sensors in the field of e-learning for a better understanding of real-world objects.Thus,people will have more information as compared to the traditional or simple online education tools.We compare our result with the ShapeNet dataset to check the accuracy of our proposed method.Our proposed system achieved an accuracy of 90.77%on plane class,85.72%on chair class,and car class have 72.14%.Mean accuracy of our method is 70.89%.展开更多
Due to the recently increased requirements of e-learning systems,multiple educational institutes such as kindergarten have transformed their learning towards virtual education.Automated student health exercise is a di...Due to the recently increased requirements of e-learning systems,multiple educational institutes such as kindergarten have transformed their learning towards virtual education.Automated student health exercise is a difficult task but an important one due to the physical education needs especially in young learners.The proposed system focuses on the necessary implementation of student health exercise recognition(SHER)using a modified Quaternion-basedfilter for inertial data refining and data fusion as the pre-processing steps.Further,cleansed data has been segmented using an overlapping windowing approach followed by patterns identification in the form of static and kinematic signal patterns.Furthermore,these patterns have been utilized to extract cues for both patterned signals,which are further optimized using Fisher’s linear discriminant analysis(FLDA)technique.Finally,the physical exercise activities have been categorized using extended Kalmanfilter(EKF)-based neural networks.This system can be implemented in multiple educational establishments including intelligent training systems,virtual mentors,smart simulations,and interactive learning management methods.展开更多
Recently,semisubmersible floating offshore wind turbine technologies have received considerable attention.For the coupled simulation of semisubmersible floating offshore wind energy,the platform is usually considered ...Recently,semisubmersible floating offshore wind turbine technologies have received considerable attention.For the coupled simulation of semisubmersible floating offshore wind energy,the platform is usually considered a rigid model,which could affect the calculation accuracy of the dynamic responses.The dynamic responses of a TripleSpar floating offshore wind turbine equipped with a 10 MW offshore wind turbine are discussed herein.The simulation of a floating offshore wind turbine under regular waves,white noise waves,and combined wind-wave conditions is conducted.The effects of the tower and platform flexibility on the motion and force responses of the TripleSpar semisubmersible floating offshore wind turbine are investigated.The results show that the flexibility of the tower and platform can influence the dynamic responses of a TripleSpar semisubmersible floating offshore wind turbine.Considering the flexibility of the tower and platform,the tower and platform pitch motions markedly increased compared with the fully rigid model.Moreover,the force responses,particularly for tower base loads,are considerably influenced by the flexibility of the tower and platform.Thus,the flexibility of the tower and platform for the coupled simulation of floating offshore wind turbines must be appropriately examined.展开更多
In response to the problems of unclear distribution of deep-water pre-salt carbonate reservoirs and formation conditions of large oil fields in the Santos passive continental margin basin,based on comprehensive utiliz...In response to the problems of unclear distribution of deep-water pre-salt carbonate reservoirs and formation conditions of large oil fields in the Santos passive continental margin basin,based on comprehensive utilization of geological,seismic,and core data,and reconstruction of Early Cretaceous prototype basin and lithofacies paleogeography,it is proposed for the first time that the construction of pre-salt carbonate build-ups was controlled by two types of isolated platforms:inter-depression fault-uplift and intra-depression fault-high.The inter-depression fault-uplift isolated platforms are distributed on the present-day pre-salt uplifted zones between depressions,and are built on half-and fault-horst blocks that were inherited and developed in the early intra-continental and inter-continental rift stages.The late intra-continental rift coquinas of the ITP Formation and the early inter-continental rift microbial limestones of the BVE Formation are continuously constructed;intra-depression fault-high isolated platforms are distributed in the current pre-salt depression zones,built on the uplifted zones formed by volcanic rock build-ups in the early prototype stage of intra-continental rifts,and only the BVE microbial limestones are developed.Both types of limestones formed into mound-shoal bodies,that have the characteristics of large reservoir thickness and good physical properties.Based on the dissection of large pre-salt oil fields discovered in the Santos Basin,it has been found that both types of platforms could form large-scale combined structural-stratigraphic traps,surrounded by high-quality lacustrine and lagoon source rocks at the periphery,and efficiently sealed by thick high-quality evaporite rocks above,forming the optimal combination of source,reservoir and cap in the form of“lower generation,middle storage,and upper cap”,with a high degree of oil and gas enrichment.It has been found that the large oil fields are all bottom water massive oil fields with a unified pressure system,and they are all filled to the spill-point.The future exploration is recommended to focus on the inter-depression fault-uplift isolated platforms in the western uplift zone and the southern section of eastern uplift zones,as well as intra-depression fault-high isolated platforms in the central depression zone.The result not only provides an important basis for the advanced selection of potential play fairways,bidding of new blocks,and deployment of awarded exploration blocks in the Santos Basin,but also provides a reference for the global selection of deep-water exploration blocks in passive continental margin basins.展开更多
