During the boreal winter,abundant persistent heavy rainfall(PHR)amount and significant rainfall variability at subseasonal timescale are generally observed over the southern sector of East China,where the large-scale ...During the boreal winter,abundant persistent heavy rainfall(PHR)amount and significant rainfall variability at subseasonal timescale are generally observed over the southern sector of East China,where the large-scale circulation and moisture transport are tightly connected with the equatorial Madden-Julian Oscillation(MJO).As the MJO convections occur over the equatorial Indian Ocean(MJO phases 1-4),the low-level moisture convergence is enhanced over southern China(SC,108°-120°E,21°-26°N)with the divergence to the north.Thus,a positive anomaly of PHR amount appears in SC but a negative anomaly of PHR amount is seen in the Yangtze River valley(YR,113°-122°E,28°-30°N).In contrast,the divergence(convergence)of moisture flux anomalies in the SC(YR)associated with the western equatorial Pacific MJO convections(phases 5-8)limits(benefits)the occurrence of PHR in the SC(YR).The wintertime PHR over southern China is found to undergo a long-term change over the past three decades(1979-2011)with a decreasing(an increasing)trend of PHR amount in the SC(YR).The change in PHR amount occurs consistently with the decadal change in MJO activity.In the earlier decade(1979-1994,E1),the active Indian Ocean(western Pacific)MJO events appeared more frequently while they became less frequent in the recent decade(1995-2011,E2).Accordingly,the Indian Ocean(western Pacific)MJO-related moisture convergence(divergence)anomalies in the SC tend to be weakened(enhanced),contributing to the decrease in PHR amount over the SC in the recent decade.展开更多
In this study,we assess the prediction for May rainfall over southern China(SC)by using the NCEP CFSv2 outputs.Results show that the CFSv2 is able to depict the climatology of May rainfall and associated circulations....In this study,we assess the prediction for May rainfall over southern China(SC)by using the NCEP CFSv2 outputs.Results show that the CFSv2 is able to depict the climatology of May rainfall and associated circulations.However,the model has a poor skill in predicting interannual variation due to its poor performance in capturing related anomalous circulations.In observation,the above-normal SC rainfall is associated with two anomalous anticyclones over the western tropical Pacific and northeastern China,respectively,with a low-pressure convergence in between.In the CFSv2,however,the anomalous circulations exhibit the patterns in response to the El Ni?o-Southern Oscillation(ENSO),demonstrating that the model overestimates the relationship between May SC rainfall and ENSO.Because of the onset of the South China Sea monsoon,the atmospheric circulation in May over SC is more complex,so the prediction for May SC rainfall is more challenging.In this study,we establish a dynamic-statistical forecast model for May SC rainfall based on the relationship between the interannual variation of rainfall and large-scale ocean-atmosphere variables in the CFSv2.The sea surface temperature anomalies(SSTAs)in the northeastern Pacific and the centraleastern equatorial Pacific,and the 500-h Pa geopotential height anomalies over western Siberia in previous April,which exert great influence on the SC rainfall in May,are chosen as predictors.Furthermore,multiple linear regression is employed between the predictors obtained from the CFSv2 and observed May SC rainfall.Both cross validation and independent test show that the hybrid model significantly improve the model’s skill in predicting the interannual variation of May SC rainfall by two months in advance.展开更多
Analyses of the Tropical Rainfall Measuring Mission (TRMM) datasets revealed a prominent interannual variation in the convective-stratiform rainfall and latent heating over the southern South China Sea (SCS) durin...Analyses of the Tropical Rainfall Measuring Mission (TRMM) datasets revealed a prominent interannual variation in the convective-stratiform rainfall and latent heating over the southern South China Sea (SCS) during the winter monsoon between 1998 and 2010. Although the height of maximum latent heating remained nearly constant at around 7km in all of the years, the year-to- year changes in the magnitudes of maximum latent heating over the region were noticeable. The interannual variations of the convee- tive-stratiform rainfall and latent heating over the southern SCS were highly anti-correlated with the Nifio-3 index, with more (less) rainfall and latent heating during La Nifia (El Nifio) years. Analysis of the large-scale environment revealed that years of active rain- fall and latent heating corresponded to years of large deep convergence and relative humidity at 600hPa. The moisture budget diag- nosis indicated that the interarmual variation of humidity at 600hPa was largely modulated by the vertical moisture advection. The year-to-year changes in rainfall over the southern SCS were mainly caused by the interannual variations of the dynamic component associated with anomalous upward motions in the middle troposphere, while the interannual variations of the thermodynamic com- ponent associated with changes in surface specific humidity played a minor role. Larger latent heating over the southern SCS during La Nifia years may possibly further enhance the local Hadley circulation over the SCS in the wintertime.展开更多
