BACKGROUND: Insulin-like growth factor-I(IGF-1), as one of the important members of growth factor family, participants in the regulation of many physiological functions and behaviors, having very strong neuroprotec...BACKGROUND: Insulin-like growth factor-I(IGF-1), as one of the important members of growth factor family, participants in the regulation of many physiological functions and behaviors, having very strong neuroprotective effect. However, the expression of IGF-1 following cerebral ischemia/reperfusion is still disputed. OBJECTIVE: To observe the expression of IGF-1 and protein of corpora striata in ischemic side at the early stage of middle cerebral artery ischemia/reperfusion in rhesus monkey. DESIGN : A completely randomized grouping design, controlled animal experiment SETTING : Institute of Cerebrovascular Disease, Affiliated Hospital of Medical College of Qingdao University MATERIALS: ① Totally 17 rhesus monkeys , of either gender, aged 4 to 5 years, were enrolled . Seven rhesus monkeys observed with gene chip were randomly divided into 2 groups: sham operation group (n=3) and ischemia/reperfusion group 〈n=4〉. Ten rhesus monkeys observed with in situ hybridization and immunohistochemistry method were randomly divided into 2 groups: sham operation group 〈n=3 〉and ischemia/reperfusion group (n=7). Rhesus monkeys observed under microscope were divided into 2 groups: sham operation group (n=6) and ischamia/reperfusion group (n=-11).②Materials used in the experiment: cresyl violet (Sigma Company, America); immunohistochemical reagent kit ( Huamei Bio-engineering Company); In situ hybridization reagent kit (Boshide Bio-engineering Co.Ltd, Wuhan); 12 800 dots chip (Boxing Company, Shanghai). METHODS : This experiment was carried out at the Institute of Cerebrovascular Disease, Affiliated Hospital of Medical College of Qingdao University from January 2001 to December 2003.① The onset area of middle cerebral artery was blocked for 2 hours, middle cerebral artery ischemia/reperfusion models were created.② After ischemia/reperfusion for 24 hours, cerebral tissue sections of rhesus monkeys were prepared and stained with cresyl violet. Image analysis was performed with 5001W image analysis software. Morphological change of corpora striata of operative side was observed in the rhesus monkeys between two groups. Total RNA was extracted from cerebral tissue. ③ Detection of gene chip: Cy3-duTP and Cy5-duTP were used to respectively perform reverse transcription labeling. The sample was reversely transcribed into cDNA, then hybridized with cDNA of cerebral tissue. Genes with the separate absolute value of cy3 and cy5〉800, cY3/cy5 〉 2(high expression) or 〈 0.5 (low expression) were found out. Those were genes with differential expression. ④ The expressions of IGF-1 mRNA and protein level of corpora striata in ischemic side of rhe- sus monkeys were detected between sham operation group and ischemia/reperfusion group at 9 and 24 hours after ischemia/reperfusion with in situ hybridization method and immunohistochemical method. Brown granules were IGF-1 protein positive cells. ⑤ Analysis of variance was used in the difference comparison of measurement data among groups. MAIN OUTCOME MEASURES : ① Change of morphological structure of corpora striata at ischemic side in rhesus monkeys. ② Change of cerebral gene expression profiles at ischemia/reperfusion in rhesus monkeys between two groups.③ Expression of IGF-1 mRNA and protein level of corpora striata at ischemia/reperfu- sion in rhesus monkeys between two groups. RESULTS : ① Pathological change : Obvious pathological change of cerebral infarction appeared in the ischemia and reperfusion group, while there was no such pathological change in the sham operation group.