1 About the Special Issue Editor Qiaoguang Li is an associate professor and master’s supervisor in the Department of College of Chemistry and Chemical Engineering,Zhongkai University of Agriculture and Engineering.He...1 About the Special Issue Editor Qiaoguang Li is an associate professor and master’s supervisor in the Department of College of Chemistry and Chemical Engineering,Zhongkai University of Agriculture and Engineering.He received his PhD from Institute of Chemical Industry of Forestry Products,Chinese Academy of Forestry in 2018.He has been focusing his research on the chemical basis and application of natural resources.He has published nearly 30 international peer reviewed papers and applied for 10 patents.展开更多
In this paper,the multi-body coupled dynamic characteristics of a semisubmersible platform and an HYSY 229 barge were investigated.First,coupled hydrodynamic analysis of the HYSY 229 barge and the semisubmersible plat...In this paper,the multi-body coupled dynamic characteristics of a semisubmersible platform and an HYSY 229 barge were investigated.First,coupled hydrodynamic analysis of the HYSY 229 barge and the semisubmersible platform was performed.Relevant hydrodynamic parameters were obtained using the retardation function method of three-dimensional frequency-domain potential flow theory.The results of the hydrodynamic analysis were highly consistent with the test findings,verifying the accuracy of the multifloating hydrodynamic coupling analysis,and key hydrodynamic parameters were solved for different water depths and the coupling effect.According to the obtained results,the hydrodynamic influence was the largest in shallow waters when the coupling effect was considered.Furthermore,the coupled motion equation combined with viscous damping,fender system,and mooring system was established,and the hydrodynamics,floating body motion,and dynamic response of the fender system were analyzed.Motion analysis revealed good agreement among the surge,sway,and yaw motions of the two floating bodies.However,when the wave period reached 10 s,the motion of the two floating bodies showed severe shock,and a relative motion was also observed.Therefore,excessive constraints should be added between the two floating bodies during construction to ensure construction safety.The numerical analysis and model test results of the semisubmersible platform and HYSY 229 barge at a water depth of 42 m and sea conditions of 0°,45°,and 90° were in good agreement,and the error was less than 5%.The maximum movement of the HYSY 229 barge reached 2.61 m in the sway direction,whereas that of the semisubmersible platform was 2.11 m.During construction,excessive constraints should be added between the two floating bodies to limit their relative movement and ensure construction safety.展开更多
Architectural singularity belongs to the Type II singularity,in which a parallel manipulator(PM)gains one or more degrees of freedom and becomes uncontrollable.PMs remaining permanently in a singularity are beneficial...Architectural singularity belongs to the Type II singularity,in which a parallel manipulator(PM)gains one or more degrees of freedom and becomes uncontrollable.PMs remaining permanently in a singularity are beneficial for linearto-rotary motion conversion.Griffis-Duffy(GD)platform is a mobile structure admitting a Bricard motion.In this paper,we present a coordinate-free approach to the design of generalized GD platforms,which consists in determining the shape and attachment of both the moving platform and the fixed base.The generalized GD platform is treated as a combination of six coaxial single-loop mechanisms under the same constraints.Owing to the inversion,hidden in the geometric structure of these single-loop mechanisms,the mapping from a line to a circle establishes the geometric transformation between the fixed base and the moving platform based on the center of inversion,and describes the shape and attachment of the generalized GD platform.Moreover,the center of inversion not only identifies the location of rotation axis,but also affects the shape of the platform mechanism.A graphical construction of generalized GD platforms using inversion,proposed in the paper,provides geometrically feasible solutions of the manipulator design for the requirement of the location of rotation axis.展开更多
With the rapid development of large-scale development of marginal oilfields in China,simple wellhead platforms that are simple in structure and easy to install have become an inevitable choice in the process of oilfie...With the rapid development of large-scale development of marginal oilfields in China,simple wellhead platforms that are simple in structure and easy to install have become an inevitable choice in the process of oilfield development.However,traditional simple wellhead platforms are often discarded after a single use.In pursuit of a more costeffective approach to developing marginal oilfields,this paper proposes a new offshore oil field development facility—an integrated bucket foundation for wellhead platform.To verify the safety of its towing behavior and obtain the dynamic response characteristics of the structure,this paper takes a bucket integrated bucket foundation for wellhead platform with a diameter of 40 m as the research object.By combining physical model tests and numerical simulations,it analyzes the static stability and dynamic response characteristics of the structure during towing,complete with the effects of the draft,wave height,wave period,and towing point height,which produce the dynamic responses of the structure under different influence factors,such as roll angle,pitch angle,heave acceleration and towing force as well as the sensibility to transport variables.The results show that the integrated bucket foundation for wellhead platform is capable of self-floating towing,and its movement is affected by the local environment,which will provide a reference for actual projects.展开更多