This study investigates the origins of intraseasonal rainfall variations over the southern South China Sea(SCS) region in boreal winter.It is found that intraseasonal rainfall variations over the southern SCS have d...This study investigates the origins of intraseasonal rainfall variations over the southern South China Sea(SCS) region in boreal winter.It is found that intraseasonal rainfall variations over the southern SCS have different origins on the 10-20-day and 30-60-day time scales.On the 10-20-day time scale,large rainfall anomalies over the southern SCS are preceded by strong northerly wind anomalies associated with the East Asian winter monsoon(EAWM),by about two days.On the 30-60-day time scale,the strong EAWM-related northerly wind anomalies almost appear simultaneously with large rainfall anomalies over the southern SCS.In addition,obvious large rainfall anomalies occur over the southeastern tropical Indian Ocean about one week before the peak southern SCS rainfall anomalies.It indicates that the convection and related circulation anomalies with origins over the tropical Indian Ocean may play an important role in inducing intraseasonal rainfall variations over the southern SCS on the 30-60-day time scale,but not on the 10-20-day time scale.展开更多
The impacts of soil moisture(SM) on heavy rainfall and the development of Mesoscale Convection Systems(MCSs) are investigated through 24-h numerical simulations of two heavy rainfall events that occurred respectively ...The impacts of soil moisture(SM) on heavy rainfall and the development of Mesoscale Convection Systems(MCSs) are investigated through 24-h numerical simulations of two heavy rainfall events that occurred respectively on28 March 2009(Case 1) and 6 May 2010(Case 2) over southern China. The numerical simulations were carried out with WRF and its coupled Noah LSM(Land Surface Model). First, comparative experiments were driven by two different SM data sources from NCEP-FNL and NASA-GLDAS. Secondary, with the run driven by NASA-GLDAS data as a control one, a series of sensitivity tests with different degree of(20%, 60%) increase or decrease in the initial SM were performed to examine the impact of SM on the simulations. Comparative experiment results show that the 24-h simulated cumulative rainfall distributions are not substantially affected by the application of the two different SM data,while the precipitation intensity is changed to some extent. Forecast skill scores show that simulation with NASA-GLDAS SM data can lead to some improvement, especially in the heavy rain(芏50 mm) forecast, where there is up to 5% increase in the TS score. Sensitivity test analysis found that a predominantly positive feedback of SM on precipitation existed in these two heavy rain events but not with completely the same features. Organization of the heavy rainfall-producing MCS seems to have an impact on the feedback process between SM and precipitation. For Case 1, the MCS was poorly organized and occurred locally in late afternoon, and the increase of SM only caused a slight enhancement of precipitation. Drier soil was found to result in an apparent decrease of rainfall intensity,indicating that precipitation is more sensitive to SM reduction. For Case 2, as the heavy rain was caused by a well-organized MCS with sustained precipitation, the rainfall is more sensitive to SM increase, which brings more rainfall. Additionally, distinctive feedback effects were identified from different stages and different organization of MCS, with strong feedback between SM and precipitation mainly appearing in the early stages of the poorly organized MCS and during the late period of the well-organized MCS.展开更多
The autumn precipitation over southwest China is one of the main causes of meteorological disasters. Using observed monthly station rainfall data and HadISST and NCEP/NCAR analysis data, the impacts of three types of ...The autumn precipitation over southwest China is one of the main causes of meteorological disasters. Using observed monthly station rainfall data and HadISST and NCEP/NCAR analysis data, the impacts of three types of El Ni<span style="white-space:normal;">ñ</span>o-Southern Oscillation (ENSO) events on the boreal autumn rainfall over southwest China were determined. Over southwest China, autumn rainfall constitutes > 20% of the total annual rainfall and a marked decline in autumn rainfall commenced around 1990. During La Ni<span style="white-space:normal;"><span style="white-space:normal;">ñ</span></span>a events, there is surplus (deficit) over the middle (northwest and southeast) of southwest China. In cnetral Pacific (CP) El Ni<span style="white-space:normal;">ñ</span>o events, the autumn rainfall anomaly shows a deficiency over China. The large-scale atmospheric circulation anomalies in the three ENSO categories also exhibit distinct characteristics. During CP El Ni<span style="white-space:normal;"><span style="white-space:normal;">ñ</span></span>o autumns, the pressure anomaly over the North Pacific Ocean displays a “<img src="Edit_8b97423a-3df3-4458-ad74-b4f2006dd708.png" alt="" />” structure, with a high-pressure anomaly over the Asian continent. An anomalous cyclone appears over the western North Pacific (WNP). In EP El Ni<span style="white-space:normal;"><span style="white-space:normal;">ñ</span></span>o autumns, the pressure anomaly over the North Pacific Ocean has a “<img src="Edit_3a7520ca-bfdd-4f81-a35c-4118a4616a5a.png" alt="" />” structure, with a low-pressure anomaly over the Asian continent. An anomalous anticyclone