Cotton breeding for the development of early-maturing varieties is an effective way to improve multiple cropping indexes and alleviate the conflict between grains and cotton in the cultivated fields in China.In the pr...Cotton breeding for the development of early-maturing varieties is an effective way to improve multiple cropping indexes and alleviate the conflict between grains and cotton in the cultivated fields in China.In the present study,we aimed to identify upland cotton quantitative trait loci(QTLs)and candidate genes related to early-maturity traits,including whole growth period(WGP),flowering timing(FT),node of the first fruiting branch(NFFB),height of the node of the first fruiting branch(HNFFB),and plant height(PH).An early-maturing variety,CCRI50,and a latematuring variety,Guoxinmian 11,were crossed to obtain biparental populations.These populations were used to map QTLs for the early-maturity traits for two years(2020 and 2021).With BSA-seq analysis based on the data of population 2020,the candidate regions related to early maturity were found to be located on chromosome D03.We then developed 22 polymorphic insertions or deletions(InDel)markers to further narrow down the candidate regions,resulting in the detection of five and four QTLs in the 2020 and 2021 populations,respectively.According to the results of QTL mapping,two candidate regions(InDel_G286-InDel_G144 and InDel_G24-InDel_G43)were detected.In these regions,three genes(GH_D03G0451,GH_D03G0649,and GH_D03G1180)have nonsynonymous mutations in their exons and one gene(GH_D03G0450)has SNP variations in the upstream sequence between CCRI50 and Guoxinmian 11.These four genes also showed dominant expression in the floral organs.The expression levels of GH_D03G0451,GH_D03G0649 and GH_D03G1180 were significantly higher in CCRI50 than in Guoxinmian 11 during the bud differentiation stages,while GH_D03G0450 showed the opposite trend.Further functional verification of GH_D03G0451 indicated that the GH_D03G0451-silenced plants showed a delay in the flowering time.The results suggest that these are the candidate genes for cotton early maturity,and they may be used for breeding early-maturity cotton varieties.展开更多
The objective of this work is to extract walnut oil using various processes in order to compare the influence on the nature of the components extracted, and thus identify the areas of potential use. We carried out the...The objective of this work is to extract walnut oil using various processes in order to compare the influence on the nature of the components extracted, and thus identify the areas of potential use. We carried out the extractions by mechanical process, thanks to a press in reduced model provided with a worm. We obtained cold extracted oil whose characteristics slightly diverge from extra virgin oil found in shops in Romania, but its composition is similar. We were also able to extract by chemical process using two methods, Folch and Soxhlet. Commercially available table walnut oils are only cold extracted to avoid the presence of solvents. Those are difficult to remove and strongly oxidize the oil. Currently, consumers appreciate walnut oil for its taste and nutritional qualities. In nutrition, this oil is put forward for its composition rich in polyunsaturated fatty acids, which are needed for human body. Food supplements made from walnut oil are available today. For the moment, this is the only use of walnut oil. Indeed, there are some studies on other fields of application, but they remain in the field of research and nothing has yet been commercialized. In this present study, we compared the chemical and physical properties of cold-extracted oil with the solvent extraction of walnut kernel originating from the mountain region of Rumania. The cold extracted oil has a high content of polyunsaturated fatty acids (63%) and monounsaturated fatty acids (30%), a very low level of saturated fatty acid (7%) and no content of linolenic acid. The Soxhlet and Folch methods produced slightly different oils with increased amounts of minor components, which changes their characteristic. Even when solvent-extracted oils do not meet the standard criteria imposed by the Codex Alimentarius, they offer a possible use in the fields of food, cosmetics industries and biomedicine.展开更多
Red walnut has broad market prospects because it is richer in anthocyanins than ordinary walnut.However,the mechanism driving anthocyanin biosynthesis in red walnut is still unknown.We studied two types of red walnut,...Red walnut has broad market prospects because it is richer in anthocyanins than ordinary walnut.However,the mechanism driving anthocyanin biosynthesis in red walnut is still unknown.We studied two types of red walnut,called red walnut 1(R1),with a red pericarp and seed coat,and red walnut 2(R2),with a red seed coat only.R1 mostly contained cyanidin-3-O-galactoside,while R2 contained a various amounts of cyanidin-3-Ogalactoside,cyanidin-3-O-arabinoside,and cyanidin-3-O-glucoside.The LDOX-2(LOC109007163)and LDOX-3(LOC109010746)genes,which encode leucoanthocyanidin dioxygenase/anthocyanidin synthase(LDOX/ANS),were preliminarily indicated as the crucial genes for anthocyanin biosynthesis in R1 and R2,respectively.The MYB differential genes analysis showed that