Deep placement of controlled-release fertilizer increases nitrogen (N) use efficiency in rice planting but is expensive. Few studies on direct-seeded rice have examined the effects of deep placement of conventional fe...Deep placement of controlled-release fertilizer increases nitrogen (N) use efficiency in rice planting but is expensive. Few studies on direct-seeded rice have examined the effects of deep placement of conventional fertilizer. With prilled urea serving as N fertilizer, a two-year field experiment with two N rates (120 and 195 kg/hm2) and four basal N application treatments (B50, all fertilizer was broadcast with 50% as basal N;D50, D70 and D100 corresponded to 50%, 70% and 100% of N deeply placed as basal N, respectively) were conducted in direct-seeded rice in 2013 and 2014. Soil N distribution and plant N uptake were analyzed. The results showed that deep placement of basal N significantly increased total N concentrations in soil. Significantly greater soil N concentrations were observed in D100 compared with B50 at 0, 6 and 12 cm (lateral distance) from the fertilizer application point both at mid-tillering and heading stages. D100 presented the highest values of dry matter and N accumulation from seeding to mid-tillering stages, but it presented the lowest values from heading to maturity stages and the lowest grain yield for no sufficient N supply at the reproductive stage. The grain yield of D50 was the highest, however, no significant difference was observed in grain yield, N agronomic efficiency or N recovery efficiency between D70 and D50, or between D70 and B50, while D70 was more labor saving than D50 for only one topdressing was applied in D70 compared with twice in other treatments. The above results indicated that 70% of fertilizer-N deeply placed as a basal fertilizer and 30% of fertilizer-N topdressed as a panicle fertilizer constituted an ideal approach for direct-seeded rice. This recommendation was further verified through on-farm demonstration experiments in 2015, in which D70 produced in similar grain yields as B50 did.展开更多
Side deep placement of nitrogen plays an important role in improving rice yield and nitrogen use efficiency.Few studies have examined the effects of reducing the times of nitrogen(RTN)application and reducing the nitr...Side deep placement of nitrogen plays an important role in improving rice yield and nitrogen use efficiency.Few studies have examined the effects of reducing the times of nitrogen(RTN)application and reducing the nitrogen rate(RNR)of application on rice yield and nitrogen use efficiency under side deep placement of nitrogen in paddy fields.Therefore,a field experiment of RNT and RNR treatments was conducted with nine fertilization modes during the 2018–2019 rice growing seasons in a rice–wheat cropping system of the lower reaches of the Yangtze River,China.Rice yield and nitrogen use efficiency were investigated under side deep placement of nitrogen.We found that under the same nitrogen application rate,the yield of RTN3 increased by 9.64 and 10.18%in rice varieties NJ9108 and NJ5718,respectively,compared with the farmers’fertilizer practices(FFP).The nitrogen accumulation of RTN3 was the highest at heading stage,at 11.30 t ha^(–1)across 2018 and 2019.Under the same nitrogen application rate,the N agronomic use efficiency(NAE),N physiological efficiency(NPE)and N recovery efficiency(NRE)of RTN3 were 8.1–21.28%,8.51–41.76%and 0.28–14.52%higher than those of the other fertilization modes,respectively.RNR led to decreases in SPAD value,leaf area index(LAI),dry matter accumulation,nitrogen accumulation,and nitrogen use efficiency.These results suggest that RTN3 increased rice yield and nitrogen use efficiency under the side deep placement of nitrogen,and RNR1 could achieve the goals of saving cost and increasing resource use efficiency.Two fertilization modes RTN3 and RNR1 both could achieve the dual goals of increasing grain yield and resource use efficiency and thus are worth further application and investigation.展开更多