② Change of gene expression profile : There were 4480 genes with difference expression in the ischemia/reperfusion group and sham-operation group, in which, 260 genes had high expression and their absolute value was over 800, and 63 genes had low expression, cy3/cy5 of IGF-1 was 0.379, being relative low ex- pression. ③ IGF-1 mRNA and protein positive cell counts in corpora striata at cerebral ischemic side[IGF-1 mRNA: 〈9.72±1.18),(9.11 ±0.76),(14.77±0.60) counts/field:lGF-1 protein: (15.11 ±1.83),(15.39±0.78), (34.62±0.97)counts/field, P 〈 0.05-0.01]. CONCLUSION: IGF-1 mRNA and protein are lowly expressed in middle cerebral artery of rhesus monkeys at ischemia/reperfusion.展开更多
目的:肥胖会导致肥胖相关性肾病(obesity related glomerulopathy,ORG),但其发病机制并不明确。本研究拟检测早期生长反应蛋白3(early growth response protein 3,EGR3)在ORG患者和高脂饮食诱导的肥胖小鼠肾皮质组织中的表达,并探讨EGR...目的:肥胖会导致肥胖相关性肾病(obesity related glomerulopathy,ORG),但其发病机制并不明确。本研究拟检测早期生长反应蛋白3(early growth response protein 3,EGR3)在ORG患者和高脂饮食诱导的肥胖小鼠肾皮质组织中的表达,并探讨EGR3抑制棕榈酸(palmitic acid,PA)诱导的人足细胞炎症损伤的分子机制。方法:收集排除其他疾病导致的肾损害并经组织病理学证实的ORG患者(n=6)和高脂饮食诱导的肥胖小鼠的肾皮质组织(n=10)。使用150μmol/L PA干预人和小鼠足细胞48 h;人足细胞中分别过表达或沉默EGR3。采用酶联免疫吸附试验(enzyme linked immunosorbent assay,ELISA)检测白细胞介素(interleukin,IL)-6和IL-1β的含量;real-time RT-PCR检测EGR3、足细胞分子标志NPHS1(nephrosis1)、NPHS2(nephrosis2)、足糖萼蛋白(podocalyxin,PODXL)、平足蛋白(podoplanin,PDPN)mRNA的表达;RNA-seq检测人足细胞过表达EGR3并150μmol/L PA干预后与对照组的差异表达基因(differentially expressed genes,DEGs);免疫共沉淀(co-immunoprecipitation,Co-IP)+液相色谱串联质谱(liquid chromatography tandem mass spectrometry,LC-MS)检测EGR3可能的相互作用蛋白质,并与RNA-seq的结果取交集;Co-IP验证EGR3与蛋白精氨酸甲基转移酶1(protein arginine methyltransferases 1,PRMT1)的相互作用;沉默EGR3和PRMT1抑制剂干预后检测PA诱导的足细胞培养液中IL-6和IL-1β的含量;蛋白质印迹法检测分别过表达或沉默EGR3后磷酸化信号转导及转录激活蛋白3(phosphorylated signal transducer and activator of transcription 3,p-STAT3)的蛋白质表达。结果:EGR3在ORG患者和高脂饮食诱导的肥胖小鼠肾皮质组织中的表达均显著上调(均P<0.01),150μmol/L PA干预人和小鼠足细胞48 h后显著上调2种细胞EGR3的表达(均P<0.05)。人足细胞过表达或沉默EGR3分别抑制或促进PA干预后细胞培养液中IL-6和IL-1β的分泌,并分别上调或下调NPHS1、PODXL、NPHS2及PDPN的表达(均P<0.05)。RNA-seq结果显示共有988个DEGs,Co-IP+LC-MS共发现238个可能与EGR3相互作用的蛋白质,且Co-IP证实PRMT1为EGR3的相互作用蛋白质。PRMT1抑制剂能部分减少人足细胞沉默EGR3后PA诱导的IL-6及IL-1β的分泌(均P<0.05);此外,过表达或沉默EGR3负调控PRMT1及p-STAT3的表达。结论:EGR3可能通过抑制PRMT1/p-STAT3通路减轻ORG足细胞炎症损伤。展开更多
Early growth response protein 1(Egr-1)triggers the transcription of many genes involved in cell growth,differentiation,synaptic plasticity,and neurogenesis.However,its mechanism in neuronal survival and degeneration i...Early growth response protein 1(Egr-1)triggers the transcription of many genes involved in cell growth,differentiation,synaptic plasticity,and neurogenesis.However,its mechanism in neuronal survival and degeneration is still poorly understood.This study demonstrated that Egr-1 was down-regulated at mRNA and protein levels in the central nervous system(CNS)of experimental autoimmune encephalomyelitis(EAE)mice.Egr-1 knockout exacerbated EAE progression in mice,as shown by increased disease severity and incidence;it also aggravated neuronal apoptosis,which was associated with weakened activation of the BDNF/TGFβ1/MAPK/Akt signaling pathways in the CNS of EAE mice.Consistently,Egr-1 siRNA promoted apoptosis but mitigated the activation of BDNF/TGFβ1/MAPK/Akt signaling in SH-SY5Y cells.Our results revealed that Egr-1 is a crucial regulator of neuronal survival in EAE by regulating TGFβ1-mediated signaling activation,implicating the important role of Egr-1 in the pathogenesis of multiple sclerosis as a potential novel therapy target.展开更多