MYB27 and MYB113 are specifically expressed in the red parts of R1 and R2,respectively,and they are regarded as candidate regulatory genes.Ectopic expression in Arabidopsis and transient injection in walnut showed that both MYB27 and MYB113 were located in the nucleus and promoted anthocyanin accumulation,while MYB27 promoted the expression of LDOX-2,and MYB113 promoted the expression of LDOX-3and UAGT-3.Yeast one-hybrid and electrophoretic mobility shift assays showed that MYB27 could only bind to the LDOX-2 promoter,while MYB113 could bind to the promoters of both LDOX-3 and UAGT-3.In addition,we also identified an HD-Zip transcription factor,ATHB-12,which is specifically expressed in the pericarp.After silencing the expression of ATHB-12,the R2 pericarp turned red,and MYB113 expression increased.Further experiments showed that ATHB-12 could specifically interact with MYB113 and bind to its promoter.This suggests that MYB27controls R1 coloration by regulating LDOX-2,while MYB113 controls R2 coloration by regulating LDOX-3 and UAGT-3,but ATHB-12 can specifically bind to and inhibit the MYB113 of the R2 pericarp so that it becomes unpigmented.This study reveals the anthocyanin biosynthetic mechanisms in two different types of red walnut and provides a scientific basis for the selection and breeding of red walnut varieties.展开更多
Inducing adventitious root(AR)formation in mature walnut species(Juglans L.)is challenging.However,the AR formation of mature trees can be improved by rejuvenation.In rejuvenated cuttings,exogenous indole-3-butyric ac...Inducing adventitious root(AR)formation in mature walnut species(Juglans L.)is challenging.However,the AR formation of mature trees can be improved by rejuvenation.In rejuvenated cuttings,exogenous indole-3-butyric acid(IBA)is essential for AR formation,and the underlying mechanism is still not well understood.Therefore,we utilized transcriptome sequencing to investigate the mechanism of IBA-induced AR formation.Our results revealed that,in comparison to the control group,IBA treatment(9 mmol·L^(-1))significantly increased the endogenous indole-3-acetic acid(IAA)content,leading to an enhanced rooting rate.We performed RNA sequencing to identify differentially expressed genes(DEGs)between the IBA-treated and control(CK)groups at 1,2,3,and 5 days after cutting(DAC).The results showed that,compared to the control cuttings,there were 1539,889,785,and 984 up-regulated genes and 2791,2936,3017,and 1752 down-regulated genes,at 1,2,3,and 5 DAC,respectively.Analysis of RNA-seq data revealed that G-type ATP-binding cassette 36/37(ABCG36/37)and ATP-binding cassette subfamily D 1(ABCD1),associated with IBA transport,were down-regulated in the rejuvenation cuttings.In contrast,PIN-FORMED(PIN)and PINOID(PID),associated with auxin efflux,were up-regulated.We identified 49 auxin/indole-3-acetic acid(AUX/IAA)-encoding genes,including IAA1,IAA3,IAA5,IAA6,IAA8,IAA11,IAA12,IAA19,and IAA20,which were up-regulated at 1-5 DAC in the rejuvenated cuttings.This study highlights that the overexpression of JrWOX5/11 in poplar significantly enhance AR growth,as evidenced by increased root length,surface area,volume,and quantity.Moreover,the co-expression network analysis involving JrWOX11 and JrWOX5 in walnut cuttings elucidates complex genetic interactions,underscoring their pivotal role in the formation of AR.Our data supported the following molecular mechanism of IBA-induced adventitious root formation.Firstly,IBA is converted to free IAA in peroxisomes.Then,the highly concentrated IAA in the procambium and parenchyma cells induces WUSCHEL-related homeobox 11(WOX11)expression at two days.Finally,WOX11 acts redundantly to up-regulate WOX5,initiating the development of root primordia cells.展开更多
Walnut dreg protein hydrolysates(WDPHs)exhibit a variety of biological activities,however,the cyclooxygenase-2(COX-2)inhibitory peptide of WDPHs remain unclear.The aim of this study was to rapidly screen for such pept...Walnut dreg protein hydrolysates(WDPHs)exhibit a variety of biological activities,however,the cyclooxygenase-2(COX-2)inhibitory peptide of WDPHs remain unclear.The aim of this study was to rapidly screen for such peptides in WDPHs through a combination of in silico and in vitro analysis.In total,1262 peptide sequences were observed by nano liquid chromatography/tandem mass spectrometry(nano LC-MS/MS)and 4 novel COX-2 inhibitory peptides(AGFP,FPGA,LFPD,and VGFP)were identified.Enzyme kinetic data indicated that AGFP,FPGA,and LFPD displayed mixed-type COX-2 inhibition,whereas VGFP was a non-competitive inhibitor.This is mainly because the peptides form hydrogen bonds and hydrophobic interactions with residues in the COX-2 active site.These results demonstrate that computer analysis combined with in vitro evaluation allows for rapid screening of COX-2 inhibitory peptides in walnut protein dregs.展开更多