appears over the WNP and the 500-hPa anomalies are opposite to those of CP El Ni<span style="white-space:normal;"><span style="white-space:normal;"><span style="white-space:normal;">ñ</span></span></span>o events. During La Ni<span style="white-space:normal;"><span style="white-space:normal;">ñ</span></span>a autumns, the characteristics of circulation present<span style="font-family:;" "=""> </span><span style="font-family:Verdana;">the opposite structure to those of CP El Ni<span style="white-space:normal;"><span style="white-space:normal;"><span style="white-space:normal;">ñ</span></span></span>o events. This work is of certain significance for an in-depth understanding</span><span style="font-family:Verdana;"> of</span><span style="font-family:Verdana;"> the impacts of ENSO on the autumn precipitation over southwest China.</span>展开更多
This paper analyzed the anomalous low-temperature events and the anomalous rain-abundant events in January since 1951 and winter since 1880 for southern China. The anomalous events are defined using ±1σ threshol...This paper analyzed the anomalous low-temperature events and the anomalous rain-abundant events in January since 1951 and winter since 1880 for southern China. The anomalous events are defined using ±1σ thresholds. Twelve cold Januaries are identified where temperature anomaly below -1σ, and ten wet Januaries are identified where precipitation anomaly above +1σ. Among these events there are three patterns of cold-wet Januaries, namely 1969, 1993 and 2008. The NCEP/NCAR reanalysis data are used to check the atmospheric circulation changes in association with the anomalous temperature and precipitation events. The results show that the strong Siberian High (SBH), East Asian trough (EAT) and East Asian jet stream (EAJS) are favorable conditions for low-temperature in southern China. While the anomalous southerly flow at 850 hPa, the weak EAT at 500 hPa, the strong Middle East jet stream (MEJS) and the weaker EAJS are found to accompany a wetter southern China. The cold-wet winters in southern China, such as January of 2008, are mainly related to a stronger SBH, and the circulation in the middle to upper troposphere is precipitation-favorable. In wet winters, the water vapor below 500 hPa is mainly transported by the anomalous southwesterly flow and the anomalous southern flow over the Indo-China Peninsula and the South China Sea area. The correlation coefficients of MEJS, EAMVV (East Asian meridional wind) and EU (Eurasian pattern) to southern China precipitation in January are +0.65, -0.59 and -0.48 respectively, and the correlations for high-pass filtered data are +0.63 -0.55 and -0.44 respectively, the significant level is all at 99%. MEJS, EAMW and EU together can explain 49.4% variance in January precipitation. Explained variance for January and winter temperature by SBH, EU, WP (west Pacific pattern) and AO (Arctic Oscillation) are 47.2% and 51.5%, respectively. There is more precipitation in southern China during El Nitro winters, and less precipitation during La Nina winters. And there is no clear evidence that the occurrence of anomalous temperature events in winter over southern China is closely linked to ENSO events.展开更多
Based on daily precipitation data supplied by the Chinese meteorological administration,hourly reanalysis datasets provided by the ECMWF and daily outgoing long wave radiation supplied by the NOAA,the evolution regula...Based on daily precipitation data supplied by the Chinese meteorological administration,hourly reanalysis datasets provided by the ECMWF and daily outgoing long wave radiation supplied by the NOAA,the evolution regularity of continuous heavy precipitation over Southern China(SC)from April to June in 1979-2020 was systematically analyzed.The interaction between specific humidity and circulation field at the background-scale,the intra-seasonal-scale and the synoptic-scale,and its influence on persistent heavy precipitation over the SC during the April-June rainy season were quantitatively diagnosed and analyzed.The results are as follows.Persistent heavy rainfall events(PHREs)over the SC during the April-June rainy season occur frequently from mid-May to mid-and late-June,exhibiting significant intra-seasonal oscillation(10-30-day)features.Vertically integrated moisture flux convergence(VIMFC)can well represent the variation of the PHREs.A multiscale quantitative diagnosis of the VIMFC shows that the pre-summer PHREs over the SC are mainly affected by the background water vapor(greater than 30 days),intraseasonal circulation disturbance(10-30-day)and background circulation(greater than 30 days),and water vapor convergences are the main factor.The SC is under the control of a warm and humid background and a strong intraseasonal cyclonic circulation,with strong convergence and ascending movements and abundant water vapor conditions during the period of the PHREs.Meanwhile,the westward inter-seasonal oscillation of tropical atmosphere keeps the precipitation system over the SC for several consecutive days,eventually leading to the occurrence,development and persistence of heavy precipitation.展开更多