This paper investigates the yield and nitrogen use efficiency (NUE) of machine-transplanted rice cultivated using mechanized deep placement of N fertilizer in the rice–wheat rotation region of Chuanxi Plain,China.It ...This paper investigates the yield and nitrogen use efficiency (NUE) of machine-transplanted rice cultivated using mechanized deep placement of N fertilizer in the rice–wheat rotation region of Chuanxi Plain,China.It provides theoretical support for N-saving and improves quality and production efficiency of machine-transplanted rice.Using a single-factor complete randomized block design in field experiments in 2018 and 2019,seven N-fertilization treatments were applied,with the fertilizer being surface broadcast and/or mechanically placed beside the seedlings at (5.5±0.5) cm soil depth when transplanting.The treatments were:N0,no N fertilizer;U1,180 kg N ha^(–1) as urea,surface broadcast manually before transplanting;U2,108 kg N ha^(–1) as urea,surface broadcast manually before transplanting,and 72 kg N ha^(–1) as urea surface broadcast manually on the 10th d after transplanting,which is not only the local common fertilization method,but also the reference treatment;UD,180 kg N ha^(–1) as urea,mechanically deep-placed when transplanting;M1,81.6 kg N ha^(–1) as urea and 38.4 kg N ha^(–1) as controlled-release urea (CRU),mechanically deep-placed when transplanting;M2,102 kg N ha^(–1) as urea and48 kg N ha^(–1) as CRU,mechanically deep-placed when transplanting;M3,122.4 kg N ha^(–1) as urea and 57.6 kg N ha^(–1) as CRU,mechanically deep-placed when transplanting.The effects of the N fertilizer treatments on rice yield and NUE were consistent in the 2 yr.With a N application rate of 180 kg ha^(–1),compared with U2,the N recovery efficiency (NRE),N agronomic use efficiency (NAE) and yield under the UD treatment were 20.6,3.5 and 1.1% higher in 2018,and 4.6,1.7 and 1.2% higher in 2019,respectively.Compared with urea alone (U1,U2 or UD),the NRE,NAE and yield achieved by M3 (combined application of urea and controlled-release urea) were higher by 9.2–73.3%,18.6–61.5% and 6.5–16.5%(2018),and 22.2–65.2%,25.6–75.0% and 5.9–13.9%(2019),respectively.Compared with M3,the lower-N treatments M1 and M2 significantly increased NRE by 4.0–7.8% in 2018 and 3.1–4.3% in 2019,respectively.Compared with urea surface application (U1 or U2),the yield under the M2 treatment was higher by 4.3–12.9% in 2018 and 3.6–10.1% in 2019,respectively.Compared with U2,the NRE and NAE under the M2 treatment was higher by 36.9 and 36.3% in 2018,and 33.2 and 37.4% in 2019,mainly because of higher N uptake.There was no significant difference in the concentration of nitrate in the top 0–20 cm soil under U1,U2 and M2 treatments during the full heading and maturity stages.During the full heading stage,U2 produced the highest concentration of nitrite in 0–20 cm and 20–40 cm soil among the N fertilizer treatments.In conclusion,mechanized deep placement of mixed urea and controlled-release urea (M2) at transplanting is a highly-efficient cultivation technology that enables increased yield of machine-transplanted rice and improved NUE,while reducing the amount of N-fertilization applied.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2016YFD0300108)the National Natural Science Foundation of China(Grant Nos.31671630 and 31371581)the National Rice Industry Technology System(CARS-01-04A)in China
文摘Deep placement of controlled-release fertilizer increases nitrogen (N) use efficiency in rice planting but is expensive. Few studies on direct-seeded rice have examined the effects of deep placement of conventional fertilizer. With prilled urea serving as N fertilizer, a two-year field experiment with two N rates (120 and 195 kg/hm2) and four basal N application treatments (B50, all fertilizer was broadcast with 50% as basal N;D50, D70 and D100 corresponded to 50%, 70% and 100% of N deeply placed as basal N, respectively) were conducted in direct-seeded rice in 2013 and 2014. Soil N distribution and plant N uptake were analyzed. The results showed that deep placement of basal N significantly increased total N concentrations in soil. Significantly greater soil N concentrations were observed in D100 compared with B50 at 0, 6 and 12 cm (lateral distance) from the fertilizer application point both at mid-tillering and heading stages. D100 presented the highest values of dry matter and N accumulation from seeding to mid-tillering stages, but it presented the lowest values from heading to maturity stages and the lowest grain yield for no sufficient N supply at the reproductive stage. The grain yield of D50 was the highest, however, no significant difference was observed in grain yield, N agronomic efficiency or N recovery efficiency between D70 and D50, or between D70 and B50, while D70 was more labor saving than D50 for only one topdressing was applied in D70 compared with twice in other treatments. The above results indicated that 70% of fertilizer-N deeply placed as a basal fertilizer and 30% of fertilizer-N topdressed as a panicle fertilizer constituted an ideal approach for direct-seeded rice. This recommendation was further verified through on-farm demonstration experiments in 2015, in which D70 produced in similar grain yields as B50 did.