Objective To explore the application effect of time tracking platform in improving the reperfusion treatment of patients with acute ischemic stroke in primary hospitals. Methods and Results Patients with acute ischemi...Objective To explore the application effect of time tracking platform in improving the reperfusion treatment of patients with acute ischemic stroke in primary hospitals. Methods and Results Patients with acute ischemic stroke who carried out emergency intravenous thrombolysis and arterial thrombectomy in our hospital in 2021, 2022 and 2023 were selected. The time tracking mode was implemented, and the patients were recorded at each time node of the hospital and the whole-process digital management was conducted. Compared the mean DNT (Door to Needle Time) of intravenous thrombolysis in emergency stroke patients in 2021, 2022 and 2023, the total number of hospital cases within 4.5 h of onset, the total number of thrombolysis cases within 4.5 h of onset, the number of intravenous thrombolysis in 60 minutes of acute ischemic stroke, and the number of thrombolysis cases. The results show that from 2021 to 2023 our emergency stroke patients with intravenous thrombolysis average DNT shortened year by year, to the hospital within 4.5 h after the onset of the difference is statistically significant (all P < 0.05) conclusion through the application of stroke time tracking platform, is beneficial to shorten the treatment time of each link, can effectively reduce the hospital time delay, improve the rate of thrombolysis, improve the reperfusion of stroke centers in primary hospitals.展开更多
This paper presents a novel approach to proxy blind signatures in the realm of quantum circuits,aiming to enhance security while safeguarding sensitive information.The main objective of this research is to introduce a...This paper presents a novel approach to proxy blind signatures in the realm of quantum circuits,aiming to enhance security while safeguarding sensitive information.The main objective of this research is to introduce a quantum proxy blind signature(QPBS)protocol that utilizes quantum logical gates and quantum measurement techniques.The QPBS protocol is constructed by the initial phase,proximal blinding message phase,remote authorization and signature phase,remote validation,and de-blinding phase.This innovative design ensures a secure mechanism for signing documents without revealing the content to the proxy signer,providing practical security authentication in a quantum environment under the assumption that the CNOT gates are securely implemented.Unlike existing approaches,our proposed QPBS protocol eliminates the need for quantum entanglement preparation,thus simplifying the implementation process.To assess the effectiveness and robustness of the QPBS protocol,we conduct comprehensive simulation studies in both ideal and noisy quantum environments on the IBM quantum cloud platform.The results demonstrate the superior performance of the QPBS algorithm,highlighting its resilience against repudiation and forgeability,which are key security concerns in the realm of proxy blind signatures.Furthermore,we have established authentic security thresholds(82.102%)in the presence of real noise,thereby emphasizing the practicality of our proposed solution.展开更多
A numerical study of linear wave scattering over a floating platform has been simulated by an efficient numericalmodel in this letter.The non-hydrostatic model is used to simulate the free surface and the uneven botto...A numerical study of linear wave scattering over a floating platform has been simulated by an efficient numericalmodel in this letter.The non-hydrostatic model is used to simulate the free surface and the uneven bottom.For thesolid body modelling,the immersed boundary method(IBM)is implemented by introducing a virtual boundaryforce into the momentum equations to emulate the boundary conditions.This implementation enhances theability of the model to simulate interactions between waves and floating structures.A numerical case involvingwave interactions with a floating platform is studied to validate the numerical model.By simulating the wavepropagation,the numerical model captures the variation of the wave scattering very well,which verifies theperformance of the numerical model and the robust strategy of the IBM.展开更多
In the era of the Internet,various network platforms have evolved into new hubs for information dissemination.Currently,China has established a platform-centered content regulation framework,wherein platforms proactiv...In the era of the Internet,various network platforms have evolved into new hubs for information dissemination.Currently,China has established a platform-centered content regulation framework,wherein platforms proactively enforce content regulations in accordance with legal censorship obligations.Additionally,platform policies and user agreements augment their authority in content regulation.The platforms can achieve cost-effective and highly efficient content regulation by leveraging their strategic advantages enabled by their own technical capabilities and extensive coverage.The platform self-regulation model,however,still faces challenges.First,accurately evaluating content remains a formidable task;second,ensuring effective platform publicity through self-regulation poses difficulties;third,users may potentially face disadvantages due to the platform’s right of self-regulation;and fourth,digital copyright owners face challenges when defending digital copyright disputes under the safe harbor rule.Therefore,it is imperative to establish,review,and revise the legal framework for content regulation of network platforms in order to enhance the efficiency of their governance systems.The formulation of the legal framework for content regulation of network platforms may encompass the following aspects:rationalizing obligations pertaining to platform content regulations,enhancing supervision over platform self-regulation,and establishing a dual-track responsibility system for digital copyright content regulation.This will ensure a harmonious balance among public interests,users’personal rights and interests,and commercial benefits through regulating the content on network platforms.展开更多