The common walnut(Juglans regia)is one of the most economically important nut trees cultivated worldwide.Despite its importance,no comprehensive evaluation of walnut tree population genetics has been undertaken across...The common walnut(Juglans regia)is one of the most economically important nut trees cultivated worldwide.Despite its importance,no comprehensive evaluation of walnut tree population genetics has been undertaken across the range where it originated,Central Asia.In this study,we investigated the genetic diversity and population structure of 1082 individuals from 46 populations across Central Asia.We found moderate genetic diversity of J.regia across Central Asia,with 46 populations clustered into three groups with a weak relationship between genetic and geographic distance.Our findings reveal that the western Himalaya might be the core region of common walnut genetic diversity in Central Asia and that,except for two populations in Gongliu Wild Walnut Valley,humans might have introduced walnut populations to Xinjiang,China.The observed distribution of the genetic landscape has probably been affected by historical climate fluctuation,breeding system,and prolonged anthropogenic activity.We propose the conservation of the core genetic diversity resources in the western Himalaya and pay special attention to populations from Gongliu in Xinjiang.These findings enhance our understanding of the genetic variation throughout the distribution range of J.regia in Central Asia,which will provide a key prerequisite for evidence-based conservation and management.展开更多
To reveal the characteristic chemicals of walnuts from different origins, we analyzed fatty acid composition,tocopherols, phytosterols and total phenolic content (TPC) of walnuts from three main producing regions inCh...To reveal the characteristic chemicals of walnuts from different origins, we analyzed fatty acid composition,tocopherols, phytosterols and total phenolic content (TPC) of walnuts from three main producing regions inChina. The results showed that walnuts were rich in polyunsaturated fatty acids, and the ratio of ω-6 to ω-3 fattyacids was close to the recommendation of Chinese Nutrition Society. Moreover, walnuts contain high contents oftocopherols (331.20–414.71 mg/kg), phytosterols (97.17–110.35 mg/100 g) and phenols (38.51–48.08 mg GAE/kg). Significant chemical differences exist among walnuts from three production regions. The highest content ofpolyunsaturated fatty acids was found in walnuts from the northern China, the highest content of tocopherols inwalnuts from southwest China, and the highest contents of phytosterol and TPC in walnuts from northwest China.However, there was no significant difference in the tocopherol, phytosterol and TPC content of walnuts betweenthe Northern China and Northwest China. The above results provide important references for manufacturers andconsumers to select suitable walnut scientifically and reasonably.展开更多
To study the effect of exogenous selenium on fruit quality in walnut(Juglans regia L.),8-year-old walnut(Qingxiang)was taken as the research object.In the fruit expansion stage,300 mg/L of sodium selenate,yeast seleni...To study the effect of exogenous selenium on fruit quality in walnut(Juglans regia L.),8-year-old walnut(Qingxiang)was taken as the research object.In the fruit expansion stage,300 mg/L of sodium selenate,yeast selenium and sodium selenite solutions were applied on the leaf of walnut,and the selenium levels in leaves,pericarp and kernel were determined at the ripening stage.The fruit quality,mineral nutrient content,antioxidant enzyme activity,and related genes’expression were analyzed.The results showed that the three exogenous selenium increased the selenium levels in leaves,pericarp and kernel of walnut.They also significantly increased fruit and kernel weights,and kernel linoleic acid,but markedly decreased kernel crude fat and saturated fatty acid.Selenium spraying promoted the absorption of mineral nutrients such as potassium and zinc,but inhibited the absorption of calcium,and had no significant effect on iron and magnesium in the kernel.Three exogenous selenium increased the activities of superoxide dismutase(SOD),peroxidase(POD),ascorbate peroxidase(APX),and catalase(CAT)significantly in the kernel.Except for sodium selenate treatment significantly reduced malondialdehyde(MDA)content in the kernel,the other two selenium sources treatments had no significant effect on MDA and hydrogen peroxide(H2O2)levels.They also increased the expression of JrCu/Zn-SOD,Jr2-Cys POD,JrCyt-APX and JrCAT in kernel,to different extents.These implies that,in the walnut fruit enlargement period,the foliar spraying selenium could increase the selenium content of walnut,affect the mineral nutrient absorption,improve the antioxidant capacity and related genes’expression,and reduce the degree of peroxide,and then improve the quality of fruit.Furthermore,yeast selenium showed the comprehensive effect of the best.展开更多
A calculation model of stress field in laser additive manufacturing of walnut shell composite powder(walnut shell/Co-PES powder)was established.The DFLUX subroutine was used to implement the moveable application of a ...A calculation model of stress field in laser additive manufacturing of walnut shell composite powder(walnut shell/Co-PES powder)was established.The DFLUX subroutine was used to implement the moveable application of a double ellipsoid heat source by considering the mechanical properties varying with temperature.The stress field was simulated by the sequential coupling method,and the experimental results were in good accordance with the simulation results.In addition,the distribution and variation of stress and strain field were obtained in the process of laser additive manufacturing of walnut shell composite powder.The displacement of laser additive manufacturing walnut shell composite parts gradually decreased with increasing preheating temperature,decreasing laser power and increasing scanning speed.During the cooling process,the displacement of laser additive manufacturing of walnut shell composite parts gradually increased with the increasing preheating temperature,decreasing scanning speed and increasing laser power.展开更多