The serine proteinase inhibitor α-1 antitrypsin(AAT) is produced principally by the liver at the rate of 2 g/d.It is secreted into the circulation and provides an antiprotease protective screen throughout the body bu...The serine proteinase inhibitor α-1 antitrypsin(AAT) is produced principally by the liver at the rate of 2 g/d.It is secreted into the circulation and provides an antiprotease protective screen throughout the body but most importantly in the lung,where it can neutralise the activity of the serine protease neutrophil elastase.Mutations leading to def iciency in AAT are associated with liver and lung disease.The most notable is the Z AAT mutation,which encodes a misfolded variant of the AAT protein in which the glutamic acid at position 342 is replaced by a lysine.More than 95% of all individuals with AAT def iciency carry at least one Z allele.ZAAT protein is not secreted effectively and accumulates intracellularly in the endoplasmic reticulum(ER) of hepatocytes and other AAT-producing cells.This results in a loss of function associated with decreased circulating and intrapulmonary levels of AAT.However,the misfolded protein acquires a toxic gain of function that impacts on the ER.A major function of the ER is to ensure correct protein folding.ZAAT interferes with this function and promotes ER stress responses and inflammation.Here the signalling pathways activated during ER stress in response to accumulation of ZAAT are described and therapeutic strategies that can potentially relieve ER stress are discussed.展开更多
OBJECTIVE Basic fibroblast growth factor(b FGF)and platelet-derived growth factor(PDGF)produced by hepatocellular carcinoma(HCC)cells are responsible for the cell growth.Accumulating evidence shows that insulin-like g...OBJECTIVE Basic fibroblast growth factor(b FGF)and platelet-derived growth factor(PDGF)produced by hepatocellular carcinoma(HCC)cells are responsible for the cell growth.Accumulating evidence shows that insulin-like growth factor-binding protein-3(IGFBP-3)suppresses HCC cell proliferation in both IGF-dependent and independent manners.The present study is to investigate whether treatment with exogenous IGFBP-3 inhibits bF GF and PDGF production and the cell proliferation of HCC cells.METHODS Cell Counting Kit 8 assay were designed to detect HCC cell proliferation,transcription factor early growth response-1(EGR1)involving in IGFBP-3 regulation of b FGF and PDGF were detected by RT-PCR and Western blot assays.Western blot assay was adopted to detect the IGFBP-3 regulating insulin-like growth factor 1 receptor(IGF-1R)signaling pathway.RESULTS The present study demonstrates that IGFBP-3 suppressed IGF-1-induced b FGF and PDGF expression while it does not affect their expression in the absence of IGF-1.To delineate the underlying mechanism,Western-blot and RT-PCR assays confirmed that the transcription factor early growth response protein 1(EGR1)is involved in IGFBP-3 regulation of b FGF and PDGF.IGFBP-3 inhibition of type 1 insulin-like growth factor receptor(IGF1R),ERK and AKT activation is IGF-1-dependent.Furthermore,transient transfection with constitutively activated AKT or MEK partially blocks the IGFBP-3 inhibition of EGR1,b FGF and PDGF expression.CONCLUSION In conclusion,these findings suggest that IGFBP-3suppresses transcription of EGR1 and its target genes b FGF and PDGF through inhibiting IGF-1-dependent ERK and AKT activation.It demonstrates the importance of IGFBP-3 in the regulation of HCC cell proliferation,suggesting that IGFBP-3 could be a target for the treatment of HCC.展开更多