The semi-rigid pile-supported composite foundation is widely used in highway projects due to its effectiveness in increasing the bearing capacity and stability of foundations.It is crucial to understand the stress dis...The semi-rigid pile-supported composite foundation is widely used in highway projects due to its effectiveness in increasing the bearing capacity and stability of foundations.It is crucial to understand the stress distribution across the embankment width and the behaviour of unreinforced foundations.Thus,five centrifuge tests were conducted to examine the bearing and deformation behaviours of NPRS(Non-Connected Piled Raft Systems)and GRPS(GeosyntheticReinforced Pile-Supported systems)with varying substratum stiffness,then a comparative analysis was conducted on embankment settlement,pressures underneath the embankments,and axial forces along the piles.The results indicated that greater substratum stiffness correlates with reduced settlement and deformation at various depths.Deformation occurring 5 meters from the embankment toe includes settlement in NPRS and upward movement in GRPS.The potential sliding surface is primarily located within the embankment in NPRS,whereas it may extend through both the embankment and foundation in GRPS.The pile-soil stress ratio and efficiency in NPRS are higher than in GRPS across the embankment.The axial force borne by end-bearing piles is significantly greater than that by floating piles.As the buried depth increases,the axial force in GRPS initially rises then declines,whereas in NPRS,it remains relatively constant within a certain range before decreasing.This study aids in assessing the applicability of composite foundations in complex railway environments and provides a reference for procedural measures under similar conditions.展开更多
This research introduces a novel approach to improve and optimize the predictive capacity of consumer purchase behaviors on e-commerce platforms. This study presented an introduction to the fundamental concepts of the...This research introduces a novel approach to improve and optimize the predictive capacity of consumer purchase behaviors on e-commerce platforms. This study presented an introduction to the fundamental concepts of the logistic regression algorithm. In addition, it analyzed user data obtained from an e-commerce platform. The original data were preprocessed, and a consumer purchase prediction model was developed for the e-commerce platform using the logistic regression method. The comparison study used the classic random forest approach, further enhanced by including the K-fold cross-validation method. Evaluation of the accuracy of the model’s classification was conducted using performance indicators that included the accuracy rate, the precision rate, the recall rate, and the F1 score. A visual examination determined the significance of the findings. The findings suggest that employing the logistic regression algorithm to forecast customer purchase behaviors on e-commerce platforms can improve the efficacy of the approach and yield more accurate predictions. This study serves as a valuable resource for improving the precision of forecasting customers’ purchase behaviors on e-commerce platforms. It has significant practical implications for optimizing the operational efficiency of e-commerce platforms.展开更多
文摘The rapid changes and increased complexity in today’s world present new challenges and put new demands on the education system. There has been generally a growing awareness of the necessity?to change and improve the existing system towards online learning. Jordan is one of the distinguished countries in the Middle East with rapid progress in education and with advanced teaching and learning technologies. The University of Jordan is trying to exploit Information and Communication Technology (ICT) in education and moving forward by introducing the latest E-learning management systems (LMSs) to keep pace of technological revolution in the higher education. It is?important to find out the impact of E-learning management system in the University of Jordan,?examine the students’ acceptance for this new system and address the challenges facing the students while using the E-learning management system and these are what this paper is trying to do.
基金financially supported by the National Key R&D Program of China(Grant No.2022YFB4200705)the National Natural Science Foundation of China(Grant No.52109146)。
文摘The real-time dynamic deformation monitoring of offshore platforms under environmental excitation is crucial to their safe operation.Although Global Navigation Satellite System-Precise Point Positioning(GNSS-PPP)has been considered for this purpose,its monitoring accuracy is relatively low.Moreover,the influence of background noise on the dynamic monitoring accuracy of GNSS-PPP remains unclear.Hence,it is imperative to further validate the feasibility of GNSS-PPP for deformation monitoring of offshore platforms.To address these concerns,vibration table tests with different amplitudes and frequencies are conducted.The results demonstrate that GNSS-PPP can effectively monitor horizontal vibration displacement as low as±30 mm,which is consistent with GNSS-RTK.Furthermore,the spectral characteristic of background noise in GNSS-PPP is similar to that of GNSS-RTK(Real Time Kinematic).Building on this observation,an improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)has been proposed to de-noise the data and enhance the dynamic monitoring accuracy of GNSS-PPP.Field monitoring application research is also undertaken,successfully extracting and analyzing the dynamic deformation of an offshore platform structure under environmental excitation using GNSS-PPP monitoring in conjunction with improved CEEMDAN de-noising.By comparing the de-noised dynamic deformation trajectories of the offshore platform during different periods,it is observed that the platform exhibits reversible alternating vibration responses under environmental excitation,with more pronounced displacement deformation in the direction of load action.The research results confirm the feasibility and potential of GNSS-PPP for dynamic deformation monitoring of offshore platforms.