Biochar is a functional and environmentally friendly material mainly made from by-products of industrial and agricultural production as raw material, which is cracked at high temperatures and slow speeds. The preparat...Biochar is a functional and environmentally friendly material mainly made from by-products of industrial and agricultural production as raw material, which is cracked at high temperatures and slow speeds. The preparation of biochar requires the thermochemical conversion of biomass in an oxygen-restricted environment. Different raw materials and preparation processes result in biochar with different internal structures and biofunctional groups, which often have different properties. Adsorption of heavy metal pollutants is one of the main research directions for biochar application, and there are still areas that can be improved in the current research for biochar for treating heavy metal wastewater. In this study, we take the treatment of cadmium-containing wastewater as an example, walnut shell biochar (WSBC) as a carrier, iron(VI) compounds as a modifying reagent, and test the performance of cadmium-containing wastewater treatment using simulated cadmium-containing wastewater by adjusting the pyrolysis process and modification method at the same time to find the optimal experimental scheme, and give a reasonable theoretical explanation in relation to the results of the characterization tests, such as SEM, FT-IR, and so on. The characterized results show that iron(VI) compound (K<sub>2</sub>FeO<sub>4</sub>)-modified WSBC has a significant ability to remove cadmium contamination in the wastewater (remove 96.62% of cadmium in 1 minute), and its structure is different from other iron compound-modified ones. The aim of this study is to improve the efficiency of cadmium adsorption by specific types of biochar, while realizing the whole process as environmentally friendly as possible.展开更多
This study aims to evaluate the erosion behavior and the hardness of hybrid composites made of varying amounts of coconut shells,walnut shells,and carbonfibers dispersed in a polyester matrix.MINITAB(L16)Taguchi experi...This study aims to evaluate the erosion behavior and the hardness of hybrid composites made of varying amounts of coconut shells,walnut shells,and carbonfibers dispersed in a polyester matrix.MINITAB(L16)Taguchi experiments were used to determine the optimal combination of parameters.In particular,an erosion device con-sisting of a motor with a constantflow rate of 45 L/min,a pump with a diameter of 40 mm,a nozzle with a dia-meter of 5 mm,and a tank made of“perspex glass”55 cm long,30 cm tall,and 25 cm wide was used.The tests were conducted by varying the sample-to-nozzle distance,the pattern angle,and the sand particle size.The results have revealed that the presence of 7.5%by weight of waste coconut shell,for conditions corresponding to 90°angle,sand size 425μm,stand distance 30 cm,gives the best wear resistance(3.04×10^(-5) g/g).Thefiller content and sand particle size affect the erosive rate,with the angle playing a secondary role.The distance between the sample and the nozzle has a weaker effect on erosive wear.The hardness results show that the models(UP-5%carbonfiber-2.5-3.5-4.5-5.5-6.5-7.5 wt.%waste coconut shell)give the best values for prayer compared to the samples(UP-5 wt.%carbonfiber-2.5-3.5-4.5-5.5-6.5-7.5 wt.%waste walnut shell).展开更多
基金funded by the Natural Science Foundation of Xinjiang Uygur Autonomous Region,China(2022D01B222)the China Agriculture Research System(CARS-15-06)the Key R&D Project of Eight Division of Xinjiang Production and Construction Corps,China(2021NY01)。
文摘Cotton breeding for the development of early-maturing varieties is an effective way to improve multiple cropping indexes and alleviate the conflict between grains and cotton in the cultivated fields in China.In the present study,we aimed to identify upland cotton quantitative trait loci(QTLs)and candidate genes related to early-maturity traits,including whole growth period(WGP),flowering timing(FT),node of the first fruiting branch(NFFB),height of the node of the first fruiting branch(HNFFB),and plant height(PH).An early-maturing variety,CCRI50,and a latematuring variety,Guoxinmian 11,were crossed to obtain biparental populations.These populations were used to map QTLs for the early-maturity traits for two years(2020 and 2021).With BSA-seq analysis based on the data of population 2020,the candidate regions related to early maturity were found to be located on chromosome D03.We then developed 22 polymorphic insertions or deletions(InDel)markers to further narrow down the candidate regions,resulting in the detection of five and four QTLs in the 2020 and 2021 populations,respectively.According