This study investigates influencing weather systems for and the effect of Tibetan Plateau (TP)’s surface heating on the heavy rainfall over southern China in June 2010, focusing on the four persistent heavy rainfal...This study investigates influencing weather systems for and the effect of Tibetan Plateau (TP)’s surface heating on the heavy rainfall over southern China in June 2010, focusing on the four persistent heavy rainfall events during 14-24 June 2010. The ma jor weather systems include the South Asian high, midlatitude trough and ridge, western Pacific subtropical high in the middle troposphere, and shear lines and eastward-moving vortices in the lower troposphere. An ensemble of convection-permitting simulations (CTL) is carried out with the WRF model for these rainfall events, which successfully reproduce the observed evolution of precipitation and weather systems. Another ensemble of simulations (SEN) with the surface albedo over the TP and its southern slope changed artificially to one, i.e., the surface does not absorb any solar heating, otherwise it is identical to CTL, is also performed. Comparison between CTL and SEN suggests that the surface sensible heating of TP in CTL significantly affects the temperature distributions over the plateau and its surroundings, and the thermal wind adjustment consequently changes atmospheric circulations and properties of the synoptic systems, leading to intensified precipitation over southern China. Specifically, at 200 hPa, anticyclonic and cyclonic anomalies form over the western and eastern plateau, respectively, which enhances the southward cold air intrusion along the eastern TP and the divergence over southern China;at 500 hPa, the ridge over the northern plateau and the trough over eastern China are strengthened, the southwesterly flows along the northwestern side of the subtropical high are intensified, and the positive vorticity propagation from the plateau to its downstream is also enhanced significantly;at 850 hPa, the low-pressure vortices strongly develop and move eastward while the southwesterly low-level jet over southern China strengthens in CTL, leading to increased water vapor convergence and upward motion over the precipitation region.展开更多
This study analyzes the inter-decadal variations of rainfall over southern China in spring (March-April-May) using the observed precipitation data for 1979-2004. The result shows that the variations of spring rainfall...This study analyzes the inter-decadal variations of rainfall over southern China in spring (March-April-May) using the observed precipitation data for 1979-2004. The result shows that the variations of spring rainfall over southeastern China are opposite to those over and southwestern China in both inter-annual and inter-decadal time scales. The precipitation over south- ern China exhibits an apparent inter-decadal shift in the late 1980s. The accumulated spring rainfall has reduced 30% over southeastern China after the late 1980s, whereas it has increased twice as much over southwestern China. The atmospheric circulations related to this shift show that an abnormal high at lower and middle troposphere appears over Asian middle and high latitudes, accompanied by stronger-than-normal northerly wind over eastern China. Consequently, the wet air flows from tropical oceans are weakened over southern China, resulting in less rainfall over southeastern China and more rainfall over southwestern China. Furthermore, the anomalous atmospheric circulation over Asian middle and high latitudes is closely related to the inter-decadal downward shift of Eurasian spring snow in the late 1980s, indicating that the inter-decadal shift of Eurasian spring snow in the late 1980s is probably an important factor in the decadal shift of spring rainfall over southern China.展开更多
Winter rainfall over southern China is usually enhanced when Madden–Julian oscillation(MJO) is active over the Indian Ocean, but it can be weakened under certain conditions. Here, the diversity of MJO impacts on wint...Winter rainfall over southern China is usually enhanced when Madden–Julian oscillation(MJO) is active over the Indian Ocean, but it can be weakened under certain conditions. Here, the diversity of MJO impacts on winter rainfall and its mechanisms are explored by using scenarios of enhanced and suppressed rainfall anomalies over southern China when MJO is active over the Indian Ocean. The combined effects of low-frequency background moisture and intraseasonal winds are the major contributors to the different rainfall anomalies. Anomalous circulation in mid–high latitudes, especially on intraseasonal timescales, is almost opposite in the two scenarios, which can modulate the response of extratropical atmosphere to MJO heating and then induces the different circulations over southern China. In the enhanced scenario, mid–high latitudes of Eurasia and southern China are dominated by positive and negative sea level pressure anomalies, respectively. The southerly over southern China and the South China Sea induced by MJO heating promotes the anomalous moisture convergence and ascending motion over southern China, resulting in the enhanced rainfall. In the suppressed scenario, however, the circulation in mid–high latitudes does not favor rainfall over southern China and leads to the northerly response to MJO heating over southern China, which enhances moisture divergence and weakens rainfall over southern China.展开更多
回顾了对南印度洋副热带海气相互作用的研究,总结了南印度洋偶极子事件背景下的气候变化。印度洋海表温度的方差表明南印度洋是整个印度洋海温变率最强的区域,年际海温变化最显著的特征就是海温呈现西南—东北向的偶极子型分布,被称为...回顾了对南印度洋副热带海气相互作用的研究,总结了南印度洋偶极子事件背景下的气候变化。印度洋海表温度的方差表明南印度洋是整个印度洋海温变率最强的区域,年际海温变化最显著的特征就是海温呈现西南—东北向的偶极子型分布,被称为南印度洋偶极子(Southern Indian Ocean Dipole,SIOD)。南印度洋海温偶极子的形成主要是受大尺度大气环流调整的影响。南印度洋副热带反气旋环流异常引起了印度洋热带东风异常和副热带西风异常的变化,影响了潜热通量、上升流和Ekman热输送,进而引起了海温变化。SIOD对热带和热带外大气环流也有影响,尤其会影响亚洲夏季风降水异常,例如我国的降水异常和南印度洋偶极子海温异常具有显著相关关系。此外,SIOD模态所引起的经向环流异常与南海、菲律宾地区的反气旋环流异常也有紧密联系。展开更多