文摘In recent times,technology has advanced significantly and is currently being integrated into educational environments to facilitate distance learning and interaction between learners.Integrating the Internet of Things(IoT)into education can facilitate the teaching and learning process and expand the context in which students learn.Nevertheless,learning data is very sensitive and must be protected when transmitted over the network or stored in data centers.Moreover,the identity and the authenticity of interacting students,instructors,and staff need to be verified to mitigate the impact of attacks.However,most of the current security and authentication schemes are centralized,relying on trusted third-party cloud servers,to facilitate continuous secure communication.In addition,most of these schemes are resourceintensive;thus,security and efficiency issues arise when heterogeneous and resource-limited IoT devices are being used.In this paper,we propose a blockchain-based architecture that accurately identifies and authenticates learners and their IoT devices in a decentralized manner and prevents the unauthorized modification of stored learning records in a distributed university network.It allows students and instructors to easily migrate to and join multiple universities within the network using their identity without the need for user re-authentication.The proposed architecture was tested using a simulation tool,and measured to evaluate its performance.The simulation results demonstrate the ability of the proposed architecture to significantly increase the throughput of learning transactions(40%),reduce the communication overhead and response time(26%),improve authentication efficiency(27%),and reduce the IoT power consumption(35%)compared to the centralized authentication mechanisms.In addition,the security analysis proves the effectiveness of the proposed architecture in resisting various attacks and ensuring the security requirements of learning data in the university network.
基金supported by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)support program(IITP-2023-2018-0-01426)supervised by the IITP(Institute for Information&Communications Technology Planning&Evaluation).In additionsupport of the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University,This work has also been supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R239),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.Alsosupported by the Taif University Researchers Supporting Project Number(TURSP-2020/115),Taif University,Taif,Saudi Arabia.
文摘In the past two decades,there has been a lot of work on computer vision technology that incorporates many tasks which implement basic filtering to image classification.Themajor research areas of this field include object detection and object recognition.Moreover,wireless communication technologies are presently adopted and they have impacted the way of education that has been changed.There are different phases of changes in the traditional system.Perception of three-dimensional(3D)from two-dimensional(2D)image is one of the demanding tasks.Because human can easily perceive but making 3D using software will take time manually.Firstly,the blackboard has been replaced by projectors and other digital screens so such that people can understand the concept better through visualization.Secondly,the computer labs in schools are now more common than ever.Thirdly,online classes have become a reality.However,transferring to online education or e-learning is not without challenges.Therefore,we propose a method for improving the efficiency of e-learning.Our proposed system consists of twoand-a-half dimensional(2.5D)features extraction using machine learning and image processing.Then,these features are utilized to generate 3D mesh using ellipsoidal deformation method.After that,3D bounding box estimation is applied.Our results show that there is a need to move to 3D virtual reality(VR)with haptic sensors in the field of e-learning for a better understanding of real-world objects.Thus,people will have more information as compared to the traditional or simple online education tools.We compare our result with the ShapeNet dataset to check the accuracy of our proposed method.Our proposed system achieved an accuracy of 90.77%on plane class,85.72%on chair class,and car class have 72.14%.Mean accuracy of our method is 70.89%.
基金supported by a Grant(2021R1F1A1063634)of the Basic Science Research Program through the National Research Foundation(NRF)funded by the Ministry of Education,Republic of Korea.
文摘Due to the recently increased requirements of e-learning systems,multiple educational institutes such as kindergarten have transformed their learning towards virtual education.Automated student health exercise is a difficult task but an important one due to the physical education needs especially in young learners.The proposed system focuses on the necessary implementation of student health exercise recognition(SHER)using a modified Quaternion-basedfilter for inertial data refining and data fusion as the pre-processing steps.Further,cleansed data has been segmented using an overlapping windowing approach followed by patterns identification in the form of static and kinematic signal patterns.Furthermore,these patterns have been utilized to extract cues for both patterned signals,which are further optimized using Fisher’s linear discriminant analysis(FLDA)technique.Finally,the physical exercise activities have been categorized using extended Kalmanfilter(EKF)-based neural networks.This system can be implemented in multiple educational establishments including intelligent training systems,virtual mentors,smart simulations,and interactive learning management methods.
基金funded by the Key Technology Research and Development Program(Nos.2022YFB4201301,and 2022YFB4201304)the National Natural Science Foundation of China(Nos.52101333,52071058,51939002,and 52071301)+2 种基金the Zhejiang Provincial Natural Science Foundation of China(No.LQ21E090009)supported by the Natural Science Foundation of Liaoning Province(No.2022-KF-18-01)the special funds for Promoting High-Quality Development from the Department of Natural Resources of Guangdong Province(No.GDNRC[2020]016).
文摘Recently,semisubmersible floating offshore wind turbine technologies have received considerable attention.For the coupled simulation of semisubmersible floating offshore wind energy,the platform is usually considered a rigid model,which could affect the calculation accuracy of the dynamic responses.The dynamic responses of a TripleSpar floating offshore wind turbine equipped with a 10 MW offshore wind turbine are discussed herein.The simulation of a floating offshore wind turbine under regular waves,white noise waves,and combined wind-wave conditions is conducted.The effects of the tower and platform flexibility on the motion and force responses of the TripleSpar semisubmersible floating offshore wind turbine are investigated.The results show that the flexibility of the tower and platform can influence the dynamic responses of a TripleSpar semisubmersible floating offshore wind turbine.Considering the flexibility of the tower and platform,the tower and platform pitch motions markedly increased compared with the fully rigid model.Moreover,the force responses,particularly for tower base loads,are considerably influenced by the flexibility of the tower and platform.Thus,the flexibility of the tower and platform for the coupled simulation of floating offshore wind turbines must be appropriately examined.