基金the National Key Research and Development Program of China(2018YFD0300802 and 2016YFD0200805)the Key Research Program of Jiangsu Province,China(BE2017343 and BE2018362)。
文摘Side deep placement of nitrogen plays an important role in improving rice yield and nitrogen use efficiency.Few studies have examined the effects of reducing the times of nitrogen(RTN)application and reducing the nitrogen rate(RNR)of application on rice yield and nitrogen use efficiency under side deep placement of nitrogen in paddy fields.Therefore,a field experiment of RNT and RNR treatments was conducted with nine fertilization modes during the 2018–2019 rice growing seasons in a rice–wheat cropping system of the lower reaches of the Yangtze River,China.Rice yield and nitrogen use efficiency were investigated under side deep placement of nitrogen.We found that under the same nitrogen application rate,the yield of RTN3 increased by 9.64 and 10.18%in rice varieties NJ9108 and NJ5718,respectively,compared with the farmers’fertilizer practices(FFP).The nitrogen accumulation of RTN3 was the highest at heading stage,at 11.30 t ha^(–1)across 2018 and 2019.Under the same nitrogen application rate,the N agronomic use efficiency(NAE),N physiological efficiency(NPE)and N recovery efficiency(NRE)of RTN3 were 8.1–21.28%,8.51–41.76%and 0.28–14.52%higher than those of the other fertilization modes,respectively.RNR led to decreases in SPAD value,leaf area index(LAI),dry matter accumulation,nitrogen accumulation,and nitrogen use efficiency.These results suggest that RTN3 increased rice yield and nitrogen use efficiency under the side deep placement of nitrogen,and RNR1 could achieve the goals of saving cost and increasing resource use efficiency.Two fertilization modes RTN3 and RNR1 both could achieve the dual goals of increasing grain yield and resource use efficiency and thus are worth further application and investigation.
基金supported by the National Key Research and Development Program of China(2016YFD0300108)the Application and Basic Research Project of Sichuan Province,China(2018JY0630)the Financial Innovation Capacity Improvement of Sichuan Province,China(2017QNJJ-031)。
文摘This paper investigates the yield and nitrogen use efficiency (NUE) of machine-transplanted rice cultivated using mechanized deep placement of N fertilizer in the rice–wheat rotation region of Chuanxi Plain,China.It provides theoretical support for N-saving and improves quality and production efficiency of machine-transplanted rice.Using a single-factor complete randomized block design in field experiments in 2018 and 2019,seven N-fertilization treatments were applied,with the fertilizer being surface broadcast and/or mechanically placed beside the seedlings at (5.5±0.5) cm soil depth when transplanting.The treatments were:N0,no N fertilizer;U1,180 kg N ha^(–1) as urea,surface broadcast manually before transplanting;U2,108 kg N ha^(–1) as urea,surface broadcast manually before transplanting,and 72 kg N ha^(–1) as urea surface broadcast manually on the 10th d after transplanting,which is not only the local common fertilization method,but also the reference treatment;UD,180 kg N ha^(–1) as urea,mechanically deep-placed when transplanting;M1,81.6 kg N ha^(–1) as urea and 38.4 kg N ha^(–1) as controlled-release urea (CRU),mechanically deep-placed when transplanting;M2,102 kg N ha^(–1) as urea and48 kg N ha^(–1) as CRU,mechanically deep-placed when transplanting;M3,122.4 kg N ha^(–1) as urea and 57.6 kg N ha^(–1) as CRU,mechanically deep-placed when transplanting.The effects of the N fertilizer treatments on rice yield and NUE were consistent in the 2 yr.With a N application rate of 180 kg ha^(–1),compared with U2,the N recovery efficiency (NRE),N agronomic use efficiency (NAE) and yield under the UD treatment were 20.6,3.5 and 1.1% higher in 2018,and 4.6,1.7 and 1.2% higher in 2019,respectively.Compared with urea alone (U1,U2 or UD),the NRE,NAE and yield achieved by M3 (combined application of urea and controlled-release urea) were higher by 9.2–73.3%,18.6–61.5% and 6.5–16.5%(2018),and 22.2–65.2%,25.6–75.0% and 5.9–13.9%(2019),respectively.Compared with M3,the lower-N treatments M1 and M2 significantly increased NRE by 4.0–7.8% in 2018 and 3.1–4.3% in 2019,respectively.Compared with urea surface application (U1 or U2),the yield under the M2 treatment was higher by 4.3–12.9% in 2018 and 3.6–10.1% in 2019,respectively.Compared with U2,the NRE and NAE under the M2 treatment was higher by 36.9 and 36.3% in 2018,and 33.2 and 37.4% in 2019,mainly because of higher N uptake.There was no significant difference in the concentration of nitrate in the top 0–20 cm soil under U1,U2 and M2 treatments during the full heading and maturity stages.During the full heading stage,U2 produced the highest concentration of nitrite in 0–20 cm and 20–40 cm soil among the N fertilizer treatments.In conclusion,mechanized deep placement of mixed urea and controlled-release urea (M2) at transplanting is a highly-efficient cultivation technology that enables increased yield of machine-transplanted rice and improved NUE,while reducing the amount of N-fertilization applied.