to the results of QTL mapping,two candidate regions(InDel_G286-InDel_G144 and InDel_G24-InDel_G43)were detected.In these regions,three genes(GH_D03G0451,GH_D03G0649,and GH_D03G1180)have nonsynonymous mutations in their exons and one gene(GH_D03G0450)has SNP variations in the upstream sequence between CCRI50 and Guoxinmian 11.These four genes also showed dominant expression in the floral organs.The expression levels of GH_D03G0451,GH_D03G0649 and GH_D03G1180 were significantly higher in CCRI50 than in Guoxinmian 11 during the bud differentiation stages,while GH_D03G0450 showed the opposite trend.Further functional verification of GH_D03G0451 indicated that the GH_D03G0451-silenced plants showed a delay in the flowering time.The results suggest that these are the candidate genes for cotton early maturity,and they may be used for breeding early-maturity cotton varieties.
文摘The objective of this work is to extract walnut oil using various processes in order to compare the influence on the nature of the components extracted, and thus identify the areas of potential use. We carried out the extractions by mechanical process, thanks to a press in reduced model provided with a worm. We obtained cold extracted oil whose characteristics slightly diverge from extra virgin oil found in shops in Romania, but its composition is similar. We were also able to extract by chemical process using two methods, Folch and Soxhlet. Commercially available table walnut oils are only cold extracted to avoid the presence of solvents. Those are difficult to remove and strongly oxidize the oil. Currently, consumers appreciate walnut oil for its taste and nutritional qualities. In nutrition, this oil is put forward for its composition rich in polyunsaturated fatty acids, which are needed for human body. Food supplements made from walnut oil are available today. For the moment, this is the only use of walnut oil. Indeed, there are some studies on other fields of application, but they remain in the field of research and nothing has yet been commercialized. In this present study, we compared the chemical and physical properties of cold-extracted oil with the solvent extraction of walnut kernel originating from the mountain region of Rumania. The cold extracted oil has a high content of polyunsaturated fatty acids (63%) and monounsaturated fatty acids (30%), a very low level of saturated fatty acid (7%) and no content of linolenic acid. The Soxhlet and Folch methods produced slightly different oils with increased amounts of minor components, which changes their characteristic. Even when solvent-extracted oils do not meet the standard criteria imposed by the Codex Alimentarius, they offer a possible use in the fields of food, cosmetics industries and biomedicine.
基金supported by the National Key Research and Development Program,China(2022YFD2200402)the Improved Variety Program of Shandong Province,China(2020LZGC0902)+1 种基金the Special Fund for Innovation Teams of Fruit Trees in Agricultural Technology System of Shandong Province,China(SDAIT-06-01)the Agricultural Science and Technology Innovation Project of Shandong Academy of Agricultural Sciences,China(CXGC2021B34)。
文摘Red walnut has broad market prospects because it is richer in anthocyanins than ordinary walnut.However,the mechanism driving anthocyanin biosynthesis in red walnut is still unknown.We studied two types of red walnut,called red walnut 1(R1),with a red pericarp and seed coat,and red walnut 2(R2),with a red seed coat only.R1 mostly contained cyanidin-3-O-galactoside,while R2 contained a various amounts of cyanidin-3-Ogalactoside,cyanidin-3-O-arabinoside,and cyanidin-3-O-glucoside.The LDOX-2(LOC109007163)and LDOX-3(LOC109010746)genes,which encode leucoanthocyanidin dioxygenase/anthocyanidin synthase(LDOX/ANS),were preliminarily indicated as the crucial genes for anthocyanin biosynthesis in R1 and R2,respectively.The MYB differential genes analysis showed that MYB27 and MYB113 are specifically expressed in the red parts of R1 and R2,respectively,and they are regarded as candidate regulatory genes.Ectopic expression in Arabidopsis and transient injection in walnut showed that both MYB27 and MYB113 were located in the nucleus and promoted anthocyanin accumulation,while MYB27 promoted the expression of LDOX-2,and MYB113 promoted the expression of LDOX-3and UAGT-3.Yeast one-hybrid and electrophoretic mobility shift assays showed that MYB27 could only bind to the LDOX-2 promoter,while MYB113 could bind to the promoters of both LDOX-3 and UAGT-3.In addition,we also identified an HD-Zip transcription factor,ATHB-12,which is specifically expressed in the pericarp.After silencing the expression of ATHB-12,the R2 pericarp turned red,and MYB113 expression increased.Further experiments showed that ATHB-12 could specifically interact with MYB113 and bind to its promoter.This suggests that MYB27controls R1 coloration by regulating LDOX-2,while MYB113 controls R2 coloration by regulating LDOX-3 and UAGT-3,but ATHB-12 can specifically bind to and inhibit the MYB113 of the R2 pericarp so that it becomes unpigmented.This study reveals the anthocyanin biosynthetic mechanisms in two different types of red walnut and provides a scientific basis for the selection and breeding of red walnut varieties.