基金Supported by the National Science and Technology Major Project(2016ZX05029001)CNPC Science and Technology Project(2019D-4310)。
文摘In response to the problems of unclear distribution of deep-water pre-salt carbonate reservoirs and formation conditions of large oil fields in the Santos passive continental margin basin,based on comprehensive utilization of geological,seismic,and core data,and reconstruction of Early Cretaceous prototype basin and lithofacies paleogeography,it is proposed for the first time that the construction of pre-salt carbonate build-ups was controlled by two types of isolated platforms:inter-depression fault-uplift and intra-depression fault-high.The inter-depression fault-uplift isolated platforms are distributed on the present-day pre-salt uplifted zones between depressions,and are built on half-and fault-horst blocks that were inherited and developed in the early intra-continental and inter-continental rift stages.The late intra-continental rift coquinas of the ITP Formation and the early inter-continental rift microbial limestones of the BVE Formation are continuously constructed;intra-depression fault-high isolated platforms are distributed in the current pre-salt depression zones,built on the uplifted zones formed by volcanic rock build-ups in the early prototype stage of intra-continental rifts,and only the BVE microbial limestones are developed.Both types of limestones formed into mound-shoal bodies,that have the characteristics of large reservoir thickness and good physical properties.Based on the dissection of large pre-salt oil fields discovered in the Santos Basin,it has been found that both types of platforms could form large-scale combined structural-stratigraphic traps,surrounded by high-quality lacustrine and lagoon source rocks at the periphery,and efficiently sealed by thick high-quality evaporite rocks above,forming the optimal combination of source,reservoir and cap in the form of“lower generation,middle storage,and upper cap”,with a high degree of oil and gas enrichment.It has been found that the large oil fields are all bottom water massive oil fields with a unified pressure system,and they are all filled to the spill-point.The future exploration is recommended to focus on the inter-depression fault-uplift isolated platforms in the western uplift zone and the southern section of eastern uplift zones,as well as intra-depression fault-high isolated platforms in the central depression zone.The result not only provides an important basis for the advanced selection of potential play fairways,bidding of new blocks,and deployment of awarded exploration blocks in the Santos Basin,but also provides a reference for the global selection of deep-water exploration blocks in passive continental margin basins.
基金supported by the National Natural Science Foundation of China (Grant No.32101475)Scarce and Quality Economic Forest Engineering Technology Research Center (Grant No.2022GCZX002)the Key Lab.of Biomass Energy and Material,Jiangsu Province (Grant No.JSBEM-S-202305).
文摘1 About the Special Issue Editor Qiaoguang Li is an associate professor and master’s supervisor in the Department of College of Chemistry and Chemical Engineering,Zhongkai University of Agriculture and Engineering.He received his PhD from Institute of Chemical Industry of Forestry Products,Chinese Academy of Forestry in 2018.He has been focusing his research on the chemical basis and application of natural resources.He has published nearly 30 international peer reviewed papers and applied for 10 patents.
基金the National Natural Science Foundation of China(No.U20A20328).
文摘In this paper,the multi-body coupled dynamic characteristics of a semisubmersible platform and an HYSY 229 barge were investigated.First,coupled hydrodynamic analysis of the HYSY 229 barge and the semisubmersible platform was performed.Relevant hydrodynamic parameters were obtained using the retardation function method of three-dimensional frequency-domain potential flow theory.The results of the hydrodynamic analysis were highly consistent with the test findings,verifying the accuracy of the multifloating hydrodynamic coupling analysis,and key hydrodynamic parameters were solved for different water depths and the coupling effect.According to the obtained results,the hydrodynamic influence was the largest in shallow waters when the coupling effect was considered.Furthermore,the coupled motion equation combined with viscous damping,fender system,and mooring system was established,and the hydrodynamics,floating body motion,and dynamic response of the fender system were analyzed.Motion analysis revealed good agreement among the surge,sway,and yaw motions of the two floating bodies.However,when the wave period reached 10 s,the motion of the two floating bodies showed severe shock,and a relative motion was also observed.Therefore,excessive constraints should be added between the two floating bodies during construction to ensure construction safety.The numerical analysis and model test results of the semisubmersible platform and HYSY 229 barge at a water depth of 42 m and sea conditions of 0°,45°,and 90° were in good agreement,and the error was less than 5%.The maximum movement of the HYSY 229 barge reached 2.61 m in the sway direction,whereas that of the semisubmersible platform was 2.11 m.During construction,excessive constraints should be added between the two floating bodies to limit their relative movement and ensure construction safety.