基金supported by the National Key R&D Program of China [grant number 2018YFC1505804]
文摘During the boreal winter,abundant persistent heavy rainfall(PHR)amount and significant rainfall variability at subseasonal timescale are generally observed over the southern sector of East China,where the large-scale circulation and moisture transport are tightly connected with the equatorial Madden-Julian Oscillation(MJO).As the MJO convections occur over the equatorial Indian Ocean(MJO phases 1-4),the low-level moisture convergence is enhanced over southern China(SC,108°-120°E,21°-26°N)with the divergence to the north.Thus,a positive anomaly of PHR amount appears in SC but a negative anomaly of PHR amount is seen in the Yangtze River valley(YR,113°-122°E,28°-30°N).In contrast,the divergence(convergence)of moisture flux anomalies in the SC(YR)associated with the western equatorial Pacific MJO convections(phases 5-8)limits(benefits)the occurrence of PHR in the SC(YR).The wintertime PHR over southern China is found to undergo a long-term change over the past three decades(1979-2011)with a decreasing(an increasing)trend of PHR amount in the SC(YR).The change in PHR amount occurs consistently with the decadal change in MJO activity.In the earlier decade(1979-1994,E1),the active Indian Ocean(western Pacific)MJO events appeared more frequently while they became less frequent in the recent decade(1995-2011,E2).Accordingly,the Indian Ocean(western Pacific)MJO-related moisture convergence(divergence)anomalies in the SC tend to be weakened(enhanced),contributing to the decrease in PHR amount over the SC in the recent decade.
基金National Natural Science Foundation of China(42088101,41975074)Project of Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies(2020B1212060025)。
文摘In this study,we assess the prediction for May rainfall over southern China(SC)by using the NCEP CFSv2 outputs.Results show that the CFSv2 is able to depict the climatology of May rainfall and associated circulations.However,the model has a poor skill in predicting interannual variation due to its poor performance in capturing related anomalous circulations.In observation,the above-normal SC rainfall is associated with two anomalous anticyclones over the western tropical Pacific and northeastern China,respectively,with a low-pressure convergence in between.In the CFSv2,however,the anomalous circulations exhibit the patterns in response to the El Ni?o-Southern Oscillation(ENSO),demonstrating that the model overestimates the relationship between May SC rainfall and ENSO.Because of the onset of the South China Sea monsoon,the atmospheric circulation in May over SC is more complex,so the prediction for May SC rainfall is more challenging.In this study,we establish a dynamic-statistical forecast model for May SC rainfall based on the relationship between the interannual variation of rainfall and large-scale ocean-atmosphere variables in the CFSv2.The sea surface temperature anomalies(SSTAs)in the northeastern Pacific and the centraleastern equatorial Pacific,and the 500-h Pa geopotential height anomalies over western Siberia in previous April,which exert great influence on the SC rainfall in May,are chosen as predictors.Furthermore,multiple linear regression is employed between the predictors obtained from the CFSv2 and observed May SC rainfall.Both cross validation and independent test show that the hybrid model significantly improve the model’s skill in predicting the interannual variation of May SC rainfall by two months in advance.
基金funded by the Guangdong Natural Science Foundation (No.2015A030313796)the National Natural Science Foundation of China (No.41205026)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDA11010104)the Knowledge Innovation Program of Chinese Academy of Sciences (SQ201208)the foundation for returned scholars of Ministry of Education of China and the research fund for the doctoral program of Higher Education for Youths
文摘Analyses of the Tropical Rainfall Measuring Mission (TRMM) datasets revealed a prominent interannual variation in the convective-stratiform rainfall and latent heating over the southern South China Sea (SCS) during the winter monsoon between 1998 and 2010. Although the height of maximum latent heating remained nearly constant at around 7km in all of the years, the year-to- year changes in the magnitudes of maximum latent heating over the region were noticeable. The interannual variations of the convee- tive-stratiform rainfall and latent heating over the southern SCS were highly anti-correlated with the Nifio-3 index, with more (less) rainfall and latent heating during La Nifia (El Nifio) years. Analysis of the large-scale environment revealed that years of active rain- fall and latent heating corresponded to years of large deep convergence and relative humidity at 600hPa. The moisture budget diag- nosis indicated that the interarmual variation of humidity at 600hPa was largely modulated by the vertical moisture advection. The year-to-year changes in rainfall over the southern SCS were mainly caused by the interannual variations of the dynamic component associated with anomalous upward motions in the middle troposphere, while the interannual variations of the thermodynamic com- ponent associated with changes in surface specific humidity played a minor role. Larger latent heating over the southern SCS during La Nifia years may possibly further enhance the local Hadley circulation over the SCS in the wintertime.
