Magnetic reconnection is the most fundamental energy-transfer mechanism in the universe that converts magnetic energy into heat and kinetic energy of charged particles.For reconnection to occur,the frozen-in condition...Magnetic reconnection is the most fundamental energy-transfer mechanism in the universe that converts magnetic energy into heat and kinetic energy of charged particles.For reconnection to occur,the frozen-in condition must break down in a localized region,commonly called the ‘diffusion region'.In Earth's magnetosphere,ion diffusion regions have already been observed,while electron diffusion regions have not been detected due to their small scales(of the order of a few km)(Paschmann,2008).In this paper we report,for the first time,in situ observations of an active electron diffusion region by the four Cluster spacecraft at the Earth's highlatitude magnetopause.The electron diffusion region is characterized by nongyrotropic electron distribution,strong field-aligned currents carried by electrons and bi-directional super-Alfvénic electron jets.Also observed were multiple micro-scale flux ropes,with a scale size of about 5 c/ω_(pe)(12 km,with c/ωpe the electron inertial length),that are crucial for electron acceleration in the guide-field reconnection process(Drake et al.,2006 a).The data demonstrate the existence of the electron diffusion region in collisionless guide-field reconnection at the magnetopause.展开更多
综合利用T213再分析资料和高时空分辨率观测资料包括地面区域逐时加密观测资料,对2007年8月8—9日陕西关中特大暴雨过程的环境条件和中尺度系统进行了分析。天气学分析表明:500 h Pa西太平洋副热带高压和青藏高原高压形成的高压坝在陕...综合利用T213再分析资料和高时空分辨率观测资料包括地面区域逐时加密观测资料,对2007年8月8—9日陕西关中特大暴雨过程的环境条件和中尺度系统进行了分析。天气学分析表明:500 h Pa西太平洋副热带高压和青藏高原高压形成的高压坝在陕西中部断裂形成东北—西南向切变线、250 h Pa西风急流入口区右侧发散场和700 h Pa东西向切变线相互配合是特大暴雨形成的有利环境条件;低层风向快速变化使关中暴雨区低空水汽经历了减小—突然增加—快速减小的过程,关中周围水汽通过偏东气流输送至暴雨区为暴雨的发生提供了水汽和位势不稳定条件,而水汽的快速变化又形成关中暴雨的突发性和历时短而强的特征;高空反气旋涡度的发展形成强烈的"抽吸作用"、双圈垂直次级环流和强垂直上升运动及其两侧的弱下沉运动形成的不对称结构是暴雨形成的动力机制。强降水的中尺度特征分析显示:强暴雨是由一个中α尺度对流系统(MαCS)的发生发展产生的,MαCS又是由2个中β尺度对流系统(MβCS)合并发展而成,其内部对流单体的发展合并和独立加强形成岐山、礼泉和高陵3个大暴雨中心,这些对流单体的发展是由地面中尺度辐合系统产生的,强降水的强弱与地面中尺度辐合系统的强弱有很好的对应关系,地面中尺度辐合系统的形成和加强可能是强降水的触发机制和增幅原因之一。展开更多
基金supported by National Natural Science Foundation of China(41421003 and 41627805)
文摘Magnetic reconnection is the most fundamental energy-transfer mechanism in the universe that converts magnetic energy into heat and kinetic energy of charged particles.For reconnection to occur,the frozen-in condition must break down in a localized region,commonly called the ‘diffusion region'.In Earth's magnetosphere,ion diffusion regions have already been observed,while electron diffusion regions have not been detected due to their small scales(of the order of a few km)(Paschmann,2008).In this paper we report,for the first time,in situ observations of an active electron diffusion region by the four Cluster spacecraft at the Earth's highlatitude magnetopause.The electron diffusion region is characterized by nongyrotropic electron distribution,strong field-aligned currents carried by electrons and bi-directional super-Alfvénic electron jets.Also observed were multiple micro-scale flux ropes,with a scale size of about 5 c/ω_(pe)(12 km,with c/ωpe the electron inertial length),that are crucial for electron acceleration in the guide-field reconnection process(Drake et al.,2006 a).The data demonstrate the existence of the electron diffusion region in collisionless guide-field reconnection at the magnetopause.
文摘植被动态冠层模型Interactive Canopy Model(ICM)考虑了生态系统中较完整的碳氮循环过程,能够较为客观真实地描述较短时间尺度上植被的动态变化特征。本文在ICM原有碳氮分配方案基础上,考虑了植物花、果实等新生组织对碳氮分配的影响,假设新生组织碳库是花期以后植物的主要碳汇之一,并利用物候模型Forc-Sar预测花期,调控碳氮分配过程;用卫星观测的LAI(Leaf Area Index)产品对模拟的北半球中高纬度地区植被的季节和年际变化过程进行了对比分析。结果表明,改进后的ICM能够更好地模拟北半球中高纬植被的季节变化过程。7月前后是模拟的植被生长最旺盛的时间,与实际情况更为一致,从而较好修正了原方案中模拟的植被生长落后于实际观测的问题;模拟与观测值的季节变化相关系数有了显著提高,各类型植被的模拟误差也都不同幅度减小。改进后模拟与观测的年际变化相关性也有了一定程度的提高,但年际变化趋势的改进效果稍弱。模拟的LAI变化改变了地表能量平衡和水汽收支状况,对于美国东部温带落叶阔叶林来说,植被吸收太阳辐射、叶面和地面的感热、潜热通量在植被生长前期的变化量最大,说明改进后的ICM将会引起模拟下垫面物理状况的改变。
文摘综合利用T213再分析资料和高时空分辨率观测资料包括地面区域逐时加密观测资料,对2007年8月8—9日陕西关中特大暴雨过程的环境条件和中尺度系统进行了分析。天气学分析表明:500 h Pa西太平洋副热带高压和青藏高原高压形成的高压坝在陕西中部断裂形成东北—西南向切变线、250 h Pa西风急流入口区右侧发散场和700 h Pa东西向切变线相互配合是特大暴雨形成的有利环境条件;低层风向快速变化使关中暴雨区低空水汽经历了减小—突然增加—快速减小的过程,关中周围水汽通过偏东气流输送至暴雨区为暴雨的发生提供了水汽和位势不稳定条件,而水汽的快速变化又形成关中暴雨的突发性和历时短而强的特征;高空反气旋涡度的发展形成强烈的"抽吸作用"、双圈垂直次级环流和强垂直上升运动及其两侧的弱下沉运动形成的不对称结构是暴雨形成的动力机制。强降水的中尺度特征分析显示:强暴雨是由一个中α尺度对流系统(MαCS)的发生发展产生的,MαCS又是由2个中β尺度对流系统(MβCS)合并发展而成,其内部对流单体的发展合并和独立加强形成岐山、礼泉和高陵3个大暴雨中心,这些对流单体的发展是由地面中尺度辐合系统产生的,强降水的强弱与地面中尺度辐合系统的强弱有很好的对应关系,地面中尺度辐合系统的形成和加强可能是强降水的触发机制和增幅原因之一。