基金Supported by National Natural Science Foundation of China (Grant Nos.U1813221,52075015)Personnel Startup Project of Zhejiang A&F University Scientific Research Development Foundation of China (Grant No.2024LFR015)。
文摘Architectural singularity belongs to the Type II singularity,in which a parallel manipulator(PM)gains one or more degrees of freedom and becomes uncontrollable.PMs remaining permanently in a singularity are beneficial for linearto-rotary motion conversion.Griffis-Duffy(GD)platform is a mobile structure admitting a Bricard motion.In this paper,we present a coordinate-free approach to the design of generalized GD platforms,which consists in determining the shape and attachment of both the moving platform and the fixed base.The generalized GD platform is treated as a combination of six coaxial single-loop mechanisms under the same constraints.Owing to the inversion,hidden in the geometric structure of these single-loop mechanisms,the mapping from a line to a circle establishes the geometric transformation between the fixed base and the moving platform based on the center of inversion,and describes the shape and attachment of the generalized GD platform.Moreover,the center of inversion not only identifies the location of rotation axis,but also affects the shape of the platform mechanism.A graphical construction of generalized GD platforms using inversion,proposed in the paper,provides geometrically feasible solutions of the manipulator design for the requirement of the location of rotation axis.
基金supported by the National Natural Science Foundation of China(Grant No.52271287).
文摘With the rapid development of large-scale development of marginal oilfields in China,simple wellhead platforms that are simple in structure and easy to install have become an inevitable choice in the process of oilfield development.However,traditional simple wellhead platforms are often discarded after a single use.In pursuit of a more costeffective approach to developing marginal oilfields,this paper proposes a new offshore oil field development facility—an integrated bucket foundation for wellhead platform.To verify the safety of its towing behavior and obtain the dynamic response characteristics of the structure,this paper takes a bucket integrated bucket foundation for wellhead platform with a diameter of 40 m as the research object.By combining physical model tests and numerical simulations,it analyzes the static stability and dynamic response characteristics of the structure during towing,complete with the effects of the draft,wave height,wave period,and towing point height,which produce the dynamic responses of the structure under different influence factors,such as roll angle,pitch angle,heave acceleration and towing force as well as the sensibility to transport variables.The results show that the integrated bucket foundation for wellhead platform is capable of self-floating towing,and its movement is affected by the local environment,which will provide a reference for actual projects.
文摘Objective To explore the application effect of time tracking platform in improving the reperfusion treatment of patients with acute ischemic stroke in primary hospitals. Methods and Results Patients with acute ischemic stroke who carried out emergency intravenous thrombolysis and arterial thrombectomy in our hospital in 2021, 2022 and 2023 were selected. The time tracking mode was implemented, and the patients were recorded at each time node of the hospital and the whole-process digital management was conducted. Compared the mean DNT (Door to Needle Time) of intravenous thrombolysis in emergency stroke patients in 2021, 2022 and 2023, the total number of hospital cases within 4.5 h of onset, the total number of thrombolysis cases within 4.5 h of onset, the number of intravenous thrombolysis in 60 minutes of acute ischemic stroke, and the number of thrombolysis cases. The results show that from 2021 to 2023 our emergency stroke patients with intravenous thrombolysis average DNT shortened year by year, to the hospital within 4.5 h after the onset of the difference is statistically significant (all P < 0.05) conclusion through the application of stroke time tracking platform, is beneficial to shorten the treatment time of each link, can effectively reduce the hospital time delay, improve the rate of thrombolysis, improve the reperfusion of stroke centers in primary hospitals.
基金Project supported by the General Project of Natural Science Foundation of Hunan Province(Grant Nos.2024JJ5273 and 2023JJ50328)the Scientific Research Project of Education Department of Hunan Province(Grant Nos.22A0049 and 22B0699)。
文摘This paper presents a novel approach to proxy blind signatures in the realm of quantum circuits,aiming to enhance security while safeguarding sensitive information.The main objective of this research is to introduce a quantum proxy blind signature(QPBS)protocol that utilizes quantum logical gates and quantum measurement techniques.The QPBS protocol is constructed by the initial phase,proximal blinding message phase,remote authorization and signature phase,remote validation,and de-blinding phase.This innovative design ensures a secure mechanism for signing documents without revealing the content to the proxy signer,providing practical security authentication in a quantum environment under the assumption that the CNOT gates are securely implemented.Unlike existing approaches,our proposed QPBS protocol eliminates the need for quantum entanglement preparation,thus simplifying the implementation process.To assess the effectiveness and robustness of the QPBS protocol,we conduct comprehensive simulation studies in both ideal and noisy quantum environments on the IBM quantum cloud platform.The results demonstrate the superior performance of the QPBS algorithm,highlighting its resilience against repudiation and forgeability,which are key security concerns in the realm of proxy blind signatures.Furthermore,we have established authentic security thresholds(82.102%)in the presence of real noise,thereby emphasizing the practicality of our proposed solution.