基金supported by the National Natural Science Foundation of China[grant numbers 41475081,41275081,41505048,41505061,and 41461164005]the State Key Laboratory of Severe Weather Special Fund[grant number 2015LASW-B04]
文摘This study investigates the origins of intraseasonal rainfall variations over the southern South China Sea(SCS) region in boreal winter.It is found that intraseasonal rainfall variations over the southern SCS have different origins on the 10-20-day and 30-60-day time scales.On the 10-20-day time scale,large rainfall anomalies over the southern SCS are preceded by strong northerly wind anomalies associated with the East Asian winter monsoon(EAWM),by about two days.On the 30-60-day time scale,the strong EAWM-related northerly wind anomalies almost appear simultaneously with large rainfall anomalies over the southern SCS.In addition,obvious large rainfall anomalies occur over the southeastern tropical Indian Ocean about one week before the peak southern SCS rainfall anomalies.It indicates that the convection and related circulation anomalies with origins over the tropical Indian Ocean may play an important role in inducing intraseasonal rainfall variations over the southern SCS on the 30-60-day time scale,but not on the 10-20-day time scale.
基金National Natural Science Foundation of China(40775068)Open Project for State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences(2009LASW-B03)Special Fund for Meteorological Scientific Research in the Public Interest(GYHY201106003,GYHY201406009)
文摘The impacts of soil moisture(SM) on heavy rainfall and the development of Mesoscale Convection Systems(MCSs) are investigated through 24-h numerical simulations of two heavy rainfall events that occurred respectively on28 March 2009(Case 1) and 6 May 2010(Case 2) over southern China. The numerical simulations were carried out with WRF and its coupled Noah LSM(Land Surface Model). First, comparative experiments were driven by two different SM data sources from NCEP-FNL and NASA-GLDAS. Secondary, with the run driven by NASA-GLDAS data as a control one, a series of sensitivity tests with different degree of(20%, 60%) increase or decrease in the initial SM were performed to examine the impact of SM on the simulations. Comparative experiment results show that the 24-h simulated cumulative rainfall distributions are not substantially affected by the application of the two different SM data,while the precipitation intensity is changed to some extent. Forecast skill scores show that simulation with NASA-GLDAS SM data can lead to some improvement, especially in the heavy rain(芏50 mm) forecast, where there is up to 5% increase in the TS score. Sensitivity test analysis found that a predominantly positive feedback of SM on precipitation existed in these two heavy rain events but not with completely the same features. Organization of the heavy rainfall-producing MCS seems to have an impact on the feedback process between SM and precipitation. For Case 1, the MCS was poorly organized and occurred locally in late afternoon, and the increase of SM only caused a slight enhancement of precipitation. Drier soil was found to result in an apparent decrease of rainfall intensity,indicating that precipitation is more sensitive to SM reduction. For Case 2, as the heavy rain was caused by a well-organized MCS with sustained precipitation, the rainfall is more sensitive to SM increase, which brings more rainfall. Additionally, distinctive feedback effects were identified from different stages and different organization of MCS, with strong feedback between SM and precipitation mainly appearing in the early stages of the poorly organized MCS and during the late period of the well-organized MCS.
文摘The autumn precipitation over southwest China is one of the main causes of meteorological disasters. Using observed monthly station rainfall data and HadISST and NCEP/NCAR analysis data, the impacts of three types of El Ni<span style="white-space:normal;">ñ</span>o-Southern Oscillation (ENSO) events on the boreal autumn rainfall over southwest China were determined. Over southwest China, autumn rainfall constitutes > 20% of the total annual rainfall and a marked decline in autumn rainfall commenced around 1990. During La Ni<span style="white-space:normal;"><span style="white-space:normal;">ñ</span></span>a events, there is surplus (deficit) over the middle (northwest and southeast) of southwest China. In cnetral Pacific (CP) El Ni<span style="white-space:normal;">ñ</span>o events, the autumn rainfall anomaly shows a deficiency over China. The large-scale atmospheric circulation anomalies in the three ENSO categories also exhibit distinct characteristics. During CP El Ni<span style="white-space:normal;"><span style="white-space:normal;">ñ</span></span>o autumns, the pressure anomaly over the North Pacific Ocean displays a “<img src="Edit_8b97423a-3df3-4458-ad74-b4f2006dd708.png" alt="" />” structure, with a high-pressure anomaly over the Asian continent. An anomalous cyclone appears over the western North Pacific (WNP). In EP El Ni<span style="white-space:normal;"><span style="white-space:normal;">ñ</span></span>o autumns, the pressure