AIM: The transcription factor EGR-1 (early growth response gene-1) plays an important role in cell growth, differentiation and development. It has identified that EGR-1 has significant transformation suppression activ...AIM: The transcription factor EGR-1 (early growth response gene-1) plays an important role in cell growth, differentiation and development. It has identified that EGR-1 has significant transformation suppression activity in some neoplasms, such as fibrosarcoma, breast carcinoma. This experiment was designed to investigate the role of egr-1 in the cancerous process of hepatocellular carcinoma (HCC) and esophageal carcinoma (EC), and then to appraise the effects of EGR-1 on the growth of these tumor cells. METHODS: Firstly, the transcription and expression of egr-1 in HCC and EC, paracancerous tissues and their normal counterpart parts were detected by in situ hybridization and immunohistochemistry, with normal human breast and mouse brain tissues as positive controls. Egr-1 gene was then transfected into HCC (HHCC, SMMC7721) and EC (ECa109) cell lines in which no egr-1 transcription and expression were present. The cell growth speed, FCM cell cycle, plate clone formation and tumorigenicity in nude mice were observed and the controls were the cell lines transfected with vector only. RESULTS: Little or no egr-1 transcription and expression were detected in HCC, EC and normal liver tissues. The expression of egr-1 were found higher in hepatocellular paracancerous tissue (transcription level P=0.000; expression level P=0.143, probably because fewer in number of cases) and dysplastic tissue of esophageal cancer (transcription level P=0.000; expression level P=0.001). The growth rate of egr-1-transfected HHCC (HCC cell line) cells and ECa109 (EC cell line) cells was much slower than that of the controls. The proportion of S phase cell, clone formation and tumorigenicity were significantly lower than these of the controls' (decreased 45.5% in HHCC cells and 34.1% in ECa109 cells; 46.6% and 41.8%; 80.4% and 72.6% respectively). There were no obvious differences between SMMC7721 (HCC) egr-1-transfected cells and the controls with regard to the above items. CONCLUSION: The decreased expression of egr-1 might play a role in the dysregulation of normal growth in the cancerous process of HCC and EC. Egr-1 gene of transfected HHCC and ECa109 cells showed obvious suppression of the cell growth and malignant phenotypes, but no suppression in SMMC7721 (HCC cell line) cells.展开更多
基金the Natural Science Foundation of Shandong Province, No. Y2004C04
文摘BACKGROUND: Insulin-like growth factor-I(IGF-1), as one of the important members of growth factor family, participants in the regulation of many physiological functions and behaviors, having very strong neuroprotective effect. However, the expression of IGF-1 following cerebral ischemia/reperfusion is still disputed. OBJECTIVE: To observe the expression of IGF-1 and protein of corpora striata in ischemic side at the early stage of middle cerebral artery ischemia/reperfusion in rhesus monkey. DESIGN : A completely randomized grouping design, controlled animal experiment SETTING : Institute of Cerebrovascular Disease, Affiliated Hospital of Medical College of Qingdao University MATERIALS: ① Totally 17 rhesus monkeys , of either gender, aged 4 to 5 years, were enrolled . Seven rhesus monkeys observed with gene chip were randomly divided into 2 groups: sham operation group (n=3) and ischemia/reperfusion group 〈n=4〉. Ten rhesus monkeys observed with in situ hybridization and immunohistochemistry method were randomly divided into 2 groups: sham operation group 〈n=3 〉and ischemia/reperfusion group (n=7). Rhesus monkeys observed under microscope were divided into 2 groups: sham operation group (n=6) and ischamia/reperfusion group (n=-11).