基金supported by the National Natural Science Foundation of China(Grant No.32101479)。
文摘Inducing adventitious root(AR)formation in mature walnut species(Juglans L.)is challenging.However,the AR formation of mature trees can be improved by rejuvenation.In rejuvenated cuttings,exogenous indole-3-butyric acid(IBA)is essential for AR formation,and the underlying mechanism is still not well understood.Therefore,we utilized transcriptome sequencing to investigate the mechanism of IBA-induced AR formation.Our results revealed that,in comparison to the control group,IBA treatment(9 mmol·L^(-1))significantly increased the endogenous indole-3-acetic acid(IAA)content,leading to an enhanced rooting rate.We performed RNA sequencing to identify differentially expressed genes(DEGs)between the IBA-treated and control(CK)groups at 1,2,3,and 5 days after cutting(DAC).The results showed that,compared to the control cuttings,there were 1539,889,785,and 984 up-regulated genes and 2791,2936,3017,and 1752 down-regulated genes,at 1,2,3,and 5 DAC,respectively.Analysis of RNA-seq data revealed that G-type ATP-binding cassette 36/37(ABCG36/37)and ATP-binding cassette subfamily D 1(ABCD1),associated with IBA transport,were down-regulated in the rejuvenation cuttings.In contrast,PIN-FORMED(PIN)and PINOID(PID),associated with auxin efflux,were up-regulated.We identified 49 auxin/indole-3-acetic acid(AUX/IAA)-encoding genes,including IAA1,IAA3,IAA5,IAA6,IAA8,IAA11,IAA12,IAA19,and IAA20,which were up-regulated at 1-5 DAC in the rejuvenated cuttings.This study highlights that the overexpression of JrWOX5/11 in poplar significantly enhance AR growth,as evidenced by increased root length,surface area,volume,and quantity.Moreover,the co-expression network analysis involving JrWOX11 and JrWOX5 in walnut cuttings elucidates complex genetic interactions,underscoring their pivotal role in the formation of AR.Our data supported the following molecular mechanism of IBA-induced adventitious root formation.Firstly,IBA is converted to free IAA in peroxisomes.Then,the highly concentrated IAA in the procambium and parenchyma cells induces WUSCHEL-related homeobox 11(WOX11)expression at two days.Finally,WOX11 acts redundantly to up-regulate WOX5,initiating the development of root primordia cells.
基金supported by the Major Project of Science and Technology Department of Yunnan Province (202002AA100005 and 202102AE090027-2)the Project of Yunnan Province Food and Drug Homologous Resources Functional Food Innovation Team (A3032023057)+2 种基金the YEFICRC project of Yunnan provincial key programs (2019ZG009)Yunnan Province Ten Thousand Plan Industrial Technology Talents project (YNWR-CYJS-2020-010)the Yunnan Provincial Department of Science and Technology Agricultural Joint Special Project (202101BD070001-120)。
文摘Walnut dreg protein hydrolysates(WDPHs)exhibit a variety of biological activities,however,the cyclooxygenase-2(COX-2)inhibitory peptide of WDPHs remain unclear.The aim of this study was to rapidly screen for such peptides in WDPHs through a combination of in silico and in vitro analysis.In total,1262 peptide sequences were observed by nano liquid chromatography/tandem mass spectrometry(nano LC-MS/MS)and 4 novel COX-2 inhibitory peptides(AGFP,FPGA,LFPD,and VGFP)were identified.Enzyme kinetic data indicated that AGFP,FPGA,and LFPD displayed mixed-type COX-2 inhibition,whereas VGFP was a non-competitive inhibitor.This is mainly because the peptides form hydrogen bonds and hydrophobic interactions with residues in the COX-2 active site.These results demonstrate that computer analysis combined with in vitro evaluation allows for rapid screening of COX-2 inhibitory peptides in walnut protein dregs.