anomaly over the North Pacific Ocean has a “<img src="Edit_3a7520ca-bfdd-4f81-a35c-4118a4616a5a.png" alt="" />” structure, with a low-pressure anomaly over the Asian continent. An anomalous anticyclone appears over the WNP and the 500-hPa anomalies are opposite to those of CP El Ni<span style="white-space:normal;"><span style="white-space:normal;"><span style="white-space:normal;">ñ</span></span></span>o events. During La Ni<span style="white-space:normal;"><span style="white-space:normal;">ñ</span></span>a autumns, the characteristics of circulation present<span style="font-family:;" "=""> </span><span style="font-family:Verdana;">the opposite structure to those of CP El Ni<span style="white-space:normal;"><span style="white-space:normal;"><span style="white-space:normal;">ñ</span></span></span>o events. This work is of certain significance for an in-depth understanding</span><span style="font-family:Verdana;"> of</span><span style="font-family:Verdana;"> the impacts of ENSO on the autumn precipitation over southwest China.</span>
基金National Natural Science Foundation of China,No.40675035No.90711003+1 种基金R&D Special Fund for Public Welfare Industry (Meteorology), No.GYHY(QX)2007-6-10 National Key Technology R&D Program,No.2007BAC29B02
文摘This paper analyzed the anomalous low-temperature events and the anomalous rain-abundant events in January since 1951 and winter since 1880 for southern China. The anomalous events are defined using ±1σ thresholds. Twelve cold Januaries are identified where temperature anomaly below -1σ, and ten wet Januaries are identified where precipitation anomaly above +1σ. Among these events there are three patterns of cold-wet Januaries, namely 1969, 1993 and 2008. The NCEP/NCAR reanalysis data are used to check the atmospheric circulation changes in association with the anomalous temperature and precipitation events. The results show that the strong Siberian High (SBH), East Asian trough (EAT) and East Asian jet stream (EAJS) are favorable conditions for low-temperature in southern China. While the anomalous southerly flow at 850 hPa, the weak EAT at 500 hPa, the strong Middle East jet stream (MEJS) and the weaker EAJS are found to accompany a wetter southern China. The cold-wet winters in southern China, such as January of 2008, are mainly related to a stronger SBH, and the circulation in the middle to upper troposphere is precipitation-favorable. In wet winters, the water vapor below 500 hPa is mainly transported by the anomalous southwesterly flow and the anomalous southern flow over the Indo-China Peninsula and the South China Sea area. The correlation coefficients of MEJS, EAMVV (East Asian meridional wind) and EU (Eurasian pattern) to southern China precipitation in January are +0.65, -0.59 and -0.48 respectively, and the correlations for high-pass filtered data are +0.63 -0.55 and -0.44 respectively, the significant level is all at 99%. MEJS, EAMW and EU together can explain 49.4% variance in January precipitation. Explained variance for January and winter temperature by SBH, EU, WP (west Pacific pattern) and AO (Arctic Oscillation) are 47.2% and 51.5%, respectively. There is more precipitation in southern China during El Nitro winters, and less precipitation during La Nina winters. And there is no clear evidence that the occurrence of anomalous temperature events in winter over southern China is closely linked to ENSO events.
基金National Natural Science Foundation of China(42088101)。
文摘Based on daily precipitation data supplied by the Chinese meteorological administration,hourly reanalysis datasets provided by the ECMWF and daily outgoing long wave radiation supplied by the NOAA,the evolution regularity of continuous heavy precipitation over Southern China(SC)from April to June in 1979-2020 was systematically analyzed.The interaction between specific humidity and circulation field at the background-scale,the intra-seasonal-scale and the synoptic-scale,and its influence on persistent heavy precipitation over the SC during the April-June rainy season were quantitatively diagnosed and analyzed.The results are as follows.Persistent heavy rainfall events(PHREs)over the SC during the April-June rainy season occur frequently from mid-May to mid-and late-June,exhibiting significant intra-seasonal oscillation(10-30-day)features.Vertically integrated moisture flux convergence(VIMFC)can well represent the variation of the PHREs.A multiscale quantitative diagnosis of the VIMFC shows that the pre-summer PHREs over the SC are mainly affected by the background water vapor(greater than 30 days),intraseasonal circulation disturbance(10-30-day)and background circulation(greater than 30 days),and water vapor convergences are the main factor.The SC is under the control of a warm and humid background and a strong intraseasonal cyclonic circulation,with strong convergence and ascending movements and abundant water vapor conditions during the period of the PHREs.Meanwhile,the westward inter-seasonal oscillation of tropical atmosphere keeps the precipitation system over the SC for several consecutive days,eventually leading to the occurrence,development and persistence of heavy precipitation.
