Forest ecosystems are our priceless natural resource and are a key component of the global carbon budget. Forest fires can be a hazard to the viability and sustainable management of forests with consequences for natur...Forest ecosystems are our priceless natural resource and are a key component of the global carbon budget. Forest fires can be a hazard to the viability and sustainable management of forests with consequences for natural and cultural environments, economies, and the life quality of local and regional populations. Thus, the selection of strategies to manage forest fires, while considering both functional and economic efficiency, is of primary importance. The use of decision support systems(DSSs) by managers of forest fires has rapidly increased. This has strengthened capacity to prevent and suppress forest fires while protecting human lives and property. DSSs are a tool that can benefit incident management and decision making and policy, especially for emergencies such as natural disasters. In this study we reviewed state-of-the-art DSSs that use: database management systems and mathematical/economic algorithms for spatial optimization of firefighting forces; forest fire simulators and satellite technology for immediate detection and prediction of evolution of forest fires; GIS platforms that incorporate several tools to manipulate, process and analyze geographic data and develop strategic and operational plans.展开更多
Digital technologies have changed the way supply chain operations are structured.In this article,we conduct systematic syntheses of literature on the impact of new technologies on supply chains and the related cyber r...Digital technologies have changed the way supply chain operations are structured.In this article,we conduct systematic syntheses of literature on the impact of new technologies on supply chains and the related cyber risks.A taxonomic/cladistic approach is used for the evaluations of progress in the area of supply chain integration in the Industrial Internet of Things and Industry 4.0,with a specific focus on the mitigation of cyber risks.An analytical framework is presented,based on a critical assessment with respect to issues related to new types of cyber risk and the integration of supply chains with new technologies.This paper identifies a dynamic and self-adapting supply chain system supported with Artificial Intelligence and Machine Learning(AI/ML)and real-time intelligence for predictive cyber risk analytics.The system is integrated into a cognition engine that enables predictive cyber risk analytics with real-time intelligence from IoT networks at the edge.This enhances capacities and assist in the creation of a comprehensive understanding of the opportunities and threats that arise when edge computing nodes are deployed,and when AI/ML technologies are migrated to the periphery of IoT networks.展开更多
Digital technologies have changed the way supply chain operations are structured.In this article,we conduct systematic syntheses of literature on the impact of new technologies on supply chains and the related cyber r...Digital technologies have changed the way supply chain operations are structured.In this article,we conduct systematic syntheses of literature on the impact of new technologies on supply chains and the related cyber risks.A taxonomic/cladistic approach is used for the evaluations of progress in the area of supply chain integration in the Industrial Internet of Things and Industry 4.0,with a specific focus on the mitigation of cyber risks.An analytical framework is presented,based on a critical assessment with respect to issues related to new types of cyber risk and the integration of supply chains with new technologies.This paper identifies a dynamic and self-adapting supply chain system supported with Artificial Intelligence and Machine Learning(AI/ML)and real-time intelligence for predictive cyber risk analytics.The system is integrated into a cognition engine that enables predictive cyber risk analytics with real-time intelligence from IoT networks at the edge.This enhances capacities and assist in the creation of a comprehensive understanding of the opportunities and threats that arise when edge computing nodes are deployed,and when AI/ML technologies are migrated to the periphery of IoT networks.展开更多
Planning in advance to prepare for and respond to a natural hazard-induced disaster-related emergency is a key action that allows decision makers to mitigate unexpected impacts and potential damage. To further this ai...Planning in advance to prepare for and respond to a natural hazard-induced disaster-related emergency is a key action that allows decision makers to mitigate unexpected impacts and potential damage. To further this aim, a collaborative, modular, and information and communications technology-based Spatial Data Infrastructure(SDI)called SIRENE—Sistema Informativo per la Preparazione e la Risposta alle Emergenze(Information System for Emergency Preparedness and Response) is designed and implemented to access and share, over the Internet, relevant multisource and distributed geospatial data to support decision makers in reducing disaster risks. SIRENE flexibly searches and retrieves strategic information from local and/or remote repositories to cope with different emergency phases. The system collects, queries, and analyzes geographic information provided voluntarily by observers directly in the field(volunteered geographic information(VGI) reports) to identify potentially critical environmental conditions. SIRENE can visualize and cross-validate institutional and research-based data against VGI reports,as well as provide disaster managers with a decision support system able to suggest the mode and timing of intervention, before and in the aftermath of different types of emergencies, on the basis of the available information and in agreement with the laws in force at the national andregional levels. Testing installations of SIRENE have been deployed in 18 hilly or mountain municipalities(12 located in the Italian Central Alps of northern Italy, and six in the Umbria region of central Italy), which have been affected by natural hazard-induced disasters over the past years(landslides, debris flows, floods, and wildfire) and experienced significant social and economic losses.展开更多
基金co-financed by the European Union(European Social Fund-ESF)and Greek national funds through the Operational Program‘‘Education and Lifelong Learning’’of the National Strategic Reference Framework(NSRF)-Research Funding Program:Thales.Investing in knowledge society through the European Social Fund
文摘Forest ecosystems are our priceless natural resource and are a key component of the global carbon budget. Forest fires can be a hazard to the viability and sustainable management of forests with consequences for natural and cultural environments, economies, and the life quality of local and regional populations. Thus, the selection of strategies to manage forest fires, while considering both functional and economic efficiency, is of primary importance. The use of decision support systems(DSSs) by managers of forest fires has rapidly increased. This has strengthened capacity to prevent and suppress forest fires while protecting human lives and property. DSSs are a tool that can benefit incident management and decision making and policy, especially for emergencies such as natural disasters. In this study we reviewed state-of-the-art DSSs that use: database management systems and mathematical/economic algorithms for spatial optimization of firefighting forces; forest fire simulators and satellite technology for immediate detection and prediction of evolution of forest fires; GIS platforms that incorporate several tools to manipulate, process and analyze geographic data and develop strategic and operational plans.