基金supported by Shanghai 2021“Science and Technology Innovation Action Plan”:Scientific and Technological Projects for Social Development(Grant No.21DZ1202701).
文摘A numerical study of linear wave scattering over a floating platform has been simulated by an efficient numericalmodel in this letter.The non-hydrostatic model is used to simulate the free surface and the uneven bottom.For thesolid body modelling,the immersed boundary method(IBM)is implemented by introducing a virtual boundaryforce into the momentum equations to emulate the boundary conditions.This implementation enhances theability of the model to simulate interactions between waves and floating structures.A numerical case involvingwave interactions with a floating platform is studied to validate the numerical model.By simulating the wavepropagation,the numerical model captures the variation of the wave scattering very well,which verifies theperformance of the numerical model and the robust strategy of the IBM.
基金This paper is a phased achievement of the key project of the Chongqing Municipal Education Commission entitled“Research on Establishment of Regional Legal Framework for Rural Revitalization”(Project No.23SKJD033)the university-level project of Southwest University of Political Science&Law entitled“A Comparative Study on Legislation for Agricultural and Rural Modernization”(Project No.DFLF2020Y12).
文摘In the era of the Internet,various network platforms have evolved into new hubs for information dissemination.Currently,China has established a platform-centered content regulation framework,wherein platforms proactively enforce content regulations in accordance with legal censorship obligations.Additionally,platform policies and user agreements augment their authority in content regulation.The platforms can achieve cost-effective and highly efficient content regulation by leveraging their strategic advantages enabled by their own technical capabilities and extensive coverage.The platform self-regulation model,however,still faces challenges.First,accurately evaluating content remains a formidable task;second,ensuring effective platform publicity through self-regulation poses difficulties;third,users may potentially face disadvantages due to the platform’s right of self-regulation;and fourth,digital copyright owners face challenges when defending digital copyright disputes under the safe harbor rule.Therefore,it is imperative to establish,review,and revise the legal framework for content regulation of network platforms in order to enhance the efficiency of their governance systems.The formulation of the legal framework for content regulation of network platforms may encompass the following aspects:rationalizing obligations pertaining to platform content regulations,enhancing supervision over platform self-regulation,and establishing a dual-track responsibility system for digital copyright content regulation.This will ensure a harmonious balance among public interests,users’personal rights and interests,and commercial benefits through regulating the content on network platforms.
基金financially supported by the National Natural Science Foundation of China(Nos.51878577 and 52378463)the Natural Science Foundation of Shandong Provincial,China(No.ZR2022ME042)the School-Enterprise Cooperation Program of China Railway 14th Bureau Group Co.(QTHT-HGLCHSD-00052)。
文摘The semi-rigid pile-supported composite foundation is widely used in highway projects due to its effectiveness in increasing the bearing capacity and stability of foundations.It is crucial to understand the stress distribution across the embankment width and the behaviour of unreinforced foundations.Thus,five centrifuge tests were conducted to examine the bearing and deformation behaviours of NPRS(Non-Connected Piled Raft Systems)and GRPS(GeosyntheticReinforced Pile-Supported systems)with varying substratum stiffness,then a comparative analysis was conducted on embankment settlement,pressures underneath the embankments,and axial forces along the piles.The results indicated that greater substratum stiffness correlates with reduced settlement and deformation at various depths.Deformation occurring 5 meters from the embankment toe includes settlement in NPRS and upward movement in GRPS.The potential sliding surface is primarily located within the embankment in NPRS,whereas it may extend through both the embankment and foundation in GRPS.The pile-soil stress ratio and efficiency in NPRS are higher than in GRPS across the embankment.The axial force borne by end-bearing piles is significantly greater than that by floating piles.As the buried depth increases,the axial force in GRPS initially rises then declines,whereas in NPRS,it remains relatively constant within a certain range before decreasing.This study aids in assessing the applicability of composite foundations in complex railway environments and provides a reference for procedural measures under similar conditions.
文摘This research introduces a novel approach to improve and optimize the predictive capacity of consumer purchase behaviors on e-commerce platforms. This study presented an introduction to the fundamental concepts of the logistic regression algorithm. In addition, it analyzed user data obtained from an e-commerce platform. The original data were preprocessed, and a consumer purchase prediction model was developed for the e-commerce platform using the logistic regression method. The comparison study used the classic random forest approach, further enhanced by including the K-fold cross-validation method. Evaluation of the accuracy of the model’s classification was conducted using performance indicators that included the accuracy rate, the precision rate, the recall rate, and the F1 score. A visual examination determined the significance of the findings. The findings suggest that employing the logistic regression algorithm to forecast customer purchase behaviors on e-commerce platforms can improve the efficacy of the approach and yield more accurate predictions. This study serves as a valuable resource for improving the precision of forecasting customers’ purchase behaviors on e-commerce platforms. It has significant practical implications for optimizing the operational efficiency of e-commerce platforms.