②Materials used in the experiment: cresyl violet (Sigma Company, America); immunohistochemical reagent kit ( Huamei Bio-engineering Company); In situ hybridization reagent kit (Boshide Bio-engineering Co.Ltd, Wuhan); 12 800 dots chip (Boxing Company, Shanghai). METHODS : This experiment was carried out at the Institute of Cerebrovascular Disease, Affiliated Hospital of Medical College of Qingdao University from January 2001 to December 2003.① The onset area of middle cerebral artery was blocked for 2 hours, middle cerebral artery ischemia/reperfusion models were created.② After ischemia/reperfusion for 24 hours, cerebral tissue sections of rhesus monkeys were prepared and stained with cresyl violet. Image analysis was performed with 5001W image analysis software. Morphological change of corpora striata of operative side was observed in the rhesus monkeys between two groups. Total RNA was extracted from cerebral tissue. ③ Detection of gene chip: Cy3-duTP and Cy5-duTP were used to respectively perform reverse transcription labeling. The sample was reversely transcribed into cDNA, then hybridized with cDNA of cerebral tissue. Genes with the separate absolute value of cy3 and cy5〉800, cY3/cy5 〉 2(high expression) or 〈 0.5 (low expression) were found out. Those were genes with differential expression. ④ The expressions of IGF-1 mRNA and protein level of corpora striata in ischemic side of rhe- sus monkeys were detected between sham operation group and ischemia/reperfusion group at 9 and 24 hours after ischemia/reperfusion with in situ hybridization method and immunohistochemical method. Brown granules were IGF-1 protein positive cells. ⑤ Analysis of variance was used in the difference comparison of measurement data among groups. MAIN OUTCOME MEASURES : ① Change of morphological structure of corpora striata at ischemic side in rhesus monkeys. ② Change of cerebral gene expression profiles at ischemia/reperfusion in rhesus monkeys between two groups.③ Expression of IGF-1 mRNA and protein level of corpora striata at ischemia/reperfu- sion in rhesus monkeys between two groups. RESULTS : ① Pathological change : Obvious pathological change of cerebral infarction appeared in the ischemia and reperfusion group, while there was no such pathological change in the sham operation group.② Change of gene expression profile : There were 4480 genes with difference expression in the ischemia/reperfusion group and sham-operation group, in which, 260 genes had high expression and their absolute value was over 800, and 63 genes had low expression, cy3/cy5 of IGF-1 was 0.379, being relative low ex- pression. ③ IGF-1 mRNA and protein positive cell counts in corpora striata at cerebral ischemic side[IGF-1 mRNA: 〈9.72±1.18),(9.11 ±0.76),(14.77±0.60) counts/field:lGF-1 protein: (15.11 ±1.83),(15.39±0.78), (34.62±0.97)counts/field, P 〈 0.05-0.01]. CONCLUSION: IGF-1 mRNA and protein are lowly expressed in middle cerebral artery of rhesus monkeys at ischemia/reperfusion.