基金supported by grants from the National Natural Science Foundation of China(32170398,42211540718,32260149,41971071)the Top-notch Young Talents Project of Yunnan Provincial“Ten Thousand Talents Program”(YNWR-QNBJ-2018-146)+5 种基金CAS“Light ofWest China”Program,and Natural Science Foundation of Yunnan(202201AT070222)the Fund of Yunnan Key Laboratory of Crop Wild Relatives Omics(CWR-2024-04)the Jiangxi Provincial Natural Science Foundation(20224BAB215012)the Science and Technology Research Project of Jiangxi Provincial Department of Education(GJJ2202401)Key Research Program of Frontier Sciences,CAS(ZDBSLY-7001)Yunnan Fundamental Research Projects(202201BC070001).
文摘The common walnut(Juglans regia)is one of the most economically important nut trees cultivated worldwide.Despite its importance,no comprehensive evaluation of walnut tree population genetics has been undertaken across the range where it originated,Central Asia.In this study,we investigated the genetic diversity and population structure of 1082 individuals from 46 populations across Central Asia.We found moderate genetic diversity of J.regia across Central Asia,with 46 populations clustered into three groups with a weak relationship between genetic and geographic distance.Our findings reveal that the western Himalaya might be the core region of common walnut genetic diversity in Central Asia and that,except for two populations in Gongliu Wild Walnut Valley,humans might have introduced walnut populations to Xinjiang,China.The observed distribution of the genetic landscape has probably been affected by historical climate fluctuation,breeding system,and prolonged anthropogenic activity.We propose the conservation of the core genetic diversity resources in the western Himalaya and pay special attention to populations from Gongliu in Xinjiang.These findings enhance our understanding of the genetic variation throughout the distribution range of J.regia in Central Asia,which will provide a key prerequisite for evidence-based conservation and management.
基金supported by the National Key Research and Development Project of China(2021YFD1600101)the earmarked fund for China Agriculture research system(CARS-12 and CARS-13)the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2021-OCRI).
文摘To reveal the characteristic chemicals of walnuts from different origins, we analyzed fatty acid composition,tocopherols, phytosterols and total phenolic content (TPC) of walnuts from three main producing regions inChina. The results showed that walnuts were rich in polyunsaturated fatty acids, and the ratio of ω-6 to ω-3 fattyacids was close to the recommendation of Chinese Nutrition Society. Moreover, walnuts contain high contents oftocopherols (331.20–414.71 mg/kg), phytosterols (97.17–110.35 mg/100 g) and phenols (38.51–48.08 mg GAE/kg). Significant chemical differences exist among walnuts from three production regions. The highest content ofpolyunsaturated fatty acids was found in walnuts from the northern China, the highest content of tocopherols inwalnuts from southwest China, and the highest contents of phytosterol and TPC in walnuts from northwest China.However, there was no significant difference in the tocopherol, phytosterol and TPC content of walnuts betweenthe Northern China and Northwest China. The above results provide important references for manufacturers andconsumers to select suitable walnut scientifically and reasonably.
基金supported by the Science and Technology Planning Project of Shannan Science and Technology Bureau of Tibet(2021Z21008)the Hubei Province‘14th Five-Year’Major Science and Technology Aid Tibet Project(SCXX-XZCG-22016).
文摘To study the effect of exogenous selenium on fruit quality in walnut(Juglans regia L.),8-year-old walnut(Qingxiang)was taken as the research object.In the fruit expansion stage,300 mg/L of sodium selenate,yeast selenium and sodium selenite solutions were applied on the leaf of walnut,and the selenium levels in leaves,pericarp and kernel were determined at the ripening stage.The fruit quality,mineral nutrient content,antioxidant enzyme activity,and related genes’expression were analyzed.The results showed that the three exogenous selenium increased the selenium levels in leaves,pericarp and kernel of walnut.They also significantly increased fruit and kernel weights,and kernel linoleic acid,but markedly decreased kernel crude fat and saturated fatty acid.Selenium spraying promoted the absorption of mineral nutrients such as potassium and zinc,but inhibited the absorption of calcium,and had no significant effect on iron and magnesium in the kernel.Three exogenous selenium increased the activities of superoxide dismutase(SOD),peroxidase(POD),ascorbate peroxidase(APX),and catalase(CAT)significantly in the kernel.Except for sodium selenate treatment significantly reduced malondialdehyde(MDA)content in the kernel,the other two selenium sources treatments had no significant effect on MDA and hydrogen peroxide(H2O2)levels.They also increased the expression of JrCu/Zn-SOD,Jr2-Cys POD,JrCyt-APX and JrCAT in kernel,to different extents.These implies that,in the walnut fruit enlargement period,the foliar spraying selenium could increase the selenium content of walnut,affect the mineral nutrient absorption,improve the antioxidant capacity and related genes’expression,and reduce the degree of peroxide,and then improve the quality of fruit.Furthermore,yeast selenium showed the comprehensive effect of the best.