基金Supported by the National(Key) Basic Research and Development(973) Program of China(2012CB417202)National Natural Science Foundation of China(41175049 and 41221064)+1 种基金Basic Research Funds of the Chinese Academy of Meteorological Sciences(2012Y001)National Science and Technology Support Program of China(2012BAC22B03)
文摘This study investigates influencing weather systems for and the effect of Tibetan Plateau (TP)’s surface heating on the heavy rainfall over southern China in June 2010, focusing on the four persistent heavy rainfall events during 14-24 June 2010. The ma jor weather systems include the South Asian high, midlatitude trough and ridge, western Pacific subtropical high in the middle troposphere, and shear lines and eastward-moving vortices in the lower troposphere. An ensemble of convection-permitting simulations (CTL) is carried out with the WRF model for these rainfall events, which successfully reproduce the observed evolution of precipitation and weather systems. Another ensemble of simulations (SEN) with the surface albedo over the TP and its southern slope changed artificially to one, i.e., the surface does not absorb any solar heating, otherwise it is identical to CTL, is also performed. Comparison between CTL and SEN suggests that the surface sensible heating of TP in CTL significantly affects the temperature distributions over the plateau and its surroundings, and the thermal wind adjustment consequently changes atmospheric circulations and properties of the synoptic systems, leading to intensified precipitation over southern China. Specifically, at 200 hPa, anticyclonic and cyclonic anomalies form over the western and eastern plateau, respectively, which enhances the southward cold air intrusion along the eastern TP and the divergence over southern China;at 500 hPa, the ridge over the northern plateau and the trough over eastern China are strengthened, the southwesterly flows along the northwestern side of the subtropical high are intensified, and the positive vorticity propagation from the plateau to its downstream is also enhanced significantly;at 850 hPa, the low-pressure vortices strongly develop and move eastward while the southwesterly low-level jet over southern China strengthens in CTL, leading to increased water vapor convergence and upward motion over the precipitation region.
基金supported by National Basic Research Program of China (Grant No. 2007CB411505)National Natural Science Foundation of China (Grant No. 40921003)Basic Research Fund of Chinese Academy of Meteorological Sciences (Grant No. 2010Z001)
文摘This study analyzes the inter-decadal variations of rainfall over southern China in spring (March-April-May) using the observed precipitation data for 1979-2004. The result shows that the variations of spring rainfall over southeastern China are opposite to those over and southwestern China in both inter-annual and inter-decadal time scales. The precipitation over south- ern China exhibits an apparent inter-decadal shift in the late 1980s. The accumulated spring rainfall has reduced 30% over southeastern China after the late 1980s, whereas it has increased twice as much over southwestern China. The atmospheric circulations related to this shift show that an abnormal high at lower and middle troposphere appears over Asian middle and high latitudes, accompanied by stronger-than-normal northerly wind over eastern China. Consequently, the wet air flows from tropical oceans are weakened over southern China, resulting in less rainfall over southeastern China and more rainfall over southwestern China. Furthermore, the anomalous atmospheric circulation over Asian middle and high latitudes is closely related to the inter-decadal downward shift of Eurasian spring snow in the late 1980s, indicating that the inter-decadal shift of Eurasian spring snow in the late 1980s is probably an important factor in the decadal shift of spring rainfall over southern China.
基金the National Key Research and Development Program of China (2018YFA0606203 and 2018YFC1505901)National Natural Science Foundation of China (41520104008, 41922035, 41575062, and 41475070)Key Research Program of Frontier Sciences of Chinese Academy of Sciences (QYZDB-SSW-DQC017)。
文摘Winter rainfall over southern China is usually enhanced when Madden–Julian oscillation(MJO) is active over the Indian Ocean, but it can be weakened under certain conditions. Here, the diversity of MJO impacts on winter rainfall and its mechanisms are explored by using scenarios of enhanced and suppressed rainfall anomalies over southern China when MJO is active over the Indian Ocean. The combined effects of low-frequency background moisture and intraseasonal winds are the major contributors to the different rainfall anomalies. Anomalous circulation in mid–high latitudes, especially on intraseasonal timescales, is almost opposite in the two scenarios, which can modulate the response of extratropical atmosphere to MJO heating and then induces the different circulations over southern China. In the enhanced scenario, mid–high latitudes of Eurasia and southern China are dominated by positive and negative sea level pressure anomalies, respectively. The southerly over southern China and the South China Sea induced by MJO heating promotes the anomalous moisture convergence and ascending motion over southern China, resulting in the enhanced rainfall. In the suppressed scenario, however, the circulation in mid–high latitudes does not favor rainfall over southern China and leads to the northerly response to MJO heating over southern China, which enhances moisture divergence and weakens rainfall over southern China.
文摘回顾了对南印度洋副热带海气相互作用的研究,总结了南印度洋偶极子事件背景下的气候变化。印度洋海表温度的方差表明南印度洋是整个印度洋海温变率最强的区域,年际海温变化最显著的特征就是海温呈现西南—东北向的偶极子型分布,被称为南印度洋偶极子(Southern Indian Ocean Dipole,SIOD)。南印度洋海温偶极子的形成主要是受大尺度大气环流调整的影响。南印度洋副热带反气旋环流异常引起了印度洋热带东风异常和副热带西风异常的变化,影响了潜热通量、上升流和Ekman热输送,进而引起了海温变化。SIOD对热带和热带外大气环流也有影响,尤其会影响亚洲夏季风降水异常,例如我国的降水异常和南印度洋偶极子海温异常具有显著相关关系。此外,SIOD模态所引起的经向环流异常与南海、菲律宾地区的反气旋环流异常也有紧密联系。