文摘目的:肥胖会导致肥胖相关性肾病(obesity related glomerulopathy,ORG),但其发病机制并不明确。本研究拟检测早期生长反应蛋白3(early growth response protein 3,EGR3)在ORG患者和高脂饮食诱导的肥胖小鼠肾皮质组织中的表达,并探讨EGR3抑制棕榈酸(palmitic acid,PA)诱导的人足细胞炎症损伤的分子机制。方法:收集排除其他疾病导致的肾损害并经组织病理学证实的ORG患者(n=6)和高脂饮食诱导的肥胖小鼠的肾皮质组织(n=10)。使用150μmol/L PA干预人和小鼠足细胞48 h;人足细胞中分别过表达或沉默EGR3。采用酶联免疫吸附试验(enzyme linked immunosorbent assay,ELISA)检测白细胞介素(interleukin,IL)-6和IL-1β的含量;real-time RT-PCR检测EGR3、足细胞分子标志NPHS1(nephrosis1)、NPHS2(nephrosis2)、足糖萼蛋白(podocalyxin,PODXL)、平足蛋白(podoplanin,PDPN)mRNA的表达;RNA-seq检测人足细胞过表达EGR3并150μmol/L PA干预后与对照组的差异表达基因(differentially expressed genes,DEGs);免疫共沉淀(co-immunoprecipitation,Co-IP)+液相色谱串联质谱(liquid chromatography tandem mass spectrometry,LC-MS)检测EGR3可能的相互作用蛋白质,并与RNA-seq的结果取交集;Co-IP验证EGR3与蛋白精氨酸甲基转移酶1(protein arginine methyltransferases 1,PRMT1)的相互作用;沉默EGR3和PRMT1抑制剂干预后检测PA诱导的足细胞培养液中IL-6和IL-1β的含量;蛋白质印迹法检测分别过表达或沉默EGR3后磷酸化信号转导及转录激活蛋白3(phosphorylated signal transducer and activator of transcription 3,p-STAT3)的蛋白质表达。结果:EGR3在ORG患者和高脂饮食诱导的肥胖小鼠肾皮质组织中的表达均显著上调(均P<0.01),150μmol/L PA干预人和小鼠足细胞48 h后显著上调2种细胞EGR3的表达(均P<0.05)。人足细胞过表达或沉默EGR3分别抑制或促进PA干预后细胞培养液中IL-6和IL-1β的分泌,并分别上调或下调NPHS1、PODXL、NPHS2及PDPN的表达(均P<0.05)。RNA-seq结果显示共有988个DEGs,Co-IP+LC-MS共发现238个可能与EGR3相互作用的蛋白质,且Co-IP证实PRMT1为EGR3的相互作用蛋白质。PRMT1抑制剂能部分减少人足细胞沉默EGR3后PA诱导的IL-6及IL-1β的分泌(均P<0.05);此外,过表达或沉默EGR3负调控PRMT1及p-STAT3的表达。结论:EGR3可能通过抑制PRMT1/p-STAT3通路减轻ORG足细胞炎症损伤。
基金supported by the National Natural Science Foundation of China(82074043,82104425,82374065,and 81673626)the China Postdoctoral Science Foundation(2021M702217).
文摘Early growth response protein 1(Egr-1)triggers the transcription of many genes involved in cell growth,differentiation,synaptic plasticity,and neurogenesis.However,its mechanism in neuronal survival and degeneration is still poorly understood.This study demonstrated that Egr-1 was down-regulated at mRNA and protein levels in the central nervous system(CNS)of experimental autoimmune encephalomyelitis(EAE)mice.Egr-1 knockout exacerbated EAE progression in mice,as shown by increased disease severity and incidence;it also aggravated neuronal apoptosis,which was associated with weakened activation of the BDNF/TGFβ1/MAPK/Akt signaling pathways in the CNS of EAE mice.Consistently,Egr-1 siRNA promoted apoptosis but mitigated the activation of BDNF/TGFβ1/MAPK/Akt signaling in SH-SY5Y cells.Our results revealed that Egr-1 is a crucial regulator of neuronal survival in EAE by regulating TGFβ1-mediated signaling activation,implicating the important role of Egr-1 in the pathogenesis of multiple sclerosis as a potential novel therapy target.
基金Supported by The U.S. Alpha One Foundation,the Health Research Board of Ireland,the Medical Research Charities Group,the Programmes for Research in Third Level Institutes administered by the Higher Education Authority and the Children’s Medical and Research Centre,Crumlin Hospital
文摘The serine proteinase inhibitor α-1 antitrypsin(AAT) is produced principally by the liver at the rate of 2 g/d.It is secreted into the circulation and provides an antiprotease protective screen throughout the body but most importantly in the lung,where it can neutralise the activity of the serine protease neutrophil elastase.Mutations leading to def iciency in AAT are associated with liver and lung disease.The most notable is the Z AAT mutation,which encodes a misfolded variant of the AAT protein in which the glutamic acid at position 342 is replaced by a lysine.More than 95% of all individuals with AAT def iciency carry at least one Z allele.ZAAT protein is not secreted effectively and accumulates intracellularly in the endoplasmic reticulum(ER) of hepatocytes and other AAT-producing cells.This results in a loss of function associated with decreased circulating and intrapulmonary levels of AAT.However,the misfolded protein acquires a toxic gain of function that impacts on the ER.A major function of the ER is to ensure correct protein folding.ZAAT interferes with this function and promotes ER stress responses and inflammation.Here the signalling pathways activated during ER stress in response to accumulation of ZAAT are described and therapeutic strategies that can potentially relieve ER stress are discussed.