基金This work was funded by the UK EPSRC[grant number:EP/S035362/1,EP/N023013/1,EP/N02334X/1]and by the Cisco Research Centre[grant number 1525381].
文摘Digital technologies have changed the way supply chain operations are structured.In this article,we conduct systematic syntheses of literature on the impact of new technologies on supply chains and the related cyber risks.A taxonomic/cladistic approach is used for the evaluations of progress in the area of supply chain integration in the Industrial Internet of Things and Industry 4.0,with a specific focus on the mitigation of cyber risks.An analytical framework is presented,based on a critical assessment with respect to issues related to new types of cyber risk and the integration of supply chains with new technologies.This paper identifies a dynamic and self-adapting supply chain system supported with Artificial Intelligence and Machine Learning(AI/ML)and real-time intelligence for predictive cyber risk analytics.The system is integrated into a cognition engine that enables predictive cyber risk analytics with real-time intelligence from IoT networks at the edge.This enhances capacities and assist in the creation of a comprehensive understanding of the opportunities and threats that arise when edge computing nodes are deployed,and when AI/ML technologies are migrated to the periphery of IoT networks.
基金funded by the UK EPSRC[grant number:EP/S035362/1,EP/N023013/1,EP/N02334X/1]by the Cisco Research Centre[grant number 1525381].
文摘Digital technologies have changed the way supply chain operations are structured.In this article,we conduct systematic syntheses of literature on the impact of new technologies on supply chains and the related cyber risks.A taxonomic/cladistic approach is used for the evaluations of progress in the area of supply chain integration in the Industrial Internet of Things and Industry 4.0,with a specific focus on the mitigation of cyber risks.An analytical framework is presented,based on a critical assessment with respect to issues related to new types of cyber risk and the integration of supply chains with new technologies.This paper identifies a dynamic and self-adapting supply chain system supported with Artificial Intelligence and Machine Learning(AI/ML)and real-time intelligence for predictive cyber risk analytics.The system is integrated into a cognition engine that enables predictive cyber risk analytics with real-time intelligence from IoT networks at the edge.This enhances capacities and assist in the creation of a comprehensive understanding of the opportunities and threats that arise when edge computing nodes are deployed,and when AI/ML technologies are migrated to the periphery of IoT networks.
基金SIMULATOR-Sistema Integrato ModULAre per la gesTione e prevenzi One dei Rischi-Integrated Modular System for Risk Prevention and Management, financed by the Lombardy regional government, Italy
文摘Planning in advance to prepare for and respond to a natural hazard-induced disaster-related emergency is a key action that allows decision makers to mitigate unexpected impacts and potential damage. To further this aim, a collaborative, modular, and information and communications technology-based Spatial Data Infrastructure(SDI)called SIRENE—Sistema Informativo per la Preparazione e la Risposta alle Emergenze(Information System for Emergency Preparedness and Response) is designed and implemented to access and share, over the Internet, relevant multisource and distributed geospatial data to support decision makers in reducing disaster risks. SIRENE flexibly searches and retrieves strategic information from local and/or remote repositories to cope with different emergency phases. The system collects, queries, and analyzes geographic information provided voluntarily by observers directly in the field(volunteered geographic information(VGI) reports) to identify potentially critical environmental conditions. SIRENE can visualize and cross-validate institutional and research-based data against VGI reports,as well as provide disaster managers with a decision support system able to suggest the mode and timing of intervention, before and in the aftermath of different types of emergencies, on the basis of the available information and in agreement with the laws in force at the national andregional levels. Testing installations of SIRENE have been deployed in 18 hilly or mountain municipalities(12 located in the Italian Central Alps of northern Italy, and six in the Umbria region of central Italy), which have been affected by natural hazard-induced disasters over the past years(landslides, debris flows, floods, and wildfire) and experienced significant social and economic losses.