基金Supported by the Scientific Research Start-Up Fund Project of Northeast Petroleum University(2019KQ67 and 2021KQ09)the Guiding Innovation Fund Project of Northeast Petroleum University(2021YDL-13)+1 种基金National Natural Science Foundation of China(52075090)Supported by the National Key R&D Program of China(2017YFD0601004).
文摘A calculation model of stress field in laser additive manufacturing of walnut shell composite powder(walnut shell/Co-PES powder)was established.The DFLUX subroutine was used to implement the moveable application of a double ellipsoid heat source by considering the mechanical properties varying with temperature.The stress field was simulated by the sequential coupling method,and the experimental results were in good accordance with the simulation results.In addition,the distribution and variation of stress and strain field were obtained in the process of laser additive manufacturing of walnut shell composite powder.The displacement of laser additive manufacturing walnut shell composite parts gradually decreased with increasing preheating temperature,decreasing laser power and increasing scanning speed.During the cooling process,the displacement of laser additive manufacturing of walnut shell composite parts gradually increased with the increasing preheating temperature,decreasing scanning speed and increasing laser power.
文摘Biochar is a functional and environmentally friendly material mainly made from by-products of industrial and agricultural production as raw material, which is cracked at high temperatures and slow speeds. The preparation of biochar requires the thermochemical conversion of biomass in an oxygen-restricted environment. Different raw materials and preparation processes result in biochar with different internal structures and biofunctional groups, which often have different properties. Adsorption of heavy metal pollutants is one of the main research directions for biochar application, and there are still areas that can be improved in the current research for biochar for treating heavy metal wastewater. In this study, we take the treatment of cadmium-containing wastewater as an example, walnut shell biochar (WSBC) as a carrier, iron(VI) compounds as a modifying reagent, and test the performance of cadmium-containing wastewater treatment using simulated cadmium-containing wastewater by adjusting the pyrolysis process and modification method at the same time to find the optimal experimental scheme, and give a reasonable theoretical explanation in relation to the results of the characterization tests, such as SEM, FT-IR, and so on. The characterized results show that iron(VI) compound (K<sub>2</sub>FeO<sub>4</sub>)-modified WSBC has a significant ability to remove cadmium contamination in the wastewater (remove 96.62% of cadmium in 1 minute), and its structure is different from other iron compound-modified ones. The aim of this study is to improve the efficiency of cadmium adsorption by specific types of biochar, while realizing the whole process as environmentally friendly as possible.
文摘This study aims to evaluate the erosion behavior and the hardness of hybrid composites made of varying amounts of coconut shells,walnut shells,and carbonfibers dispersed in a polyester matrix.MINITAB(L16)Taguchi experiments were used to determine the optimal combination of parameters.In particular,an erosion device con-sisting of a motor with a constantflow rate of 45 L/min,a pump with a diameter of 40 mm,a nozzle with a dia-meter of 5 mm,and a tank made of“perspex glass”55 cm long,30 cm tall,and 25 cm wide was used.The tests were conducted by varying the sample-to-nozzle distance,the pattern angle,and the sand particle size.The results have revealed that the presence of 7.5%by weight of waste coconut shell,for conditions corresponding to 90°angle,sand size 425μm,stand distance 30 cm,gives the best wear resistance(3.04×10^(-5) g/g).Thefiller content and sand particle size affect the erosive rate,with the angle playing a secondary role.The distance between the sample and the nozzle has a weaker effect on erosive wear.The hardness results show that the models(UP-5%carbonfiber-2.5-3.5-4.5-5.5-6.5-7.5 wt.%waste coconut shell)give the best values for prayer compared to the samples(UP-5 wt.%carbonfiber-2.5-3.5-4.5-5.5-6.5-7.5 wt.%waste walnut shell).