基金supported by National Natural Science Foundation of China(81502123 and81330081)Natural Science Foundation of Anhui Province(1308085QH130)Anhui Province Nature Science Foundation in University(KJ2014A119)
文摘OBJECTIVE Basic fibroblast growth factor(b FGF)and platelet-derived growth factor(PDGF)produced by hepatocellular carcinoma(HCC)cells are responsible for the cell growth.Accumulating evidence shows that insulin-like growth factor-binding protein-3(IGFBP-3)suppresses HCC cell proliferation in both IGF-dependent and independent manners.The present study is to investigate whether treatment with exogenous IGFBP-3 inhibits bF GF and PDGF production and the cell proliferation of HCC cells.METHODS Cell Counting Kit 8 assay were designed to detect HCC cell proliferation,transcription factor early growth response-1(EGR1)involving in IGFBP-3 regulation of b FGF and PDGF were detected by RT-PCR and Western blot assays.Western blot assay was adopted to detect the IGFBP-3 regulating insulin-like growth factor 1 receptor(IGF-1R)signaling pathway.RESULTS The present study demonstrates that IGFBP-3 suppressed IGF-1-induced b FGF and PDGF expression while it does not affect their expression in the absence of IGF-1.To delineate the underlying mechanism,Western-blot and RT-PCR assays confirmed that the transcription factor early growth response protein 1(EGR1)is involved in IGFBP-3 regulation of b FGF and PDGF.IGFBP-3 inhibition of type 1 insulin-like growth factor receptor(IGF1R),ERK and AKT activation is IGF-1-dependent.Furthermore,transient transfection with constitutively activated AKT or MEK partially blocks the IGFBP-3 inhibition of EGR1,b FGF and PDGF expression.CONCLUSION In conclusion,these findings suggest that IGFBP-3suppresses transcription of EGR1 and its target genes b FGF and PDGF through inhibiting IGF-1-dependent ERK and AKT activation.It demonstrates the importance of IGFBP-3 in the regulation of HCC cell proliferation,suggesting that IGFBP-3 could be a target for the treatment of HCC.
基金the National Natural Scientific Foundation of China,No.39670298
文摘AIM: The transcription factor EGR-1 (early growth response gene-1) plays an important role in cell growth, differentiation and development. It has identified that EGR-1 has significant transformation suppression activity in some neoplasms, such as fibrosarcoma, breast carcinoma. This experiment was designed to investigate the role of egr-1 in the cancerous process of hepatocellular carcinoma (HCC) and esophageal carcinoma (EC), and then to appraise the effects of EGR-1 on the growth of these tumor cells. METHODS: Firstly, the transcription and expression of egr-1 in HCC and EC, paracancerous tissues and their normal counterpart parts were detected by in situ hybridization and immunohistochemistry, with normal human breast and mouse brain tissues as positive controls. Egr-1 gene was then transfected into HCC (HHCC, SMMC7721) and EC (ECa109) cell lines in which no egr-1 transcription and expression were present. The cell growth speed, FCM cell cycle, plate clone formation and tumorigenicity in nude mice were observed and the controls were the cell lines transfected with vector only. RESULTS: Little or no egr-1 transcription and expression were detected in HCC, EC and normal liver tissues. The expression of egr-1 were found higher in hepatocellular paracancerous tissue (transcription level P=0.000; expression level P=0.143, probably because fewer in number of cases) and dysplastic tissue of esophageal cancer (transcription level P=0.000; expression level P=0.001). The growth rate of egr-1-transfected HHCC (HCC cell line) cells and ECa109 (EC cell line) cells was much slower than that of the controls. The proportion of S phase cell, clone formation and tumorigenicity were significantly lower than these of the controls' (decreased 45.5% in HHCC cells and 34.1% in ECa109 cells; 46.6% and 41.8%; 80.4% and 72.6% respectively). There were no obvious differences between SMMC7721 (HCC) egr-1-transfected cells and the controls with regard to the above items. CONCLUSION: The decreased expression of egr-1 might play a role in the dysregulation of normal growth in the cancerous process of HCC and EC. Egr-1 gene of transfected HHCC and ECa109 cells showed obvious suppression of the cell growth and malignant phenotypes, but no suppression in SMMC7721 (HCC cell line) cells.